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I. Selfinjective algebras

K algebraically closed field

A finite dimensional K-algebra

modA category of finite dimensional right
A-modules

Aop opposite algebra of A, a ∗ b = ba

modAop = A-mod category of finite dimen-

sional left A-modules

D = HomK(−,K)

modA
D //

modAop
D

oo duality

D ·D ∼=modA, D ·D ∼= 1modAop

1A =

nA∑

i=1

mA(i)∑

j=1

eij

eij pairwise orthogonal primitive idempotents

eijA
∼= eij′A for all j, j′ ∈ {1, . . . ,mA(i)}

eijA ≇ ei′jA for i 6= i′
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We will abbreviate ei = ei1 for i ∈ {1, . . . , nA}

Pi = eiA, 1 ≤ i ≤ nA, complete set of

pairwise nonisomorphic indecomposable

projective right A-modules

Ii = D(Aei1), 1 ≤ i ≤ nA, complete set of

pairwise nonisomorphic indecomposable

injective right A-modules

A is basic if mA(i) = 1 for all i ∈ {1, . . . , nA}

In general, consider the basic idempotent of A

e =

nA∑

i=1

ei1 =

nA∑

i=1

ei

Ab = eAe basic algebra of A

modA
(−)e

//
modAb

−⊗
AbA

oo equivalence of categories

A is Morita equivalent to Ab
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projA category of projective modules in modA

projA = add{P1, P2, . . . , Pn}

injA category of injective modules in modA

injA = add{I1, I2, . . . , In}

projA
D // injAop
D

oo

injA
D // projAop
D

oo

Proposition. The following are equivalent for

an algebra A:

(1) AA is injective.

(2) projA = injA.

(3) projAop = injAop.

(4) AA is injective.

A is selfinjective if AA and AA are injective.
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A selfinjective ⇒ e11A, e21A, . . . , en1A com-

plete set of pairwise nonisomorphic in-

decomposable injective right A-modules

Hence, there exists a permutation ν of {1, . . . , nA},

called the Nakayama permutation such that

top ei1A
∼= soc eν(i)1A for all i ∈ {1, . . . , nA}

Theorem (Nakayama, 1941). An algebra

A is selfinjective if and only if there exists

a permutation ν of {1, . . . , nA} such that

top ei1A
∼= soc eν(i)1A for all i ∈ {1, . . . , nA}.

D(A) = HomK(A,K) is an A-A-bimodule

(af)(b) = f(ba), (fa)(b) = f(ab)

for a, b ∈ A, f ∈ D(A).

D(A)A injective cogenerator in modA

AD(A) injective cogenerator in modAop
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Theorem (Brauer, Nesbitt, Nakayama,

1937–1939). The following statements are

equivalent for an algebra A:

(1) There exists a nondegenerate K-bilinear

form (−,−) : A × A → K such that

(a, bc) = (ab, c) for all a, b, c ∈ A.

(2) There exists a K-linear form ϕ : A → K

such that kerϕ does not contain nonzero

right ideal of A.

(3) There exists an isomorphism

θ : AA → D(A)A of right A-modules.

(4) There exists a K-linear form ϕ′ : A → K

such that kerϕ′ does not contain nonzero

left ideal of A.

(5) There exists an isomorphism

θ′ : AA→ AD(A) of left A-modules.
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Proof. (1) ⇒ (2) Let (−,−) : A × A → K be

a nondegenerate associative K-bilinear form.

Define K-linear map ϕ : A→ K by

ϕ(a) = (a,1) = (1, a) for a ∈ A.

Let I be a right ideal of A such that ϕ(I) = 0.

Take a ∈ I. Then (a,A) = (aA,1) = ϕ(aA) =

0 implies (a,−) = 0, and so a = 0. Hence

I = 0.

(2) ⇒ (1), (3) Let ϕ : A → K be a K-linear

map such that ϕ(I) 6= 0 for any nonzero

right ideal I of A. Define K-bilinear form

(−,−) : A×A→ K by

(a, b) = ϕ(ab) for all a, b ∈ A.

Observe that

(a, bc) = ϕ(a(bc)) = ϕ((ab)c) = (ab, c),

for a, b, c ∈ A. Let a ∈ A. If (a,−) = 0 then

ϕ(aA) = (a,A) = 0 implies a = 0. Assume

(−, a) = 0. Then (a,−) = 0, and hence a = 0.
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Indeed, consider a K-linear basis a1, . . . , am of

A. Then a =
∑m
i=1 λiai for some λ1, . . . , λm ∈

K, and, for any j ∈ {1, . . . ,m}, we have

0 = (aj, a) =
∑n
i=1 λi(aj, ai), or equivalently

[
(aj, ai)

]


λ1
...
λm


 = 0.

Taking the transpose, we get

[λ1, . . . , λm]
[
(ai, aj)

]
= 0,

or equivalently 0 =
∑n
i=1 λi(ai, aj) = (a, aj)

for any j ∈ {1, . . . ,m}. Hence (a,−) = 0,

as required. Therefore (−,−) is a nonde-

generate associative K-bilinear form, and (1)

holds.

For (3), define the K-linear map

θ = θϕ : A→ D(A) = HomK(A,K)

such that θ(a)(b) = ϕ(ab), for a, b ∈ A. Then

θ is a homomorphism of right A-modules: for

a, b, c ∈ A, we have θ(ab)(c) = ϕ((ab)c) =

ϕ(a(bc)) = θ(a)(bc) = (θ(a)b)(c), and hence
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θ(ab) = θ(a)b. Moreover, θ is a monomor-

phism, because, for a ∈ A, θ(a) = 0 implies

ϕ(aA) = θ(a)(A) = 0, and hence aA = 0,

and consequently a = 0, by the condition

(2). Since dimK A = dimKD(A), we con-

clude that θ is an isomorphism of right A-

modules.

(3) ⇒ (2) Assume that θ : A → D(A) is an

isomorphism of right A-modules. Define the

K-linear map ϕ = ϕθ = θ(1) ∈ D(A). Let

I be a right ideal of A such that ϕ(I) = 0.

Then, for any a ∈ A, we have aA ⊆ I, and

hence we obtain 0 = ϕ(aA) = θ(1)(aA) =

(θ(1)a)(A) = θ(a)(A) and hence a = 0, be-

cause θ is and isomorphism of right A-modules.

Hence I = 0, and (2) holds.

In a similar way, we prove the equivalences

(1) ⇐⇒ (4) ⇐⇒ (5).
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An algebra A statisfying one of the equiva-

lent conditions (1)–(5) is called a Frobenius

algebra.

The class of Frobenius algebras coincides with

the class of algebras for which the left and

the right regular representations are equiva-

lent, introduced in 1903 by Frobenius.

A Frobenius ⇒ A selfinjective

(AA
∼

−→ D(A)A ⇒ AA is injective)

A basic, selfinjective ⇒ A Frobenius

In particular, every selfinjective algebra A is

Morita equivalent to a Frobenius algebra, namely

its basic algebra Ab.

In general, we have the following

Theorem (Nakayama 1939). Let A be a

selfinjective algebra. Then A is a Frobenius

algebra if and only if, for the Nakayama per-

mutation ν = νA of A, we have mA(i) =

mA(ν(i)) for all i ∈ {1, . . . , nA}.
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Example. Λ = KQ/I where Q is the quiver

1
α //

2
β

oo

I = 〈αβ, βα〉. Then Λ is a basic, connected

selfinjective algebra with rad2 Λ = 0. More-

over,

Λ = e1A⊕ e2Λ

Take A = Λ(2,1) = EndΛ(e1Λ ⊕ e1Λ ⊕ e2Λ).

Then A is a 9-dimensional selfinjective non-

Frobenius algebra exhibited already by

Nakayama.

Hence, the class of Frobenius algebras is not

closed under Morita equivalences. The class

of selfinjective algebras is the smallest class

of algebras containing the Frobenius algebras

and closed under Morita equivalences.
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An important class of Frobenius algebras is

formed by the symmetric algebras.

Theorem (Brauer, Nesbitt, Nakayama,

1937–1941). The following statements are

equivalent for an algebra A:

(1) There exists a nondegenerate symmetric

K-bilinear form (−,−) : A×A→ K.

(2) There exists a K-linear form ϕ : A → K

such that ϕ(ab) = ϕ(ba) for all a, b ∈ A,

and kerϕ does not contain nonzero one-

sided ideal of A.

(3) There exists an isomorphism θ : AAA →

AD(A)A of A-A-bimodules.

Proof. This follows from the proof of the

characterizations of Frobenius algebras.

An algebra A satisfying one of the equiva-

lent conditions (1)–(3) is called a symmetric

algebra.
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Let A be a finite dimensional Frobenius K-

algebra and (−,−) : A×A→ K a nondegener-

ate associative K-bilinear form. Then there

exists a unique K-algebra isomorphism

νA : A→ A

such that (a, b) = (b, νA(a)) for all a, b ∈ A,

called the Nakayama automorphism of A.

We will see later that νA induces the Nakayama

permutation of A.

Moreover, νA = idA if A is symmetric.

Theorem (Nakayama, 1939). Let A be a

selfinjective algebra. Then soc(AA) = soc(AA).

In particular, soc(A) := soc(AA) = soc(AA)

is an ideal of A.

Two selfinjective algebras A and Λ are said

to be socle equivalent if the factor algebras

A/ soc(A) and Λ/ soc(Λ) are isomorphic.
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Examples.

(1) Let A = K[X]/(Xn), n ≥ 1, be a trun-

cated polynomial algebra. Then A is a com-

mutative local K-algebra with A ∼= D(A) as

A-A-bimodules, and hence A is symmetric.

Therefore, every finite dimensional com-

mutative K-algebra is a symmetric alge-

bra.

(2) G finite group, A = KG group algebra

A =




∑

g∈G

λgg | λg ∈ K





dimK A =| G |

(−,−) : A×A→ K

∑

g∈G

λgg,
∑

h∈H

µhh


 =

∑

g∈G

λgµg−1

symmetric, associative, nondegenerate K-bilinear

form. Hence, A = KG is a symmetric alge-

bra.
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(3) A arbitrary finite dimensional K-algebra

T(A) = A⋉D(A) trivial extension of A by

the A-A-bimodule D(A)

T(A) = A⊕D(A) as K-vector space

(a, f)(a′, f ′) = (aa′, af ′ + fa′)

for a, a′ ∈ a, f, f ′ ∈ D(A)

T(A) is a symmetric algebra,

dimK T(A) = 2dimK A.

(−,−) : T(A) × T(A) → K

((a, f), (a′, f ′)) = f(a′) + f ′(a)

for a, a′ ∈ A, f, f ′ ∈ D(A), is a symmetric, as-

sociative, nondegenerate, K-bilinear form for

T(A).

Observe that D(A) = 0⊕D(A) is a two-sided

ideal of T(A) and A = T(A)/D(A).

The class of symmetric algebras is closed un-

der Morita equivalences (A is symmetric ⇐⇒

Ab is symmetric)
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(4) For λ ∈ K \ {0}, let Aλ = KQ/Iλ, where

Q : •@ABGFEα
�� ABCFED β��

,

I = 〈α2, β2, αβ − λβα〉. Then Aλ is a 4-

dimensional local Frobenius algebra. But

Aλ is symmetric ⇐⇒ λ = 1.

Indeed, let a = α + Iλ, b = β + Iλ. Then

1, a, b, ab = λba is a basis of Aλ over K.

Define ϕλ : Aλ → K by

ϕ(1) = ϕ(a) = ϕ(b) = 0, ϕ(ab) = 1

kerϕ does not contain nonzero right (left)

ideal of Aλ

For λ = 1, ϕ = ϕ1 has the property ϕ(xy) =

ϕ(yx) for all x, y ∈ A1.

For λ 6= 1, Aλ is not symmetric. Assume

ψ : A→ K, ψ(xy) = ψ(yx) for all x, y ∈ Aλ,

kerψ does not contain nonzero one-sided ideal

of Aλ. Then Kab = Kba is a nonzero ideal

and hence

0 6= ψ(ba) = ψ(ab) = ψ(λba) = λψ(ba) ⇒ λ = 1.
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Finite dimensional Hopf algebras

A K-vector space A is a K-algebra if and

only if there are K-linear maps

m : A⊗K A→ A and η : K → A

multiplication unit

such that the following diagrams are commu-

tative

A⊗K A⊗K A 1⊗m //

m⊗1
��

A⊗K A

m

��

A⊗K A m
//A

K ⊗K A
η⊗1

//

∼=
&&LLLLLLLLLLLLLLLLLLLLL

A⊗K A

m

��

A⊗K K
1⊗η
oo

∼=
xxrrrrrrrrrrrrrrrrrrrrr

A

Dually, a K-vector space C is a K-coalgebra

if there are K-linear maps

∆ : C → C ⊗K C and ε : C → K

comultiplication counit
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such that the following diagrams are commu-

tative

C ∆ //

∆
��

C ⊗K C

1⊗∆
��

C ⊗K C
∆⊗1

//C ⊗K C ⊗K C

K ⊗K C C ⊗K Cε⊗1oo 1⊗ε //C ⊗K K

A

∼=

ffLLLLLLLLLLLLLLLLLLLLL

∆

OO

∼=

88rrrrrrrrrrrrrrrrrrrrr

A K-vector space H is a K-bialgebra if there

are K-linear mapsm : H⊗KH → H, η : K → H,

∆ : H → H ⊗K H and ε : H → K such that

(1) (H,m, η) is a K-algebra

(2) (H,∆, ε) is a K-coalgebra

(3) ∆, ε are homomorphisms of K-algebras
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If H = (H,m, η,∆, ε) is a bialgebra over K

then we have the convolution map

∗ : HomK(H,H)×HomK(H,H) → HomK(H,H)

which assigns to f, g ∈ HomK(H,H) the com-

position

f ∗ g : H
∆
−→ H ⊗K H

f⊗g
−→ H ⊗K H

m
−→ H

Then a bialgebra H = (H,m, η,∆, ε) over K

is a Hopf algebra if there exists a K-linear

map

s : H −→ H antipode

such that s ∗ idH = ηε = idH ∗s. Then

HomK(H,H) has a group structure with the

multiplication ∗, the unit ηε, and the inverse
−1 given by f−1 = fs, for f ∈ HomK(H,H).
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Examples. (1) The group algebra KG of a

finite group G is a Hopf algebra with the co-

multiplication ∆, the counit ε and the an-

tipode s given by

∆(g) = g⊗g, ε(g) = 1, s(g) = g−1, for g ∈ G.

(2) Let H = (H,m, η,∆, ε, s) be a finite di-

mensional Hopf algebra over K. Then the

dual space H∗ = HomK(H,K) is again a Hopf

algebra H∗ = (H∗,∆∗, ε∗,m∗, η∗, s∗) with

∆∗ : H∗ ⊗K H∗ ∼
−→ (H ⊗K H)∗

∆∗
−→ H∗,

ε∗ : K = K∗ −→ H∗,

m∗ : H∗ ∆∗
−→ (H ⊗K H)∗

∼
−→ H∗ ⊗K H∗,

η∗ : H∗ −→ K∗ = K,

s∗ : H∗ −→ H∗.

For an antipode s of a Hopf algebra H,

we have s(xy) = s(y)s(x) for x, y ∈ H and

s(1) = 1.

19



Theorem (Radford, 1976). An antipode s

of a finite dimensional Hopf algebra H has a

finite order. Then s is an antiisomorphism of

the algebra H.

Let H = (H,m, η,∆, ε, s) be a Hopf algebra

over K. Then the set
∫ r
H

=
{
x ∈ H

∣∣∣ xh = ε(h)x for all h ∈ H
}

is called the space of right integrals of H

Theorem (Larson-Sweedler, 1969). Let H

be a finite dimensional Hopf algebra over K.

Then the following statements hold

(1) dimK
∫ r
H = 1 and dimK

∫ r
H∗ = 1.

(2) For ϕ ∈
∫ r
H∗ \{0}, the K-bilinear form

(−,−) : H ×H → K

such that (a, b) = ϕ(ab) for a, b ∈ H, is

nondegenerate and associative.

In particular, H is a Frobenius algebra.
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Let H be a finite dimensional Hopf algebra

over K. Then there exists a homomorphism

of K-algebras

ξ : H −→ K modular function on H

such that hx = ξ(h)x for all h ∈ H,x ∈
∫ r
H.

Consider the convolution map

ξ ∗ idH : H
∆
−→ H ⊗K H

ξ⊗idH−→ K ⊗K H
∼

−→ H

Theorem (Fischman-Montgomery-Schnei-

der, 1997). Let H be a finite dimensional

Hopf algebra over K. Then the following

statements hold:

(1) νH = (ξ ∗ idH) · s−2 is the Nakayama au-

tomorphism of the Frobenius algebra H,

that is, (a, b) = (b, νH(a)) for all a, b ∈ H.

(2) νH has finite order dividing 2dimKH.
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Example. Let H = KG be the group algebra

of a finite group G. Then
∫ r
H = Kt, where

t =
∑
g∈G g

ξ = ε : H → K, s2 = idH

ξ ∗ idH = ε ∗ idH = idH

νH = (ξ ∗ idH)s−2 = idH

This is correct because KG is a symmetric

algebra.

Example. Let n ≥ 2 and λ be a primitive

n-th root of unity (hence charK 6 | n). Let

H = Hn2(λ) = K〈g, x〉/(gn − 1, xn, xg − λgx)

Then Hn2(λ) is an n2-dimensional Hopf al-

gebra, with K-basis {gixj | 0 ≤ i, j ≤ n − 1},

and the comultiplication ∆, counit ε and an-

tipode s given by

∆(g) = g ⊗ g, ∆(x) = g ⊗ x+ x⊗ 1

ε(g) = 1, ε(x) = 0

s(g) = g−1, s(x) = −g−1x

Hn2(λ) is called the Taft algebra.
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The Taft algebra is neither commutative nor

cocommutative (For n = 2, H4(λ) is the 4-

dimensional Sweedler’s algebra)

Since s2(x) = λx, s2(g) = g, s has order 2n.

Further,
∫ r
H = Kt, where

t = (
n−1∑

m=0

λ−mgm)xn−1

The modular function ξ : H → K is given by

ξ(g) = λ, ξ(x) = 0

Then the convolution ξ∗ idH : H → H is given

by λ idH and hence the Nakayama automor-

phism νH = (ξ ∗ idH)s−2 is given by

νH(g) = λg−1, νH(x) = x

Hence νH has order n.
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As an algebra H = Hn2(λ) is isomorphic

to the skew group algebra A[G] where

A = K[x]/(xn), G = (g) of order n, and

G acts on A by g(x̄) = λ−1x̄, x̄ = residue

class of x, and gx̄g = g(x̄)gg = λ−1x̄gg im-

plies x̄g = λgx̄.

Moreover, H = Hn2(λ) is isomorphic to the

bound quiver algebra KQn/In, where Qn is

the cyclic quiver of the form

1 α1

((QQQQQQQQQQQQQQQ

n

αn
66mmmmmmmmmmmmmmm

2
α2

��:
::

::
::

::
::

:

n− 1

αn−1

BB������������

3

α3
��

n− 2

αn−2

OO

4

����
��

��
��

��
��

. . .

\\999999999999

. . .

and In is generated by the paths αiαi+1 . . . αi+n−1,

1 ≤ i ≤ n. Hence, as an algebra, Hn2(λ) is a

selfinjective Nakayama algebra.
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Selfinjective orbit algebras

A connected K-category R is locally bounded

if:

• distinct objects of R are nonisomorphic

• ∀
x∈obR

R(x, x) is a local algebra

• ∀
x∈obR

∑
y∈obR

(dimK R(x, y) + dimK R(y, x)) <∞

⇒ R ∼= KQ/I, Q locally finite connected quiver,

I admissible ideal of the path category KQ

modR category of finitely generated

contravariant functors R → modK

modR = repK(Q, I)

R bounded (has finitely many objects) ⇒⊕
R =

⊕
x,y∈obR

R(x, y) finite dimensional basic

connected K-algebra

We will identify a bounded K-category

R with the associated finite dimensional

algebra ⊕R
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R locally bounded K-category

G group of K-linear automorphisms of R

G is admissible if G acts freely on the objects

of R and has finitely many orbits

R/G orbit (bounded) category

objects: G-orbits of objects of R

(R/G)(a, b) =

(fyx) ∈

∏
(x,y)∈a×b

R(x, y)
∣∣∣ g · fyx = fg(y),g(x) ∀

g∈G,x∈a,y∈b





F : R → R/G canonical Galois covering

ob(R) ∋ x 7→ Fx = G · x ∈ ob(R/G)

∀
x∈obR

∀
a∈ob(R/G)

F induces isomorphisms

⊕

Fy=a

R(x, y)
∼

−→ (R/G)(Fx, a),

⊕

Fy=a

R(y, x)
∼

−→ (R/G)(a, Fx)
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The group G acts also on modR

modR ∋M 7→ gM = Mg−1 ∈ modR

We have also the push-down functor

(Bongartz-Gabriel)

Fλ : modR −→ modR/G

M ∈ modR, a ∈ ob(R/G) ⇒ (FλM)(a) =
⊕

x∈a
M(x)

Assume G is torsion-free. Then Fλ induces

an injection (Gabriel)




G-orbits of
isoclasses of

indecomposable
modules in modR





Fλ
֌





isoclasses of
indecomposable

modules in
modR/G





R is locally support-finite if for any x ∈ obR⋃
M∈indR
M(x) 6=0

supp(M) is a bounded category

R locally support-finite
Dowbor-Skowroński

====⇒ Fλ
is dense

Then ΓR/G
∼= ΓR/G (Gabriel)
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R selfinjective locally bounded K-category

G admissible group of automorphisms of R

⇒ R/G basic connected finite dimensional

selfinjective K-algebra

B basic, connected, finite dimensional K-algebra

1B = e1 + · · · + en

e1, . . . , en orthogonal primitive

idempotents of B

B̂ repetitive category of B

(selfinjective locally bounded K-category)

objects: em,i,m ∈ Z,1 ≤ i ≤ n

B̂(em,i, er,j) =





ejBei , r = m
D(eiBej) , r = m+ 1

0 , otherwise

ejBei = HomB(eiB, ejB), D(eiBej) = ejD(B)ei
⊕

(m,i)∈Z×{1,...,n}

B̂(−, er,j)(em,i) = ejB⊕D(Bej)
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Therefore, for any admissible group G of au-

tomorphisms of B̂, we obtain a basic, con-

nected, finite dimensional selfinjective K-algebra

B̂/G.

In particular, consider the Nakayama auto-

morphism ν
B̂

of B̂ such that

ν
B̂
(em,i) = em+1,i for all m, i ∈ Z × {1, . . . , n}.

Then, for each positive integer r, the infinite

cyclic group (νr
B̂
) is an admissible group of

automorphisms of B̂, and we have the selfin-

jective algebra

T(B)(r) = B̂/(νr
B̂
)

=








b1 0 0

f2 b2 0 0
0 f3 b3

. . . . . .

0 fr−1 br−1 0
0 f1 b1




b1, . . . , br−1 ∈ B, f1, . . . , fr−1 ∈ D(B)





r-fold trivial extension algebra of B

The Nakayama automorphism of T(B)(r) has

order r.

Observe that T(B)(1) ∼= T(B) = B ⋉D(B).
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∆ 1
α1→ 2

α2→ 3 → · · · → n− 1
αn−1
−→ n

B = K∆

B̂ = K∆̂/În

În generated by all compositions

of n+ 1 consecutive arrows in

∆̂
ν
B̂

: B̂ → B̂ Nakayama automor-

phism, ν
B̂
(r, i) = (r+ 1, i)

(r, i) ∈ Z × {1, . . . , n}

ϕ : B̂ → B̂, ϕn = ν
B̂

Nn
m = B̂/(ϕm) = KCm/Jm,n

Cm

m αm // 1
α1

��?
??

??
??

??
??

m− 1

αm−1

>>||||||||||||

2

α2

��
m− 2

αm−2

OO

3

����
��

��
��

��
�

. . .

``AAAAAAAAAAA

. . .

Jm,n generated by all composi-

tions of n + 1 consecutive

arrows in Cm
Nn
m Nakayama algebra, Nn

n = T (B)

Nn
m symmetric ⇐⇒ m | n ⇐⇒

ϕm is a root of ν
B̂

∆̂ :

...

��

(2, n)
α2,n
��

(1,1)
α1,1
��

(1,2)
α1,2
��
...

��

(1, n− 1)
α1,n−1
��

(1, n)
α1,n
��

(0,1)
α0,1
��

(0,2)
α0,2
��
...

��

(0, n− 1)
α0,n−1
��

(0, n)
α0,n
��

(−1,1)
α−1,1
��

(−1,2)
α−1,2
��
...
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A finite dimensional selfinjective K-algebra A

is said to be a Nakayama algebra if the inde-

composable projective A-modules are unise-

rial (the sets of submodules are linearly or-

dered by inclusion)

Theorem. Let A be an indecomposable fi-

nite dimensional selfinjective K-algebra. The

following statements are equivalent:

(1) A is a Nakayama algebra.

(2) The indecomposable finite dimensional

A-modules are uniserial.

(3) A is Morita equivalent to Nn
m for some

m,n ≥ 1.

Assume B is triangular (QB has no oriented

cycles)

Then B̂ is triangular

B is the full bounded subcategory of B̂ given

by the objects

e0,i,1 ≤ i ≤ n
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Let i be a sink of QB
B 7→ S+

i B reflection of B at i

S+
i B the full subcategory of B̂ given by the

objects

e0,j, 1 ≤ j ≤ n, j 6= i, and e1,i = ν
B̂
(e0,i).

σ+
i QB = Q

S+
i B

reflection of QB at i

Observe that B̂ ∼=
̂
S+
i B, and hence

T(B)(r) ∼= T(S+
i B)(r) for any r ≥ 1.

Reflection sequence of sinks of QB: a se-

quence i1, . . . , it of vertices of QB such that

is is a sink of σ+
is−1

. . . σ+
i1
QB for 1 ≤ s ≤ t.

Two triangular algebras B and C are said to

be reflection equivalent if C ∼= S+
it
. . . S+

i1
B

for a reflection sequence of sinks i1, . . . , it of

QB.

B, C reflection equivalent triangular algebras

⇒ B̂ ∼= Ĉ, T(B)(r) ∼= T(C)r for all r ≥ 1
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II. Periodicity of modules

and algebras

Let A be a finite dimensional selfinjective K-

algebra. Then Aop is also selfinjective and

we have the duality between modA and Aop

modA
HomA(−,AA)

//
modAop

HomAop(−,AA)
oo

Then we have the selfequivalence functor

NA = DHomA(−,AA) : modA→ modA

called the Nakayama functor. Moreover,

N−1
A = HomAop(−,AA)D

is the inverse of NA.

Proposition. The functors

NA,−⊗AD(A) : modA→ modA

are equivalent.
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Proof. For any module M in modA, we have

a natural isomorphism of right A-modules

φM : M ⊗AD(A) → DHomA(M,A) = NA(M)

such that φM(m⊗f)(g) = f(g(m)) for m ∈M ,

f ∈ D(A) = HomK(A,K) and g ∈ HomA(M,A).

This induces an equivalence of functors

φ : −⊗AD(A) → NA.

For a K-algebra automorphism σ of A, we

denote by

(−)σ : modA→ modA

the induced functor such that, for any mod-

ule M in modA, Mσ is the module with the

twisted right A-module structure

m ∗ a = mσ(a)

for m ∈M and a ∈ A.
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Proposition. Let A be a Frobenius algebra

and νA its Nakayama automorphism. Then

the functors

NA, (−)
ν−A

: modA→ modA

are equivalent.

Proof. A required equivalence

ψ : (−)
ν−A

−→ NA

is given by the family of isomorphisms of right

A-modules

ψM : M
ν−A

−→ NA(M) = DHomA(M,A),

M modules in modA, such that

ψM(m)(g) = (g(m),1) = (1, g(m))

for m ∈ M , g ∈ HomA(M,A), where (−,−)

is the nondegenerate associative K-bilinear

form defining the Nakayama automorphism

νA.
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Hence, if A is a Frobenius algebra, and

1A =

nA∑

i=1

mA(i)∑

j=1

eij

is the standard decomposition of 1A into the

sum of pairwise orthogonal primitive idem-

potents, then we have isomorphisms of right

A-modules

NA(eijA) ∼= (eijA)
ν−1
A

∼
−→ νA(eij)A = νA(eijA)

(eija) ∗ b = (eija)ν
−1
A (b) −→ νA(eija)b

for a, b ∈ A. Moreover, NA(eijA) = D(Aeij).

Hence we obtain that

top(eijA) ∼= soc νA(eij)A.

In particular, the Nakayama automorphism

νA induces a Nakayama permutation ν = νA
of {1, . . . , nA}.

For a symmetric algebra A, we have νA = idA
and NA

∼= 1modA.
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In particular, for a symmetric algebra A, we

have

topP ∼= socP

for any indecomposable projective A-module

P , that is, A is a weakly symmetric alge-

bra (the trivial permutation of {1, . . . , nA} is

a Nakayama permutation of A).

Let A be a finite dimensional selfinjective K-

algebra

modA the stable category of A

modA = modA/projA

The Nakayama functors

NA,N
−1
A : modA→ modA

induce the Nakayama functors

NA,N
−1
A : modA→ modA

because NA(projA) = injA = projA.
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We have also the Auslander-Reiten

functors

τA = DTr, τ−A = TrD : modA→ modA.

Consider also the (Heller’s) syzygy

functors

ΩA,Ω
−1
A : modA→ modA

For a module M in modA without projective

direct summands, we have exact sequences

0 → ΩA(M) → PA(M) →M → 0

0 →M → IA(M) → Ω−1
A (M) → 0

where PA(M) is the projective cover of M
and IA(M) is the injective envelope of M in

modA.

Proposition. Let A be a selfinjective alge-

bra.
(1) The functors

DTr,Ω2
ANA,NAΩ2

A : modA→ modA

are isomorphic.

(2) The functors

TrD,Ω−2
A N−1

A ,N−1
A Ω−2

A : modA→ modA

are isomorphic.
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Proof. For a module M in modA without

projective direct summands, we have

0 → Ω2
A(M) → P1(M) → P0(M) →M → 0

minimal projective presentation ofM in modA

0 → HomA(M,AA) → HomA(P0, AA) → HomA(P1(M), AA) → TrM → 0

0 //DTrM //DHomA(P1, AA) //DHomA(P0(M), AA) //DHomA(M,AA) // 0

NA(P1(M)) NA(P0(M)) NA(M)

minimal projective presentation of NA(M)

Hence, Ω2
ANA(M) ∼= DTrM ∼= NAΩ2

A(M).

Corollary. Let A be a symmetric algebra. Then

(1) The functors DTr,Ω2
A : modA → modA

are isomorphic.

(2) The functors TrD,Ω−2
A : modA→ modA

are isomorphic.

39



ΓA Auslander-Reiten quiver of A

P indecomposable projective-injective A-module,

then we have in modA an Auslander-Reiten

sequence of the form

0 → radP → radP/ socP ⊕ P → P/ socP → 0

For A selfinjective,

ΓsA stable Auslander-Reiten quiver of A

(obtained from ΓA by removing the

projective-injective vertices and the

arrows attached to them)

We may recover ΓA from ΓsA if we know the

positions of radP (equivalently, P/ socP ),

P indecomposable projectives, in ΓsA.

Two selfinjective algebras A and Λ are said

to be stably equivalent if the stable module

categories modA and modΛ are equivalent.
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Let A be a finite dimensional K-algebra

A module M in modA is called ΩA-periodic

(shortly, periodic) if Ωn
A(M) ∼= M for some

n ≥ 1.

PROBLEM. Determine the finite dimen-

sional K-algebras A whose all indecom-

posable nonprojective finite dimensional

right A-modules are periodic (say up to

Morita equivalence).

We will see later that all such algebras are

selfinjective.

Similarly, a moduleM in modA is called DTr-

periodic if (DTr)n(M) ∼= M for some n ≥ 1.

PROBLEM. Determine the finite dimen-

sional K-algebras A for which all inde-

composable nonprojective finite dimen-

sional right A-modules are DTr-periodic.
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It is clear that such algebras are selfinjec-

tive, because the DTr-orbit of an indecom-

posable injective A-module consists of one

module, which is an indecomposable projec-

tive A-module.

Let A be a selfinjective algebra. Then DTr ∼=

Ω2
ANA as functors on modA. Hence, the ΩA-

periodicity in modA coincides with the DTr-

periodicity in modA if the Nakayama functor

NA on modA has finite order.

For example, it is the case for all finite di-

mensional Hopf algebras H, because they are

Frobenius algebras with the Nakayama au-

tomorphism νH of finite order, and NH
∼=

(−)
ν−1
H

on modH.

Obviously, it is also the case for all symmetric

algebras.
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Proposition. Let A be a finite dimensional

selfinjective K-algebra of finite representa-

tion type. Then all indecomposable nonpro-

jective finite dimensional A-modules are ΩA-

periodic and DTr-periodic.

Proof. Let M be an indecomposable non-

projective right A-module. If M is not ΩA-

periodic (respectively, DTr-periodic) then

Ωn
A(M), n ≥ 0 (respectively, (DTr)n(M), n ≥

0) is an infinite family of pairwise nonisomor-

phic indecomposable modules in modA, and

hence A is of infinite representation type, a

contradiction.

We will now discuss the ΩA-periodicity of

modules.
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Let A be a basic, indecomposable, finite di-

mensional selfinjective K-algebra.

Lemma. The following statements for A are

equivalent:

(1) ΩA(S) is simple for any simple A-module

S.

(2) A ∼= N1
m for some m ≥ 1.

Proof. (1) ⇒ (2) For any simple A-module

S, we have an exact sequence

0 −→ ΩA(S) −→ P (S) −→ S −→ 0.

Hence, ΩA(S) ∼= socPA(S) = radPA(S), and

consequently J(A)2 = 0 (J(A) Jacobson rad-

ical of A). Then A ∼= N1
m for some m ≥ 1.

For (2) ⇒ (1) note that J(N1
m)2 = 0.

Corollary. The following statements for A

are equivalent:

(1) ΩA(S) ∼= S for any simple A-module S.

(2) ΩA(M) ∼= M for any indecomposable non-

projective A-module M .

(3) A ∼= N1
1(∼= K[x]/(x2) ∼= T(K) = K ⋉

D(K)).
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Theorem. The following statements for A

are equivalent:

(1) Ω2(S) is simple for any simple A-module

S.

(2) DTr(S) is simple for any simple A-module

S.

(3) A ∼= Nn
m for some m,n ≥ 1.

(characterization of the Nakayama algebras)

Proof. For (1) ⇔ (2), observe that for any

simple A-module S, NA(S) is simple (because

the Nakayama functor NA = DHomA(−, A)

is exact) and DTr(S) ∼= Ω2
ANA(S).

(1) ⇒ (3) Since A is basic and indecompos-

able, A ∼= KQ/I for a connected quiver Q and

an admissible ideal I of KQ. For a simple

A-module S, we have an exact sequence

0 → Ω2
A(S) → PA(radPA(S)) → PA(S) → S → 0.

Ω2
A(S) simple implies PA(radPA(S)) indecom-

posable, and hence top(radPA(S)) is simple.
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Therefore, every vertex of Q is the starting

(respectively, ending) vertex of exactly one

arrow.

Then A ∼= Nn
m for some m,n ≥ 1.

(3) ⇒ (1) follows from the above exact se-

quences and the bound quiver presentation

of Nn
m.

Corollary. The following statements for A

are equivalent:

(1) Ω2
A(S) ∼= S for any simple A-module S.

(2) Ω2
A(M) ∼= M for any indecomposable non-

projective finite dimensional A-moduleM .

(3) A ∼= Nn
m, n+ 1 divisible by m.

Corollary. The following statements for A

are equivalent:

(1) A is symmetric and Ω2
A(S) ∼= S for any

simple A-module S.

(2) DTr(S) ∼= S for any simple A-module S.

(3) DTr(M) ∼= M for any nonprojective in-

decomposable finite dimensional A-module

M .

(4) A ∼= Nn
1

∼= K[x]/(xn+1) for some n ≥ 1.
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Proof. (1) ⇔ A ∼= Nn
m with m | n, m | n+ 1

⇔ A ∼= Nn
1 , hence (1) ⇔ (4).

(4) ⇒ (3) ⇒ (2) known.

(2) ⇒ (4) follows because (2) implies

A ∼= Nn
m.

Example. Let H = Hn2(λ), n ≥ 2, be the

Taft (Hopf) algebra. Then H ∼= Nn−1
n . Hence,

for any indecomposable nonprojective finite

dimensional H-module M , we have

Ω2
H(M) ∼= M and Ω2

H(M) ≇ M.

On the other hand, we have

(DTr)n(M) ∼= M and (TrD)r(M) ≇ M,

for 1 ≤ r < n, because

DTr(M) ∼= Ω2
HNH(M) ∼= NH(M) ∼= M

ν−1
H
,

and the Nakayama automorphism νH has or-

der n.
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Proposition. Let H be a finite dimensional

Hopf algebra over K. The following state-

ments are equivalent:

(1) The trivial H-module K is ΩH-periodic.

(2) All indecomposable nonprojective finite

dimensional H-modules are ΩH-periodic.

Proof. Let H = (H,m, η,∆, ε, s). Then the

counit ε : H → K induces on K the structure

of trivial right H-module

λ ∗ h = λε(h), for λ ∈ K,h ∈ H.

Clearly, K is an indecomposable H-module.

Moreover, K is projective if and only if H is

semisimple. Hence (2) ⇒ (1) holds.

For (1) ⇒ (2), we first observe that for any

projective module P in modH and any mod-

ule M in modH, P ⊗K M is a projective-

injective module in modH. The structure

of right module on P ⊗K M is given by

(P ⊗K M) ⊗H
1⊗1⊗∆ // P ⊗K M ⊗K H ⊗K H

1⊗τ⊗1 // (P ⊗K H) ⊗K (M ⊗K H)

α⊗β
��

P ⊗K M
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where τ : M ⊗K H → H ⊗K M is the

exchanging map, and α : P ⊗K H → P ,

β : M ⊗K H → M are the right H-module

structure maps.

Moreover, the following well-known isomor-

phism of functors on modK

HomK(P⊗KM,−)
∼

−→ HomK(P,HomK(M,−))

induces an isomorphism of functors on modH

HomH(P⊗KM,−)
∼

−→ HomH(P,HomH(M,−)).

Hence the functor HomH(P⊗KM,−) : modH →

modH is exact, and consequently P ⊗KM is

a projective right H-module. Since H is a

Frobenius algebra, P ⊗K M is also injective.

Assume now that Ωn
H(K) ∼= K for some n ≥

1. Then there exists a long exact sequence

of the form in modH

0 → Ωn
H(K) → Pn−1 → · · · → P1 → P0 → K → 0
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with P0, P1, . . . , Pn−1 projective modules. Let

M be an indecomposable nonprojective mod-

ule in modH. Then we obtain a long exact

sequence in modH

0 → Ωn
H(K) ⊗K M → Pn−1 ⊗K M → · · · → P1 ⊗K M → P0 ⊗K M → K ⊗K M → 0

with P0 ⊗K M,P1 ⊗K M, . . . , Pn−1 ⊗K M pro-

jective H-modules.

We know that Ωn
H(M) is an indecomposable

nonprojective H-module. Hence

Ωn
H(K) ⊗K M ∼= Ωn

H(M) ⊕ P

for some projective H-module P . On the

other hand, we have

Ωn
H(K) ⊗K M ∼= K ⊗K M ∼= M.

Hence Ωn
H(M) ∼= M , and M is ΩH-periodic.

Therefore, (1) ⇒ (2).
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Proposition. Let A be a selfinjective alge-

bra, M a module in modA, and r a positive

integer. Then

(1) The functors ExtrA(M,−),HomA(Ωr
A(M),−) :

modA→ modA are equivalent.

(2) The functors ExtrA(−,M),HomA(−,Ω−r
A (M)) :

modA→ modA are equivalent.

A selfinjective, M module in modA

Ext∗A(M,M) =
∞⊕
r=0

ExtrA(M,M)

∼=
∞⊕
r=0

HomA(Ωr
A(M),M)

Ext-algebra of M (graded K-algebra)

f ∈ HomA(Ωr
A(M),M), g ∈ HomA(Ωs

A(M),M)

f ∗ g = f ◦Ωr
A(g), Ωr+s

A (M) → Ωr
A(M) →M.
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Observe that, if M is ΩA-periodic of period

d, then

Exti+d
A (M,N) ∼= ExtiA(M,N)

for all i ≥ 1 and modules N in modA. Indeed,

Exti+d
A (M,N) ∼= HomA(Ωi+d

A (M), N)

∼= HomA(Ωi
A(Ωd

A(M)), N)

∼= HomA(Ωi
A(M), N)

∼= ExtiA(M,N)

Theorem (Carlson, 1977). Let A be a fi-

nite dimensional selfinjective K-algebra and

M be an indecomposable ΩA-periodic A-module

of period d. Moreover, let N (M) be the ideal

of the algebra Ext∗A(M,M) generated by all

nilpotent homogeneous elements. Then

Ext∗A(M,M)/N (M) ∼= K[x]

as graded K-algebras, where x is of degree d.
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Proof. We identify

HomA(Ωi
A(M),M) = ExtiA(M,M)

= HomA(M,Ω−i
A (M))

for any i ≥ 1.

Let f ∈ HomA(Ωs
A(M),M) be a homoge-

neous nilpotent element of Ext∗A(M,M) and

g ∈ HomA(Ωm
A(M),M) an arbitrary homoge-

neous element of Ext∗A(M,M).

We claim that

f ∗ g = fΩs
A(g) ∈ HomA(Ωm+s

A (M),M)

is again a nilpotent element of Ext∗A(M,M).

Choose r such that r(m+ s) = qd for some

q ≥ 1, and consider h = (fΩs
A(g))r in

Ext∗A(M,M). Then

h ∈ HomA(Ω
qd
A (M),M) ∼= HomA(M,M),

because Ω
qd
A (M) ∼= M . Suppose h is an iso-

morphism. Then f : Ωs
A(M) → M is a split

epimorphism, and hence an isomorphism, since

M and Ωs
A(M) are indecomposable. But then
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f is not nilpotent in Ext∗A(M,M), a contra-

diction. Therefore, h belongs to the radical

of the local algebra EndA(M), and hence h

is nilpotent. Then Ωid
A(h) ∈ EndA(M) are

nilpotent for all i ≥ 0, and hence belong to

the radical of EndA(M). Since (radEndA(M))l

= 0 for some l ≥ 1, we get hl = 0. But

then f ∗ g = fΩs
A(g) is a nilpotent element in

Ext∗A(M,M). Similarly, using

ExtiA(M,M) = HomA(M,Ω−i
A (M)), i ≥ 1,

we prove that g∗f is nilpotent in Ext∗A(M,M).

Let s 6= pd for all p ≥ 1. We show that any

element f ∈ HomA(Ωs
A(M),M) is a nilpotent

element of Ext∗A(M,M).

Choose r ≥ 1 such that rs = qd for some

q ≥ 1, and take h = fr in Ext∗A(M,M). Since

d is period of M and s is not divisible by d, we

conclude that f is not an isomorphism. Then

h is not an isomorphism, hence h ∈ EndA(M)

is nilpotent. Therefore, h is a nilpotent ele-

ment in Ext∗A(M,M), and so f is nilpotent in

Ext∗A(M,M).
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Let x ∈ Hom(Ωd
A(M),M) ∼= HomA(M,M)

corresponds to the residue class of the iden-

tity map from M to M . Observe that x is

not nilpotent in Ext∗A(M,M). We claim that

xn /∈ N (M) for any n ≥ 1. Suppose that xt ∈

N (M) for some t ≥ 1. Then xt =
∑
gi∗fi∗hi,

where fi are homogeneous nilpotent elements

of Ext∗A(M,M) and gi, hi are elements of

Ext∗A(M,M). We may assume that the el-

ements gi, hi are also homogeneous.

It follows from the first part of the proof that

gi ∗fi ∗hi = (gi ∗fi)∗hi are nilpotent elements

in Ext∗A(M,M), and hence are nilpotent in

EndA(M). But then
∑
gi ∗ fi ∗ hi are nilpo-

tent in End(M), and hence in Ext∗A(M,M).

This implies that xt, and hence x, is nilpo-

tent in Ext∗A(M,M), a contradiction. Since

EndA(M)/ radEndA(M) ∼= K, we conclude

that Ext∗A(M,M)/N (M) ∼= K[x] as graded

K-algebras, with x of degree d.

55



Let A be a finite dimensional K-algebra

1A = e1 + e2 + · · · + em

e1, e2, . . . , em pairwise orthogonal primitive idem-

potents of A

Ae = Aop ⊗K A enveloping algebra of A

1Ae =
∑

1≤i,j≤m
e′i ⊗ ej

1Ae =
∑

1≤i,j≤m

e′i ⊗ ej

e′1 = e1, e
′
2 = e2, . . . , e

′
m = em primitive idem-

potents of Aop

modAe = category of finite dimensional

A-A-bimodules

A is a right Ae-module by

a(x⊗ y) = xay for a ∈ A, x ∈ Aop, y ∈ A
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P (i′, j) = (ei ⊗ ej)A
e = eiA

op ⊗K ejA
= Aei ⊗K ejA

Ae =
⊕

1≤i,j≤m
P (i′, j)

P (i′, j) indecomposable projective right Ae-

modules (projective A-A-bimodules)

AP (i′, j) ∼= (Aei)
dimK ejA projective left

A-module

P (i′, j)A
∼= (ejA)dimK Aei projective right

A-module

Hence every projective right Ae-module is a

projective left A-module and a projective right

A-module.

Lemma. Let A be a finite dimensional K-

algebra. For each i ≥ 0, Ωi
Ae(A) is a pro-

jective left A-module and a projective right

A-module.
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Proof. Consider a minimal projective resolu-

tion of A in modAe

· · · → Pi+1 → Pi → · · · → P1 → P0 → A→ 0

For each i ≥ 0, we have an exact sequence

in modAe

0 → Ωi+1
Ae (A) → Pi → Ωi

Ae(A) → 0,

which is an exact sequence in modAop and in

modA. Since the projective right Ae-modules

are projective left A-modules and projective

right A-modules, by induction on i, we con-

clude that these sequences split in modAop

and in modA, and hence Ωi
Ae(A) are projec-

tive left A-modules and projective right A-

modules.

Lemma. Let A be a selfinjective algebra and

M be a module in modA without projective

direct summands. Then, for each i ≥ 0, we

have

Ωi
A(M) ∼= M ⊗A Ωi

Ae(A) in modA.
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Proof. We may assume that M is indecom-

posable. The splitting exact sequences (as

in the above lemma)

0 → Ωi+1
Ae (A) → Pi → Ωi

Ae(A) → 0,

for i ≥ 0, induce the exact sequences

0 →M⊗AΩi+1
Ae (A) →M⊗APi →M⊗AΩi

Ae(A) → 0

in modA, and

· · · →M ⊗A Pi+1 →M ⊗A Pi → · · · →M ⊗A P0 →M ⊗A A→ 0

is a projective resolution of M ∼= M ⊗A A in

modA. Since, for each i ≥ 0, Ωi
A(M) is an

indecomposable nonprojective A-module, we

conclude that

M ⊗A Ωi
Ae(A) ∼= Ωi

A(M) ⊕ P (i)

for some projective module P (i) in modA.

Therefore,

Ωi
A(M) ∼= M ⊗A Ωi

Ae(A) in modA.
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Lemma (Green-Snashall-Solberg, 2003).

Let A be a finite dimensional K-algebra.

Assume there exists a positive integer d and

an automorphism σ of A such that Ωd
Ae(A) ∼=

1Aσ in modAe. Then A is selfinjective.

Proof. We have an isomorphism of A-A-bimodules

α : D(A) ⊗A 1Aσ −→ D(A)σ

such that α(f ⊗ a) = fa for f ∈ D(A) and

a ∈ 1Aσ.

Consider a minimal projective resolution

· · · → Pi+1 → Pi → · · · → P1 → P0 → A→ 0

of A in modAe. Hence we obtain an exact

sequence

0 → D(A) ⊗A Ωd
Ae(A) → D(A) ⊗A Pd−1 → D(A) ⊗A Ωd−1

Ae (A) → 0
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in modA. Moreover, D(A) ⊗A Pd−1 is a pro-

jective right A-module. On the other hand,

Ωd
Ae(A) ∼= 1Aσ in modAe implies that there

is a monomorphism D(A)σ → D(A) ⊗A Pd−1

in modA. Further, the automorphism σ in-

duces an isomorphism 1Aσ−1
∼

−→ σA1 of A-

A-bimodules, and then the right A-modules

D(A)σ = D(σA1) and σ−1D(A) = D(1Aσ−1)

are isomorphic. Therefore, the injective co-

generator D(A) in modA is a direct summand

of the projective module D(A) ⊗A Pd−1, and

so is projective. Clearly then A is selfinjec-

tive.
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A finite dimensional K-algebra A is called

periodic if A is a periodic module in modAe,

that is, Ωd
Ae(A) ∼= A in modAe for some

d ≥ 1. It follows from the above lemma that

then A is selfinjective.

Corollary. Let A be a finite dimensional

periodic K-algebra. Then all indecomposable

nonprojective modules in modA are periodic.

Proof. Assume Ωd
Ae(A) ∼= A in modA for some

d ≥ 1. Let M be an indecomposable nonpro-

jective module in modA. Since A is selfinjec-

tive, invoking the corresponding lemma, we

have in modA isomorphisms

Ωd
A(M) ∼= M ⊗A Ωd

Ae(M) ∼= M ⊗A A
∼= M.

Then Ωd
A(M) ∼= M in modA, because Ωd

A(M)

and M are indecomposable nonprojective mod-

ules.

PROBLEM. Determine the finite

dimensional periodic algebras (up to

Morita equivalence).
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Lemma. Let A be a finite dimensional K-

algebra. Then A is selfinjective if and only if

Ae is selfinjective.

Proof. Since (Ae)b ∼= (Ab)e and the class of

selfinjective algebras is closed under Morita

equivalences, we may assume that A is basic.

Then Ae is basic. Assume A is selfinjective.

Then A is a Frobenius algebra and we obtain

isomorphisms

Ae ∼= Aop ⊗K A ∼= D(Aop) ⊗K D(A)
∼= D(Aop ⊗A A) ∼= D(Ae)

in modAe, and hence Ae is selfinjective.

Conversely, if Ae is selfinjective then

Aop ⊗K A ∼= D(Aop) ⊗K D(A)

in modAe, and hence

AdimK(Aop) ∼= D(A)dimK D(Aop)

in modA. Then AA is injective, and hence A

is selfinjective.
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Theorem (Green-Snashall-Solberg, 2003).

Let A be a finite dimensional indecompos-

able K-algebra. The following statements

are equivalent:

(1) All simple right A-modules are ΩA-periodic.

(2) There exists a natural number d and an

algebra automorphism σ of A such that

Ωd
Ae(A) ∼= 1Aσ in modAe, and σ(e)A ∼=

eA for any primitive idempotent e of A.

Proof. (1) ⇒ (2). Let d be a minimal natural

number such that Ωd
A(S) ∼= S for any simple

right A-module S.

Let B = Ωd
Ae(A). We know that Ωd

Ae(A) is

a projective left A-module. Hence we have

the exact functor − ⊗A B : modA → modA.

Moreover, for any simple right A-module S,

we have S⊗AB = S⊗AΩd
A(A) ∼= Ωd

A(S) ∼= S.

Then by induction on the length of a module,

we conclude that ℓ(M ⊗A B) ∼= ℓ(M) for any

module M in modA.
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We prove now that P ⊗A B
∼= P for any pro-

jective module P in modA. Let P be an inde-

composable projective right A-module. Then

the exact sequence

0 → PJ(A) → P → P/PJ(A) → 0,

where J(A) is the Jacobson radical of A,

induces the exact sequence

0 → PJ(A)⊗AB → P⊗AB → (P/PJ(A))⊗AB → 0.

The module P ⊗A B is a projective right A-

module, as a direct summand of the projec-

tive right A-module A ⊗A B
∼= Ωd

Ae(A), and

ℓ(P ⊗A B) = ℓ(P ). Further, (P/PJ(A)) ⊗

B ∼= P/PJ(A), and hence P/PJ(A) is a direct

summand of the topP ⊗AB/(P ⊗AB)J(A) of

P ⊗A B. Then P is a direct summand of

P ⊗A B, and consequently P ⊗A B
∼= P , be-

cause ℓ(P ⊗A B) = ℓ(P ). Therefore, there

exists an isomorphism A ⊗A B → A of right

A-modules, and hence B as a right A-module

is isomorphic to AA.
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We claim now that B as a left A-module is

isomorphic to AA. Let T be a simple left

A-module. Since B is isomorphic to AA in

modA, we have B ⊗A T
∼= A ⊗A T

∼= T as

K-vector spaces. Further, for any simple

right A-module S, we have S ⊗A B ⊗A T
∼=

S ⊗A T (from the first part of the proof)

and S ⊗A T 6= 0 if and only if S = D(T ) =

HomK(T,K). Then (A/J(A))⊗AB⊗AT
∼= T .

On the other hand, we have in modAop = A-

mod the commutative diagram with exact

rows

0 // J(A) ⊗A (B ⊗A T ) //

≈
��

A⊗A (B ⊗A T ) //

≈
��

(A/J(A)) ⊗A (B ⊗A T ) //

≈
��

0

0 // J(A)(B ⊗A T ) //B ⊗A T //B ⊗A T/J(A)(B ⊗A T ) // 0

and hence (B ⊗A T )/J(A)(B ⊗A T ) ∼= T in

modAop.

66



Since dimK B ⊗A T = dimK T we obtain that

B ⊗A T
∼= T as left A-modules. Therefore,

B ⊗A T
∼= T in A-mod for all simple left A-

modules T . Applying now arguments from

the first part of the proof we conclude that

B as a left A-module is isomorphic to AA.

Let ψ : A → B be an isomorphism of left A-

modules, and b = ψ(1). Then ψ(a) = ab for

a ∈ A, and Ab = B.

Define σ : A → A by σ(a) = ψ−1(ba) for a ∈

A. Then, for a ∈ A, we have

ba = ψ(ψ−1(ba)) = ψ(σ(a)) = ψ(σ(a)1)

= σ(a)ψ(1) = σ(a)b

Next we show that σ is a homomorphism

of K-algebras. Obviously, σ is K-linear and

σ(1) = ψ−1(b) = 1.
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Moreover, for a, a′ ∈ A, we have

σ(aa′)b = b(aa′) = (ba)a′ = (σ(a)b)a′

= σ(a)(ba′) = σ(a)(σ(a′)b)

= (σ(a)σ(a′))b.

Hence, we obtain

ψ(σ(aa′)) = ψ(σ(aa′)1) = σ(aa′)ψ(1) = σ(aa′)b

= (σ(a)σ(a′))b = (σ(a)σ(a′))ψ(1)

= ψ(σ(a)σ(a′))

and so σ(aa′) = σ(a)σ(a′).

Therefore, σ is a homomorphism of K-algebras.

We claim that σ is an automorphism. It is

enough to show that ker σ = 0. Let a ∈

ker σ. Then 0 = σ(a)b = ba and hence Ba =

(Ab)a = A(ba) = 0. Since B is isomorphic to

A as a right A-module, we obtain Aa = 0, and

hence a = 0. Therefore, indeed ker σ = 0.
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Finally, observe that the isomorphism

ψ : A → B of left A-modules is an isomor-

phism ψ : 1Aσ → B of A-A-bimodules.

Indeed, for x, a ∈ A, we have

ψ(xσ(a)) = (xσ(a))b = x(σ(a)b) = x(ba)
= (xb)a = ψ(x)a

Therefore, Ωd
Ae(A) ∼= 1Aσ in modAe.

Let e be a primitive idempotent of A. Then

we have isomorphisms of right A-modules

σ(e)A/σ(e)J(A)
∼

−→ Ωd
A(σ(e)A/σ(e)J(A))

∼
−→ (σ(e)A/σ(e)J(A)) ⊗A 1Aσ
∼

−→ (σ(e)A/σ(e)J(A))σ
∼

−→ eA/eJ(A).

Hence, σ(e)A
∼

−→ eA in modA.
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(2) ⇒ (1) Let Ωd
Ae(A) ∼= 1Aσ for some d ≥

1 and an automorphism σ of A such that

σ(e)A ∼= eA for any primitive idempotent e of

A. We know that then A and Ae are selfinjec-

tive. Then for any simple right A-module S,

the right A-modules Ωd
A(S) and S⊗Ωd

A(A) ∼=

S ⊗A Aσ
∼= Sσ are isomorphic. Every simple

right A-module S is isomorphic to a mod-

ule of the form eA/eJ(A) for some primi-

tive idempotent e of A. Since eA ∼= σ(e)A

in modA, the automorphism σ induces iso-

morphisms of right A-modules eA
∼

−→ (eA)σ,

eJ(A)
∼

−→ (eJ(A))σ, and hence S
∼

−→ Sσ in

modA. Therefore, Ωd
A(S) ∼= S for any sim-

ple right A-module S.

Corollary. Let A be a finite dimensional K-

algebra whose all simple right A-modules are

periodic. Then A is a selfinjective algebra.
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A finite dimensional K-algebra

HH∗(A) = Ext∗Ae(A,A) =
⊕

i≥0

ExtiAe(A,A)

Hochschild cohomology algebra (graded

commutative K-algebra with the Yoneda prod-

uct)

HH0(A) = Z(A) the center of A

HH1(A) = DerK(A,A)/Der0K(A,A)

DerK(A,A) =

{
δ ∈ HomK(A,A)

∣∣∣ δ(ab) = aδ(b) + δ(a)b
for all a, b ∈ A

}

(derivations of A)

Der0K(A,A) =

{
δx ∈ HomK(A,A)

∣∣∣ δx(a) = ax− xa
x, a ∈ A

}

(inner derivations of A)

HH1(A) the space of outer derivations of A

HHn(A), n ≥ 2, control deformations of A
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Two algebras A and B are said to be de-

rived equivalent if the derived categories

Db(modA) and Db(modB) are equivalent as

triangulated categories.

For selfinjective algebras we have

Morita

equivalence
⇒

derived

equivalence

Rickard
====⇒

stable

equivalence

Theorem (Happel, Rickard, 1989). Let A

and B be two derived equivalent K-algebras.

Then HH∗(A) ∼= HH∗(B) as graded K-algebras.
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Theorem (Green-Snashall-Solberg, 2003).

Let A be a finite dimensional indecomposable

K-algebra. Assume that Ωn
Ae(A) ∼= 1Aσ for

a positive integer n and an algebra automor-

phism σ of A. Then

HH∗(A)/N (A) ∼=

{
K,or
K[x]

where N (A) is the ideal of HH∗(A) generated

by all nilpotent homogeneous elements.

Moreover, HH∗(A) ∼= K, if Ωm
Ae(A) ≇ A for

all m ≥ 1.

Proof. Since Ωn
Ae(A) ∼= 1Aσ, A is selfinjec-

tive. Then Ae is selfinjective, and we may

identify

HHi(A) = ExtiAe(A,A) = HomAe(Ω
i
Ae(A), A)

If Ωm
Ae(A) ∼= A for some m ≥ 1, then by the

Carlson’s theorem we have HH∗(A)/N (A) ∼=

K[x], where x is of degree d = period of A in

modAe. In particular, it is the case if σ has

finite order.

73



Assume now that Ωm
Ae(A) ≇ A in modAe for

any m ≥ 1. Then σ has infinite order. Let s ≥

1 and η ∈ Hom(Ωs
Ae(A), A) = HHs(A). We

claim that η is nilpotent in HH∗(A). Assume

first that s = np for some p ≥ 1. Then, for

any i ≥ 1 we have Ω
inp
Ae (A) ∼= 1Aσip is an

indecomposable right Ae-module and

Ω
(i−1)np
Ae (η) : Ω

inp
Ae (A) −→ Ω

(i−1)np
Ae (A)

is not an isomorphism. Further, our assump-

tion Ωn
Ae(A) ∼= 1Aσ implies that the Ae-modules

Ω
inp
Ae (A), i ≥ 1, have bounded length (dimen-

sion). Then, applying the Harada-Sai lemma,

we conclude that there exists a natural num-

ber t such that

ηt = Ω
tnp
Ae (η) . . .Ω

2np
Ae (η)Ω

np
Ae(η) = 0

in the algebra HH∗(A). Hence, η is nilpotent.

Assume now that n 6 | s. Then there are posi-

tive integers r and q such that rs = nq. Then

ηr ∈ HHnq(A), and hence (by the above ar-

gument) ηr is nilpotent, and consequently η

is nilpotent.
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We proved that every homogeneous element

of HH∗(A) of positive degree is nilpotent.

Moreover, A is indecomposable, and then

HH0(A) ∼= Z(A) is a commutative local

algebra, J(Z(A)) is nilpotent, and

Z(A)/J(Z(A)) ∼= K. Therefore, we conclude

that HH∗(A)/N (A) ∼= K.

Corollary. Let A be a finite dimensional inde-

composable selfinjective K-algebra of finite

representation type. Then

HH∗(A)/N (A) ∼=

{
K,or
K[x]

Proof. Since all indecomposable nonprojec-

tive (hence simple) modules in modA are

periodic, applying the two Green-Snashall-

Solberg theorems, we get the claim.
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Corollary. Let A and B be two derived equiv-

alent indecomposable finite dimensional self-

injective K-algebras. Then A is periodic if

and only if B is periodic.

Proof. We have (Happel-Rickard theorem) that

HH∗(A) and HH∗(B) are isomorphic graded

K-algebras. Assume that A is periodic in

modAe, say of period d. Then, by Carlson’s

theorem HH∗(A)/N (A) ∼= K[x], where x is of

degree d. Hence HH∗(B)/N (B) ∼= K[x]. Ap-

plying Green-Snashall-Solberg theorem, we

then infer that B is periodic in modBe (in

fact, we have Ωd
Be(B) ∼= B in modBe).
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III. Periodicity of finite groups

G finite group

Z ring of integers

ZG group algebra of G over Z

We may consider the group Z as the trivial

ZG-module (m ∗ g = m for any m ∈ Z and

g ∈ G)

For n ≥ 0 and a ZG-module M , let

Hn(G,M) = ExtnZG(Z,M)

n-th cohomology group of G with coeffi-

cients in M

In particular, we may consider the cohomol-

ogy groups of the trivial ZG-module Z

Hi(G,Z) = ExtiZG(Z,Z), i ≥ 0.

A group G is called (globally) periodic if

there exists a positive integer d such that

Hi(G,Z) ∼= Hi+d(G,Z) for all i ≥ 1.

The minimal such d = the (cohomological)

period of G
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Example. Let m ≥ 2, and G = Zm the cyclic

group of order m, say generated by an ele-

ment g. Then we have the following periodic

free ZG-resolution of the trivial ZG-module Z

· · ·
N
−→ ZG

g−1
−→ ZG

N
−→ ZG

g−1
−→ ZG

ε
−→ Z −→ 0

where ε(g) = 1 for g ∈ G, g − 1 is the left

multiplication by g−1, and N is the left mul-

tiplication by N = 1 + g+ · · · + gm−1.

Applying HomZG(−,Z) we obtain the peri-

odic complex whose i-th cohomology is the

group ExtiZG(Z,Z) = Hi(G,Z). Then one ob-

tains H0(G,Z) ∼= Z, H2i(G,Z) ∼= Z/mZ and

H2i−1(G,Z) = 0 for i ≥ 1. In particular,

G = Zm is a periodic group of period 2.

In fact, the following is true.

Theorem. Let G be a finite group. Then

G is periodic of period 2 if and only if G is

cyclic.
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Moreover, we have also the following theo-

rem.

Theorem. Let G be a periodic finite group.

Then H2i−1(G,Z) = 0 for any i ≥ 1. Hence

the period of G is even.

Zassenhaus considered the following prob-

lem, motivated by some topological problems

(free group actions on spheres).

PROBLEM. Describe all finite groups G
whose all commutative subgroups are cyclic.

Zassenhaus solved this problem in the solv-

able case. This was completed by Suzuki to

the general case.

Theorem (Suzuki-Zassenhaus, 1954-1955).

A complete list of finite groups with all com-

mutative subgroups cyclic is given by the fol-

lowing table

Family Definition Conditions

I Z/a×α Z/b (a, b) = 1

II Z/a×β (Z/b×Q2i) (a, b) = (ab,2) = 1

III Z/a×γ (Z/b× Ti) (a, b) = (ab,6) = 1

IV Z/a×τ (Z/b×O∗
i ) (a, b) = (ab,6) = 1

V (Z/a×α Z/b) × SL2(Fp) (a, b) = (ab, p(p2 − 1)) = 1

V I Z/a×µ (Z/b× TL2(Fp) (a, b) = (ab, p(p2 − 1)) = 1

These 6 families of groups are given as semidi-

rect products of certain finite groups.
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We will exhibit (now and later) only some

natural examples of such groups.

Examples. (1) For m ≥ 1, consider the

dihedral group

D2m =
{
x, y

∣∣∣ x2 = 1 = ym, yx = xym−1
}

of order 2m.

For m = 2r, {1, x, yr, xyr = yrx} is a noncyclic

commutative subgroup of D4r.

For m odd, all commutative subgroups of

D2m are cyclic.

Hence, D2m is periodic if and only if m is odd.

(2) For m ≥ 1 consider the generalized

quaternion 2-group

Q2m+2 =
{
x, y

∣∣∣ x2
m

= y2, xyx = x
}

of order 2m+2. Then every commutative

subgroup of Q2m+2 is cyclic.
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(3) Let p be a prime and Fp the field with p

elements, and

SL2(Fp) =
{
M ∈M2×2(Fp)

∣∣∣ detM = 1
}

(2 × 2 special linear group of Fp). Then

|SL2(Fp)| = p(p− 1)(p+ 1).

Moreover, all commutative subgroups of SL2(Fp)

are cyclic. We also note that for p odd the

groups SL2(Fp) are not solvable.

For a prime number p, Zrp = Zp × · · · × Zp︸ ︷︷ ︸
r

is

called the elementary p-group of rank r.

For a finite group G and a prime p with p
∣∣∣|G|,

denote by rp(G) the maximal rank of elemen-

tary p-subgroup of G.

The following characterizations of periodic

groups show that the Suzuki-Zassenhaus the-

orem provides a complete classification of all

periodic finite groups.
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Theorem (Artin-Tate, Cartan-Eilenberg,

1956). Let G be a finite group. The follow-

ing statements are equivalent:

(1) G is periodic.

(2) Hd(G,Z) ∼= Z/|G|Z for some d ≥ 1.

(3) Hi+d(G,M) ∼= Hi(G,M) for some d ≥ 1,

all i ≥ 1 and an arbitrary finitely gener-

ated ZG-module M .

(4) Hi+d(G,Zp)
∼= Hi(G,Zp) for some d ≥ 1,

all i ≥ 1 and any prime p dividing |G|.

(5) rp(G) ≤ 1 for any prime p dividing |G|.

(6) For any prime p dividing |G|, the p-Sylow

subgroups of G are cyclic or generalized

quaternion 2-groups.

(7) Every commutative subgroup of G is cyclic.

Therefore, the subgroups of periodic groups

are periodic.
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For a prime p, we have

dimZpH
n(Zp × Zp,Zp) = n+ 1 for any n ≥ 0,

hence Zp × Zp is not periodic (application of

the Künneth formula).

p-periodic groups

Let p be a prime number

Z(p) =

{
m

n
∈ Q,m, n ∈ Z, p 6 |n

}
localization
of Z at p.

Let G be a finite group such that p
∣∣∣ |G|.

For each i ≥ 1, let

Hi(G,Z)(p)
∼= Hi(G,Z) ⊗Z Z(p).

A group G is called p-periodic if there exists

a positive integer d such that

Hi(G,Z)(p)
∼= Hi+d(G,Z)(p) for all i ≥ 1.

The minimal such d = dp = the (cohomo-

logical) p-period of G.
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Theorem. Let G be a finite group, p a prime

number, and p
∣∣∣ |G|. The following state-

ments are equivalent:

(1) G is p-periodic.

(2) Hi+d(G,Zp)
∼= Hi(G,Zp) for some d ≥ 1

and any i ≥ 1.

(3) Exti+d
ZpG

(Zp,M) ∼= ExtiZpG
(Zp,M) for some

d ≥ 1, any i ≥ 1, and arbitrary finite di-

mensional ZpG-module M .

(4) Ωd
ZpG

(Zp)
∼= Zp for some d ≥ 1.

(5) rp(G) ≤ 1.

(6) Every p-Sylow subgroup of G is either

cyclic or generalized quaternion 2-group.

(7) Every commutative p-subgroup of G is

cyclic.

(8) For any algebraically closed field K of

characteristic p, Ωd
KG(K) ∼= K for some

d ≥ 1.

(9) For any algebraically closed field K of

characteristic p, there exists d ≥ 1 such

that Ωd
KG(M) ∼= M for any indecom-

posable nonprojective finite dimensional

KG-module M .
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Observe that a finite group G is periodic if

and only if G is p-periodic for any prime p

dividing |G|.

Example. Let p be an odd prime number,

q = pn, n ≥ 2, Fq the field with q elements,

and G = SL2(Fq). Then |G| = q(q2 − 1).

Moreover, we have

• the 2-Sylow subgroups of G are general-

ized quaternion 2-groups

• for any odd prime l 6= p the l-Sylow sub-

groups of G are cyclic

• the p-Sylow subgroups of G are not cyclic

Then G is not p-periodic, and hence is not

periodic. Moreover, G is l-periodic for any

prime such that l
∣∣∣ |G| and l 6= p.

There is no chance for a classification of

all finite p-periodic groups, for any fixed

prime p.
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Let G be a finite group, p a prime number,

p
∣∣∣ |G|. Let

Hev(G,Zp)
∼=

⊕

n≥0

H2n(G,Zp)

even cohomology algebra of G at p.

Hev(G,Zp) is a graded commutative ring.

Theorem (Evans-Venkov, 1959-1961).

Hev(G,Zp) is a noetherian ring.

dimHev(G,Zp) = Krull dimension of Hev(G,Zp)

(length d of the maximal chain of distinct

graded prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pd of

Hev(G,Zp)).

Theorem (Quillen, 1971). Let G be a fi-

nite group and p a prime number dividing |G|.
Then

dimHev(G,Zp) = rp(G).

Hence the Krull dimensions of the rings

Hev(G,Zp), p
∣∣∣ |G|, p prime, measure the com-

plexity of the group G.
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Corollary. Let G be a finite group and p a

prime number dividing |G|. Then G is p-

periodic if and only if dimHev(G,Zp) = 1.

Representation type of group
algebras

Let K be an algebraically closed field of char-

acteristic p. By the well-known Maschke’s

theorem the group algebra KG of a finite

group G is semisimple if and only if p 6
∣∣∣ |G|.

Theorem (Higman, 1954). Let G be a fi-

nite group and p
∣∣∣ |G|. Then KG is of finite

representation type if and only if the p-Sylow

subgroups of G are cyclic.
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Theorem (Bondarenko-Drozd, 1975). Let

G be a finite group and p
∣∣∣ |G|. Then KG

is tame of infinite representation type if and

only if p = 2 and the 2-Sylow subgroups of

G are of one of the following types: dihe-

dral, semidihedral, or generalized quaternion

groups.

Corollary. Let G be a finite group, p a prime

number, p
∣∣∣ |G|, and assume that |G| is p-

periodic. Then

(1) KG is of tame representation type.

(2) If p is odd, then KG is of finite represen-

tation type.

Theorem (Erdmann-Holm (1999), Erd-

man-Skowroński (2005)). Let G be a finite

group, p a prime, p
∣∣∣ |G|, and A = KG. If G

is p-periodic then A is periodic in modAe.
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More generally,

charK = p > 0

G finite group, p
∣∣∣|G|

KG = B0 ×B1 × · · · ×Br,

B0, B1, . . . , Br indecomposable

algebras (blocks of KG)

B0 block containing the trivial module K

B a block of KG

B 7→ D = DB defect group of KG

D p-subgroup of G

modB ∋ X ⇒ X is a direct summand of

Y ⊗KD KG, for some Y ∈

modKD

DB0
= p-Sylow subgroup of G

B of finite type ⇐⇒ DB is cyclic

B tame of infinite type ⇐⇒
p = 2 and DB is dihedral,

semidihedral or generalized

quaternion

B is periodic in modBe ⇐⇒
DB is cyclic or generalized

quaternion 2-group
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Topological sources of periodic groups

Let G be a finite group.

We may consider G as a topological group

with the discrete topology.

G acts on a topological space X if there

is a group homomorphism

G→ Homeo(X) group of homeomorphisms of X

G acts freely on X if gx 6= x for all x ∈ X and

g ∈ G \ {e}.

Assume X is a CW -complex (admits a cell

decomposition) and G is a finite group of

homeomorphisms of X.

We say that G acts freely on X if G acts

freely on a cell decomposition of X:

g(σ) ⊆
⋃

τ 6=σ

τ

for all g ∈ G \ {1} and all cells σ of X.
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Example. For any m ≥ 2, the cyclic group

G = (g) of order m acts freely on the one-

dimensional sphere S1

•

g31

g3e

yyssssssssss •

g21
g2e

oo

•
g1

geffMMMMMMMMMM

·

· • 1

e

WW000000000000

·

gm−4e %%KKKKKKKKKK • gm−11

gm−1e

GG������������

•
gm−31

gm−3e
//•
gm−21

gm−2e

88qqqqqqqqqq

Spherical space form problem: Describe

the finite groups G acting freely on spheres

Sm and the orbit spaces Sm/G (spherical spaces).

Theorem (Smith, 1938-1939). Let G be

a finite group acting freely on a sphere Sm.

Then every abelian subgroup of G is cyclic.

Topological motivation for the Zassenhaus

problem.

91



Theorem. Let G be a finite group acting

freely on a sphere Sm. Then

(1) For m even, we have |G| ≤ 2.

(2) For m odd, we have Hm+1(G,Z) ∼= Z/|G|Z.

In particular, G is periodic with even pe-

riod dividing m+ 1.

Proof. (1) An application of Lefschetz fix

point theorem.

(2) Application of cohomological methods

(spectral sequence of the fibration

Sm → Sm/G→ BG).

Example. (1) Consider the (division) algebra

of quaternions

H = R ⊕ Ri⊕ Rj ⊕ Rk

ij = −ji = k, ki = −ik = j, jk = −kj = i,

i2 = j2 = k2 = −1.

S3 =
{
a+ bi+ cj + dk ∈ H

∣∣∣ a2 + b2 + c2 + d2 = 1
}

S3 3-dimensional sphere in R4 = H.

There is a group epimorphism S3 → SO(3,R)

(group of rotations of R3) with the kernel

{±1}.
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It is known that every noncyclic finite sub-

group of S3 is conjugate in S3 (hence iso-

morphic) to one of the groups

• D∗
2n, n ≥ 2, binary dihedral group

• T ∗ binary tetrahedral group

• O∗ binary octahedral group

• I∗ binary icosahedral group

The groups D∗
2n, T ∗, O∗, I∗ admit a unique

normal subgroup Z2 = {±1} of order 2 such

that

• D∗
2n/Z2 = D2n dihedral group

• T ∗/Z2 = T tetrahedral group of rotations

of tetrahedron

• O∗/Z2 = O octahedral group of rotations

of octahedron (equivalently,

cube)

• I∗/Z2 = I icosahedral group of rotations

of icosahedron (equivalently,

dodecahedron)

Then |D∗
2n| = 4n, |T ∗| = 24, |O∗| = 48,

|I∗| = 120.
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The groups D∗
2n, T

∗, O∗, I∗ act freely on the

sphere S3, and hence are periodic groups of

period 4 (only cyclic groups may have period

2).

Q4n = D∗
2n =

〈
x, y

∣∣∣ xn = y2, xyx = y
〉
, n ≥ 2

is called a generalized quaternion group.

For n = 2m, we get the generalized quater-

nion 2-group Q2m+2 considered before.

We have the following embedding of groups

Q4n −→ S3 ⊆ H = R4

x −→ eπi/n

y −→ j

Q8 = {±1,±i,±j,±k}.

94



(2) Linear actions on spheres

Let V = R2n, n ≥ 1,

(−,−) the Euclidean R-bilinear form

e1, e2, . . . , e2n the standard basis of R2n

Let G be a finite group of R-linear automor-

phisms of V

Assume G acts freely on V \ {0}: the eigen-

values of all g ∈ G\{1} are different from 1.

(−,−)G G-invariant R-bilinear form induced

by (−,−)

(x, y)G =
1

|G|

∑

g∈G

(g(x), g(y)) for x, y ∈ V

S = {x ∈ V |(x, x)G = 1}

S is an (2n− 1)-dimensional sphere

G acts freely on S. In fact,

G acts freely on a cell decomposition of S.

Indeed, let C be the convex hull of the finite

set {±g(ei) | g ∈ G,1 ≤ i ≤ 2n} in R2n.
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Then S is the border of C and admits the

induced cell decomposition.

Since G acts freely on V \ {0}, G acts freely

on this cell decomposition of S.

In particular, G is periodic of (even) period

dividing 2n.

(one can construct such groups of period 2n)

Does every periodic group act freely on

a sphere?

No.

Theorem (Milnor, 1957). Let G be a finite

group acting freely on a sphere Sm. Then G

admits at most one element of order 2, and

such an element is central.

For example, for m odd, the dihedral group

D2m is periodic, but does not act freely on a

sphere.

In particular, this is the case for the symmet-

ric group S3
∼= D2·3 = D6.

96



The following theorem proved by Swan shows

that the periodic groups are finite groups act-

ing freely on CW -complexes homotopically

equivalent to spheres.

Theorem (Swan, 1960). Let G be a finite

group. The following statements are equiva-

lent:

(1) G is periodic.

(2) There exists an odd natural number m,

an m-dimensional CW -complex X (Swan

complex) homotopically equivalent to Sm

such that G acts freely on X.

Theorem (Madsen-Thomas-Wall, 1978).

Let G be a finite group. The following state-

ments are equivalent:

(1) G acts freely on a sphere.

(2) G admits at most one element of order

2, and such element is central.

(3) For each prime p, every subgroup G of

order p2 or 2p is cyclic.
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Example. For each odd prime p, the group

SL2(Fp) acts freely on a sphere. Indeed,
(

−1 0
0 −1

)

is the unique element of order 2 in SL2(Fp),

and is central.

We note that SL2(F2)
∼= S3

∼= D6, SL2(F3)
∼=

T ∗, and SL2(F5)
∼= I∗.

The groups SL2(Fp), p > 5, do not admit

linear free actions on spheres.

Theorem (Wolf, 1967). A finite group G

acts freely and linearly on some sphere if and

only if the following conditions are satisfied:

(1) For all primes p and q, the subgroups of

G of orders pq are cyclic.

(2) G has no subgroup isomorphic to SL2(Fp)

for a prime p > 5.
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IV. Periodicity of tame

symmetric algebras

K algebraically closed field

Λ finite dimensional K-algebra

Λ tame: ∀d≥1∃M1,...,Mnd
K[x]-Λ-bimodules

such that

• Mi free left K[x]-modules of finite rank

• all but finitely many isoclasses of inde-

composable right Λ-modules of dimen-

sion d are of the form

K[x]/(x− λ) ⊗K[x] Mi, 1 ≤ i ≤ nd, λ ∈ K

µΛ(d) = least number on K[x]-Λ-bimodules

satisfying the above condition for d

Λ tame =⇒

inddΛ =

{
finite dis-
crete set

}⋃{
µΛ(d) one-para-
meter families

}
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Λ is not tame
Drozd

====⇒ Λ is wild (representa-

tion theory of Λ comprises the representation

theories of all finite dimensional K-algebras)

Λ is of finite (representation) type if and only

if µΛ(d) = 0 for all d ≥ 1 (solution of the

second Brauer-Thrall conjecture).

THEOREM (Erdmann-Skowroński, 2004).

Let Λ be a nonsimple, basic, indecompos-

able, finite dimensional algebra over an alge-

braically closed field K. Then Λ is symmet-

ric, tame, with all indecomposable nonpro-

jective finite dimensional modules periodic if

and only if Λ is isomorphic to an algebra of

one of the forms:

• symmetric algebra of Dynkin type;

• symmetric algebra of tubular type;

• algebra of quaternion type.
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algebra = basic, indecomposable, finite

dimensional K-algebra

Λ algebra ⇒ Λ ∼= KQ/I

Q = QΛ Gabriel quiver of Λ, I admissible

ideal in the path algebra KQ of Q

modΛ ∼= repK(Q, I)

tame (basic)

selfinjective

algebras

standard algebras(
admit simply connected

Galois coverings

)

nonstandard algebras

Representation theory of tame standard

selfinjective algebras can be reduced to the

representation theory of tame algebras of

finite global dimension (tame simply connec-

ted algebras with nonnegaive Euler forms)
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B basic connected K-algebra

T(B) = B ⋉D(B) trivial extension

T(B) = B ⊕D(B) as K-vector spaces

(a, f) · (b, g) = (ab, fb+ ag)

T(B) symmetric algebra

((a, f), (b, g)) = f(b) + g(a)

G finite group of K-algebra automorphisms

of T(B)

We may consider the invariant algebra

T(B)G =
{
x ∈ T(B)

∣∣∣ g(x) = x for all g ∈ G
}
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G acts freely on T(B) if there is a decom-

position

1T(B) = e1 + e2 + · · · + en

where e1, e2, . . . , en are orthogonal primitive

idempotents of T(B) such that
(1) g(ei) ∈ {e1, . . . , en} for all g ∈ G and i ∈

{1, . . . , n}.

(2) if g(ei) = ei for some i ∈ {1, . . . , n} then

g = 1.

It is known that G acts freely on T(B) if

and only if G acts freely on the isoclasses of

simple T(B)-modules, for the induced action

of G on modT(B).

Proposition. Assume G acts freely on T(B).

Then T(B)G is a weakly symmetric (hence

selfinjective) algebra.

Proof. The invariant algebra T(B)G is iso-

morphic to the orbit algebra T(B)/G (in the

sense of Gabriel). Since T(B) is symmet-

ric, T(B) is weakly symmetric, and hence

T(B)G ∼= T(B)/G is weakly symmetric.

We note that in general T(B)G is not neces-

sarily a symmetric algebra.
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Symmetric algebras of Dynkin type

∆ ∈ {An,Dn,E6,E7,E8} Dynkin graph

~∆ a Dynkin quiver with underlying graph ∆

H = K ~∆ the path algebra of ~∆

T ∈ modH tilting H-module:

Ext1H(T, T ) = 0

T = T1 ⊕ · · · ⊕ Tn, n = |∆0|

T1, . . . , Tn indecomposable pairwise

nonisomorphic

B = EndH(T ) tilted algebra of type ~∆

• gl.dimB ≤ 2

• B is of finite type

• The Auslander-Reiten quiver ΓB of B is

of the form

Dynkin section ~∆
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Trivial extensions of finite type

Theorem (Hughes-Waschbüsch,1983).
Let A be an algebra. Then T(A) is of finite
type if and only if T(A) ∼= T(B) for a tilted
algebra B of Dynkin type.

B tilted of Dynkin type ~∆

The Auslander-Reiten quiver of ΓT(B)

∗

∗

∗

∗

~∆

= the stable finite cylinder Z ~∆/(τm∆) com-
pleted by |∆0|-projective-injective modules

m∆ = h∆ − 1, h∆ Coxeter number of ∆

|isoclases of indecomposable T(B)-modules|
= number of roots |∆0|h∆ of type ∆

hAm = m + 1, hDm = 2m − 2, hE6
= 12,

hE7
= 18, hE8

= 30
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B, B′ tilted of Dynkin type

T(B) ∼= T(B′) ⇐⇒ B′ = S+
it
. . . S+

i1
B (finite

number of reflections)

PROBLEM. When a finite group G acts

freely on the trivial extension T(B) of a

tilted algebra B of Dynkin type?

By general theory such a group G is cyclic.

Theorem (Bretscher-Läser-Rietdmann, 1981).

Let G be a finite group acting freely on the

trivial extension T(B) of a tilted algebra B

of Dynkin type ~∆, ∆ ∈ {E6,E7,E8}. Then

G = {1}.

There are respectively 22, 143, 598 isoclasses

of the trivial extensions T(B) of tilted alge-

bras B of types E6, E7, E8 (Riedtmann).

These are all symmetric algebras of Dynkin

types E6, E7, E8.

The tilted algebras B of Dynkin types for

which T(B) admit a free action of a non-

trivial finite group G are very exceptional.
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Brauer tree algebras

Brauer tree: a finite connected tree T = TmS
together with

• a circular ordering of the edges converg-

ing at each vertex

• one exceptional vertex S with multiplicity

m ≥ 1

Brauer tree T 7→ Brauer quiver QT :

• the vertices of QT are the edges of T

• there is an arrow i → j in QT ⇐⇒ j

is the consecutive edge of i in the circu-

lar ordering of the edges converging at a

vertex of T

QT has the following structure:

• QT is a union of oriented cycles corre-

sponding to the vertices of T

• Every vertex of QT belongs to exactly two

cycles
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The cycles of QT are divided into two camps:

α-camps and β-camps such that two cycles

of QT having nontrivial intersection belong to

different camps. We assume that the cycle of

QT corresponding to the exceptional vertex S

of T is an α-cycle.

i vertex of QT

i
αi−→ α(i) the arrow in α-camp of QT

starting at i

i
βi−→ β(i) the arrow in β-camp of QT

starting at i

α2(i)

xxppppppp
α(i)

αα(i)oo β(i)
ββ(i) // β2(i)

&&NNNNNNN

.

.

.

.

.

.

i

αi

__@@@@@@@@@@@

βi

??~~~~~~~~~~~

&&NNNNNNN

xxppppppp

α−2(i)αα−2(i)

// α−1(i)

αα−1(i)

??~~~~~~~~~~~

β−1(i)

ββ−1(i)

__@@@@@@@@@@@

β−2(i)
ββ−2(i)

oo

Ai = αiαα(i) . . . αα−1(i) Bi = βiββ(i) . . . ββ−1(i)
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T = TmS 7→ A(T ) = A(TmS ) = KQTmS
/ImS

Brauer tree algebra

ImS ideal in KQTmS
generated by elements :

• ββ−1(i)αi and αα−1(i)βi

• Ami −Bi if the α-cycle passing through i

is exceptional

• Ai −Bi if the α-cycle passing through i

is not exceptional

We note that the ideal ImS is not an admissible

ideal of KQTmS
.

For the multiplicity m = 1, the Brauer tree

algebras A(T ) = A(T1
S ) are exactly the trivial

extension algebras T(B) of the tilted algebras

of types An.

For the multiplicity m ≥ 2, we have A(TmS ) ∼=

T(B)Zm for an exceptional tilted algebra B =

B(TmS ) of type An and the cyclic group Zm

acting freely on T(B).

(here n = me, e the number of edges of TmS )
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Example. Let T = TmS be the star

•

e−1 •
e

~~
~~

~~
~~

~

...........
•8?9>:=;<S •1

•
2

@@@@@@@@@

•

3

QT = QTmS
is of the form

e
@GFECD
βe

�� αe // 1
@GF ECD
β1

��

α1

��?
??

??
??

??
??

e− 1@ABGFEβe−1

//

αe−1
;;xxxxxxxxxxxxx

2 FEDABC β2__

α2
��

OO

...........................
...

...
...
...
...
.

A(TmS ) is a symmetric Nakayama algebra

Moreover, A(TmS ) = A(T ′)Zm for the star T ′

with me edges and the multiplicity 1, and

A(T ′) = T (B) for the path algebra KQ of

the equioriented quiver of type Ame

1 −→ 2 −→ . . . −→ me
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Theorem (Dade-Janusz-Kupisch,1966-1969).

Let B be a block of a group algebra KG with

cyclic defect group DB. Then B is Morita

equivalent to a Brauer tree algebra A(TmS ).

(Here me+ 1 = pn if | DB |= pn and B has e

simple modules)

Remark. Most of the Brauer tree algebras

A(Tms ) are not Morita equivalent to blocks

of group algebras (Feit, 1984).

Theorem (Gabriel-Riedtmann (1979),

Rickard (1989)). Let A be a selfinjective

algebra. TFAE:

(1) A is Morita equivalent to a Brauer tree

algebra.

(2) A is stably equivalent to a symmetric

Nakayama algebra.

(3) A is derived equivalent to a symmetric

Nakayama algebra.
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Let T = TS be a Brauer tree with at least two
edges and an extreme exceptional vertex S

•

gfed`abcB3

3
•

gfed`abcB2

2
AA

AA
AA

AA

...........
S 1

S′

•
gfed`abcBr

r }}}}}}}}

•
onmlhijkBr−1

r−1

Then the Brauer quiver QT is of the form

cycle S′

r − 1

gfed`abcQBr−1

yysss
sss

ss

. . .oo

r
gfed`abcQBr

βr����
��
��
��

j + 1

gfed`abcQBj+1ffMMMMMM

1
β1
��.

..
..

..
.

@ABGFEα1
��

j

βj
VV-------

HH

βj−1��
��
��
�

gfed`abcQBj

2gfed`abcQB2
%%KKKKKKKKK j − 1

gfed`abcQBj+13
gfed`abcQB3

// . . .
88pppppp

For each edge i of T (vertex i of QT ) we have
the cycles Ai and Bi around i

Define B′
j = βj . . . βrα1β1 . . . βi−1, j 6= 1, j ∈

S′
0

112



For each λ ∈ K, define the algebra

D(TS, λ) = KQT/I(TS, λ)

where I(TS, λ) is the ideal of KQT generated

by

• ββ−1(i)αi and αα−1(i)βi, i ∈ (QT )0 \ {1},

• A2
1 = B1,

• Ai −Bi, i ∈ (QT )0 \ S′
0,

• Aj −B′
j, j ∈ S′

0 \ {1},

• βrβ1 − λβrα1β1.

Proposition. (1) D(TS, λ), λ ∈ K, are sym-

metric algebras of finite type.

(2) For λ, µ ∈ K \ {0}, D(TS, λ)
∼= D(TS, µ).

(3) D(TS,0) ∼= D(TS,1) ⇐⇒ charK 6= 2.

(4) D(TS,0) and D(TS,1) are socle equiva-

lent.

(5) D(TS,0) = T(B)Z3, for an exceptional

tilted algebra B = B∗(TS) of Dynkin type

D3m and Z3 acting freely on T(B).

(6) For charK = 2, D(TS,1) is nonstandard

and degenerates to D(TS,0).
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Example. T = T2
S of the form

S 1
S′ 2 • 3 •

QT = QT2
S

of the form

1@ABGFEα1
��

β1
//2

β2oo

α2
//3

α3oo FEDABC β3__

D(TS,0) = KQT/I(TS,0)

I(TS,0) generated by

β1α2, α3β2
β3α3, α2β3
α2
1 − β1β2

α2α3 − β2α1β1
α3α2 − β3
β2β1

∏
1(QT , I(TS,0)) ∼= Z

D(TS,1) = KQT/I(TS,0)

I(TS,1) generated by

β1α2, α3β2
β3α3, α2β3
α2
1 − β1β2

α2α3 − β2α1β1
α3α2 − β3

β2β1 − β2α1β1

∏
1(QT , I(TS,1)) trivial
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Let B = KQ/I where

Q :

9

α9

����
��

��
��

��
��

��
��

��

7

α4
��

β7

!!B
BB

BB
BB

BB
BB

BB
2

β2}}||
||

||
||

||
||

|

α2

��7
77

77
77

77
77

77
77

77
7

6
α6

����
��

��
��

��
��

��
��

��

4

α1
��

β4

!!B
BB

BB
BB

BB
BB

BB
8
β8

}}||
||

||
||

||
||

|

3

1 5

and I is generated by α4α1−β7β8, β2β4, α9β8.
Then B is a tilted algebra of type D9 = D3·3

Moreover, T(B) ∼= KQ′/I ′, where

Q′ :

3
α3��

2
α2

OO

β2
&&MMMMMMMMMM

1

β1
88qqqqqqqqqq

α7

��5
55

55
55

55
55

55
55

55
4

α1oo

β4
��

8

β8

OO

α8
~~||

||
| 5

β5xxqqqqqqqqqq α5
  B

BB
BB

9 α9

>>|||||
7β7

ffMMMMMMMMMM

α4

DD																	

6α6

``BBBBB

and the ideal I ′ is generated by α4α1 − β7β8,
α1α7 − β4β5, α7α4 − β1β2, β2β4, β5β7, β8β1,
β1α2, α3β2, β4α5, α6β5, β7α8, α9β8, α2α3 −
β2α1β1, α5α6 − β5α4β4, α8α9 − β8α7β7.

Then Z3 acts freely on T(B) by the rotation
and T(B)Z3 ∼= D(TS,0).
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Theorem (Riedtmann, Waschbüsch, . . . ).

Let Λ be a nonsimple standard selfinjective

algebra. TFAE:

(1) Λ is symmetric of finite type.

(2) Λ is isomorphic to T(B)G, B tilted alge-

bra of Dynkin type, G finite group acting

freely on T(B).

(3) Λ is isomorphic to one of the algebras:

(a) T(B), B tilted of Dynkin type.

(b) A(TmS ), TmS Brauer tree, S excep-

tional of multiplicity m ≥ 2.

(c) D(TS,0), TS Brauer tree, S extreme

exceptional.

Theorem (Riedtmann (1983), Waschbüsch

(1981)). Let Λ be a selfinjective algebra over

K. TFAE:

(1) Λ is nonstandard of finite type,

(2) Λ is nonstandard symmetric of finite type,

(3) Λ ∼= D(TS,1), TS Brauer tree, S extreme

exceptional, and charK = 2.
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Symmetric algebras of tubular type

B tubular algebra (in the sense of Ringel) =

tilted algebra EndC(T ) of a canonical tubu-

lar algebra C (T tilting module of nonnega-

tive rank) of one of tubular types (2,2,2,2),

(3,3,3), (2,4,4), or (2,3,6).

B tubular =⇒

• gl.dimB = 2

• rkK0(B) = 6, 8, 9, or 10

• B is of polynomial growth

• The Auslander-Reiten quiver ΓB of B is

of the form

P T0

∨
q∈Q+ Tq T∞ Q
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Canonical tubular algebras

Cλ = C(2,2,2,2, λ), λ ∈ K \ {0,1},

•

α1

��








































•
β1

xxqqqqqqqqqqqqq

• •

α2

YY44444444444444444444444

β2
ffMMMMMMMMMMMMM

γ2xxqqqqqqqqqqqqq

δ2

��








































•
γ1

ffMMMMMMMMMMMMM

•

δ1

YY44444444444444444444444

bounded by α2α1 + β2β1 + γ2γ1 = 0,

α2α1 + λβ2β1 + δ2δ1 = 0.

C(p, q, r), (p, q, r) = (3,3,3), (2,4,4), (2,3,6)

•
α1

��~~
~~

~~
~~

~~
~

•
α2oo · · ·oo •oo •

αp−1
oo

• •
β1oo •

β2oo · · ·oo •oo •
βq−1
oo •

αp
__@@@@@@@@@@@βq
oo

γr
��~~

~~
~~

~~
~~

~

•
γ1

__@@@@@@@@@@@

•γ2
oo · · ·oo •oo •γr−1

oo

bounded by

αp . . . α2α1 + βq . . . β2β1 + γr . . . γ2γ1 = 0
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B tubular algebra
Nehring-Skowroński (1989)

========⇒
T(B) symmetric standard tame algebra of
polynomial growth and the Auslander-Reiten
quiver of T(B) is of the form

∗

∗

∗

∗

T0 = Tr

∨
q∈Qr−1

r
Tq

∨
q∈Q0

1
Tq

Tr−1 T1

∨
q∈Qr−2

r−1
Tq

∨
q∈Q1

2
Tq

T0, T1, . . . , Tr P1(K)-families of quasi-tubes
(stable tubes with inserted projective-injective
vertices ∗)

Tq, q ∈ Qi−1
i = Q ∩ (i− 1, i),1 ≤ i ≤ r, P1(K)-

families of stable tubes
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Theorem (Bia lkowski-Skowroński, 2003).

Let Λ be a representation-infinite algebra.

TFAE:

(i) Λ is tame, standard, weakly symmet-

ric, with all indecomposable nonprojec-

tive modules periodic and singular Car-

tan matrix.

(ii) Λ is tame, standard, symmetric, with

all indecomposable nonprojective mod-

ules periodic and singular Cartan matrix.

(iii) Λ ∼= T(B) for a tubular algebra B.

B, B′ tubular algebras
Nehring-Skowroński (1989)

========⇒
T(B) ∼= T(B′) ⇐⇒ B′ = S+

it
. . . S+

i1
B (finite

number of reflections)

There are 4 families of nonisomorphic trivial

extensions of tubular algebras of tubular type

(2,2,2,2), and 38, 85, 4953 isoclasses of the

trivial extensions of tubular types (3,3,3),

(2,4,4), (2,3,6), respectively (Bia lkowski).
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PROBLEM. When a finite group acts freely
on the trivial extension T(B) of a tubular
algebra B?

By general theory such a group G is cyclic.

Theorem (Lenzing-Skowroński,2000). Let
G be a finite group acting freely on the triv-
ial extension T(B) of a tubular algebra B of
type (2,3,6). Then G = {1}.

Theorem (Bia lkowski-Skowroński,2002).
Let B be a tubular algebra such that a non-
trivial finite group G acts on T(B). Then
T(B) ∼= T(B′) for a tubular algebra B′ given
by one of the following bound quivers.

φγα = φσβ
ψγα = λψσβ
B1(λ)

λ ∈ K \ {0,1}

α β

γ σ

φ ψ

1

2 3

4

5 6

R 	

	 R

R 	

ξα = ηγ, ζα = ωγ
ξσ = ηβ, ζσ = λωβ

B2(λ)
λ ∈ K \ {0,1}

α β
γσ

η ζ
ξ ω

1 2

3 4

5 6

? ~= ?

? ~= ?

B3
1

2 3 4

5

876

R ?	

	 ? R

	?R

B4
1

3

5

4

2

6

8 7

R	

R	

R

	

R 	 R

B5
1

3

5
4

7
6

2

8

?
R

?

	

?

R
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B6

1

4

6

3

2

5

78

R	

R	

R

	

		 R

B7

3

1
2

4
5

7
6

8

	j
?

�
R

	j
?

B8

3

1

4

5

7

6

8

2
R 	

R	

R

	

N

	

B9

3
4

1

5

2

6
7

9
8

?

�
^

^
?

�
j

?
�

B10

5

2 31

6

7

4

8 9

? R	 	U

? R	 	

B11

5

1

7

3
4

6

2

98

?

�

�

j

j
?

?
�

?

B12

1

7

6

2

5

9

3

4

8

?

R ?	 R

	

?

	 ? R

B13

1

7

6

2

5

9

3

4

8

?

R ? R

R

	?

	 ?	

(where a dotted line means that the sum of

paths indicated by this line is zero if it indi-

cates exactly three parallel paths, the com-

mutativity of paths if it indicates exactly two

parallel paths, and the zero path if it indi-

cates only one path).

Here, B1(λ), B2(λ) are of type (2,2,2,2), B3,

B4, B5, B6, B7, B8 are of type (3,3,3), and

B9, B10, B11, B12, B13 are of type (2,4,4).
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Theorem (Bia lkowski-Skowroński, 2003).

Let Λ be a representation-infinite algebra.

TFAE:

(i) Λ tame standard weakly symmetric, with

all indecomposable nonprojective finite

dimensional modules periodic and non-

singular Cartan matrix.

(ii) Λ ∼= T(B)G for a tubular algebra B and

a nontrivial finite group G acting freely

on T(B).

(iii) Λ is isomorphic to one of the bound quiver

algebras.

A1(λ)
∼= T(B1(λ))Z2

λ ∈ K \ {0,1}

αγα = ασβ

βγα = λβσβ

γαγ = σβγ

γασ = λσβσ

α
γ

σ
β

-
� �

-

A2(λ)
∼= T(B2(λ))Z3

λ ∈ K \ {0,1}

α2 = σγ

λβ2 = γσ

γα = βγ

σβ = ασ

α β
σ
γ

-
�

K

U

A3
∼= T(B3)Z2

βα+ δγ + εξ = 0
αβ = 0, ξε = 0

γδ = 0

α
β

δ γ

ε
ξ

Y
j

*

�

?

6

A4
∼= T(B3)Z2

βα+ δγ + εξ = 0
αβ = 0, γε = 0

ξδ = 0

α
β

δ γ

ε
ξ

Y
j

*

�

?

6

A5
∼= T(B4)Z4

α2 = γβ

βαγ = 0

α
γ

β
-

�
U
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A6
∼= T(B5)Z4

α3 = γβ

βγ = 0

βα2 = 0

α2γ = 0

α
γ

β
-

�
U

A7
∼= T(B4)Z2

βα = δγ

γδ = εξ

αδε = 0

ξγβ = 0

α
β

δ
γ

ε
ξ

-
�

-
�

-
�

A8
∼= T(B5)Z2

αβα = σξ, ξγ = 0

βαβ = γδ, δσ = 0

ξβα = 0

δαβ = 0

βαγ = 0

αβσ = 0

α
βσ

ξ

γ

δ�

-?

6

R

I

A9
∼= T(B6)Z2

δα = εβ, γε = βσ, ασβ = 0

εγδ = 0, σγεγ = 0

α
β
σ

γε

δ�

-�? ?

6

A10
∼= T(B7)Z2

ξαβ = ξδγξ
αβδ = δγξδ

βα = 0, (γξδ)2γ = 0

α β

δγξ
j

*
�

?

6

A11
∼= T(B8)Z2

γαβ = γξγ

αβξ = ξγξ

βα = 0, δγ = 0

ξζ = 0, (γξ)2 = ζδ

β
α

ξ
γ

ζ

δ
-

�
-

�
-

�

A12
∼= T(B9)Z3

δβδ = αγ

γβα = 0, β(δβ)3 = 0

α

β

γ
δ

�

-̂�

A13
∼= T(B10)Z3

α2 = γβ, βδ = 0, γβ = 0

σγ = 0, αδ = 0, σα = 0

α3 = δσ

α
β
γ

δ
σ

-
� �

- 	

A14
∼= T(B11)Z3

βα = δγδγ

αδγδ = 0

γδγβ = 0

αβ = 0

α
β

δ
γ

-
� �

-

A15
∼= T(B12)Z3

γβα = 0, α2 = δβ

βδ = 0, ασ = 0, αδ = σγ

α
β

γ
δ

σ�

-̂�
U

A16
∼= T(B13)Z3

αβγ = 0, α2 = βδ

δβ = 0, σα = 0, δα = γσ

α
β

γ
δ

σ
�

]

� -
U

(all except A4 for charK 6= 2 are symmetric)
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Theorem (Bia lkowski-Skowroński, 2003).

Let Λ be a nonstandard symmetric algebra

over an algebraically closed field K. Then

Λ is socle equivalent to a standard represen-

tation-infinite tame symmetric algebra A with

all indecomposable nonprojective modules pe-

riodic if and only if exactly one of the follow-

ing cases holds:

(i) K is of characteristic 3 and Λ is isomor-

phic to one of the bound quiver alge-

bras

Λ1

α2 = γβ

βαγ = βα2γ

βαγβ = 0

γβαγ = 0

α
γ
β

-
�

U

Λ2

α2γ = 0, βα2 = 0

γβγ = 0, βγβ = 0

βγ = βαγ

α3 = γβ

α
γ
β

-
�

U

(ii) K is of characteristic 2 and Λ is isomor-

phic to one of the bound quiver algebras
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Λ3(λ)
λ ∈ K \ {0,1}

α4 = 0, γα2 = 0, α2σ = 0

α2 = σγ + α3, λβ2 = γσ
γα = βγ, σβ = ασ

α β
σ
γ

-
�

K

U

Λ4

δβδ = αγ, (βδ)3β = 0
γβαγ = 0, αγβα = 0

γβα = γβδβα

α

β

γ
δ

�

-̂�

Λ5

α2 = γβ, α3 = δσ, βδ = 0
σγ = 0, αδ = 0, σα = 0

γβγ = 0, βγβ = 0, βγ = βαγ

α
β
γ

δ
σ

-
� �

- 	

Λ6

αδγδ = 0, γδγβ = 0

αβα = 0, βαβ = 0

αβ = αδγβ

βα = δγδγ

α
β

δ
γ

-
� �

-

Λ7

βδ = βαδ, ασ = 0, αδ = σγ
γβα = 0, α2 = δβ, γβδ = 0
βδβ = 0, δβδ = 0

α β

γ
δ

σ�

-̂�
U

Λ8

δβ = δαβ, σα = 0, δα = γσ
αβγ = 0, α2 = βδ, δβγ = 0
βδβ = 0, δβδ = 0

α β

γ
δ

σ
�

]

� -
U

Λ9

βα+ δγ + εξ = 0
γδ = 0, ξε = 0, αβα = 0
βαβ = 0, αβ = αδγβ

α
β

δ γ
ε
ξ

Y j
*

�

?

6

Λ10

µβ = 0, αη = 0, βα = δγ

ξσ = ηµ, σδ = γξ+ σδσδ

δσδσ = 0, ξγξγ = 0

γ
ξ

δ
σα β

η µ
-� �-

*
j

�
Y

Λ nonstandard (above) ⇒ Λ degenerates to

a standard symmetric algebra Λ′ = T(B)G

for an exceptional tubular algebra B and a

nontrivial group G acting freely on T(B).
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Example. The trivial extension T(B5) of the

tubular algebra B5 of type (3,3,3) is the bound

quiver algebra KΩ/J

Ω :

6
β6
��?

??
??

??

1

γ6
??�������

α7

��

3α1
oo

γ8
��?

??
??

??

4

β4
??�������

8

β8����
��

��
�

7
γ4

__??????? α5 //5

α3

OO

γ2����
��

��
�

2
β2

__???????

and the ideal J is generated by α1α7α5 −
γ8β8, α3α1α7−γ2β2, α5α3α1−γ4β4, α7α5α3−
γ6β6, β4γ6, β6γ8, β8γ2, β2γ4, β6α1α7, β8α3α1,

β2α5α3, β4α7α5, α1α7γ4, α7α5γ2, α5α3γ8, α3α1γ6.

Then Z4 acts on T(B5) by the rotation and

T(B5)
Z4 ∼= A6 = KQ/I

where

Q :
U -

�1 2

α

β

γ

and I is generated by α3 − γβ, βγ, βα2, α2γ.

Consider the algebra
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Λ2 = KQ/I(1), I(1) =
〈
α3−γβ, βγ−βαγ, βα2, α2γ

〉
,

A6, Λ2 selfinjective algebras of dimension 11

A6
∼= Λ2 ⇐⇒ charK 6= 3

charK = 3 ⇒ Λ2 is nonstandard

A6/ socA6
∼= Λ2/ socΛ2

Λ(t) = KQ/I(t), I(t) =
〈
α3−γβ, βγ−tβαγ, βα2, α2γ

〉
,

t ∈ K
Λ(t) ∼= Λ(1) = Λ2 for t ∈ K \ {0}

A6 = Λ(0) = lim
t→0

Λ(t), A6 ∈ GL11(K)Λ2

A6 is a degeneration of Λ2 (Λ2 is a deformation
of A6)

∗ ∗

T (1) = T (0) =
∨

λ∈P1(K)
T

(0)
λ

T (q) =
∨

λ∈P1(K)
T qλ

ΓA6
= ΓΛ2

q ∈ Q ∩ (0,1)
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Algebras of quaternion type

charK = p > 0

G finite group

B block of the group algebra KG

D defect group of B (p-subgroup of G)

B is representation-infinite

and all indecomposable non-

projective finite dimensional

B-modules are ΩB-periodic

⇐⇒

p = 2

and D is a

quaternion

group

An algebra Λ is of quaternion type if

• Λ is symmetric, connected, representation-

infinite, tame.

• The indecomposable nonprojective finite

dimensional Λ-modules are ΩΛ-periodic

of period dividing 4.

• The Cartan matrix of Λ is nonsingular.
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Theorem (Erdmann, 1988). Let Λ be an

algebra of quaternion type. Then Λ is Morita

equivalent to one of the bound quiver alge-

bras:

•@ABGFEα
�� FEDABC β^^

α2 = (βα)k−1β, β2 = (αβ)k−1α
(αβ)k = (βα)k, (αβ)kα = 0
k ≥ 2

•@ABGFEα
�� FEDABC β^^

charK = 2
α2 = (βα)k−1β + c(αβ)k

β2 = (αβ)k−1α+ d(αβ)k

(αβ)k = (βα)k, (αβ)kα = 0
(βα)kβ = 0
k ≥ 2, c, d ∈ K, (c, d) 6= (0,0)

•@ABGFEα
�� β

//
•

γ
oo

γβγ = (γαβ)k−1γα
βγβ = (αβγ)k−1αβ
α2 = (βγα)k−1βγ + c(βγα)k

α2β = 0
k ≥ 2, c ∈ K

•@ABGFEα
�� β

//
•

γ
oo FEDABC η^^

γβ = ηs−1, βη = (αβγ)k−1αβ
ηγ = (γαβ)k−1γα
α2 = a(βγα)k−1βγ + c(βγα)k

α2β = 0, γα2 = 0
k ≥ 1, s ≥ 3, a ∈ K∗, c ∈ K

•@ABGFEα
�� β

//
•

γ
oo FEDABC η^^

αβ = βη, ηγ = γα, βγ = α2

γβ = η2 + aηs−1 + cηs

αs+1 = 0, ηs+1 = 0
γαs−1 = 0, αs−1β = 0
s ≥ 4, a ∈ K∗, c ∈ K

•@ABGFEα
�� β

//
•

γ
oo FEDABC η^^

αβ = βη, ηγ = γα, βγ = α2

γβ = aηt−1 + cηt

α4 = 0, ηt+1 = 0, γα2 = 0
α2β = 0
t ≥ 3, a ∈ K∗, c ∈ K
(t = 3 ⇒ a 6= 1, t > 3 ⇒ a = 1)

•
β

//
•

γ
oo

δ //
•

η
oo

βδη = (βγ)k−1β
δηγ = (γβ)k−1γ
ηγβ = d(ηδ)s−1η
γβδ = d(δη)s−1δ
βδηδ = 0, ηγβγ = 0
k, s ≥ 2, d ∈ K∗

(k = s = 2 ⇒ d 6= 1, else d = 1)

•
β

//
•

γ
oo

δ //
•

η
oo

βγβ = (βδηγ)k−1βδη
γβγ = (δηγβ)k−1δηγ
ηδη = (ηγβδ)k−1ηγβ
δηδ = (γβδη)k−1γβδ
βγβδ = 0, ηδηγ = 0
k ≥ 2
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•@ABGFEα
�� β

//
•

γ
oo

δ //
•

η
oo

βγ = αs−1

αβ = (βδηγ)k−1βδη
γα = (δηγβ)k−1δηγ
ηδη = (ηγβδ)k−1ηγβ
δηδ = (γβδη)k−1γβδ
α2β = 0, βδηδ = 0
k ≥ 1, s ≥ 3

•
β

//
•

γ
oo

@GFECD̺
// δ //

•
η

oo

β̺ = 0, ̺γ = 0, η̺2 = 0
̺2δ = 0
δη−γβ = ̺s−1, η̺ = (ηδ)k−1η
̺δ = (δη)k−1δ, (βγ)k−1βδ = 0
(ηδ)k−1ηγ = 0
k ≥ 2, s ≥ 3

•@ABGFEα
�� β

//
•

γ
oo

δ //
•

η
oo FEDABC ξ^^

βγ = αs−1

γα = (δηγβ)k−1δηγ
αβ = (βδηγ)k−1βδη
ηδ = ξt−1

δξ = (γβδη)k−1γβδ
ξη = (ηγβδ)k−1ηγβ
α2β = 0, δηδ = 0
k ≥ 1, s, t ≥ 3

•
β

//

κ
��8

88
88

88
88

8 •
γ

oo

δ����
��

��
��

��

•
λ

\\8888888888

η
BB����������

βδ = (κλ)a−1κ
ηγ = (λκ)a−1λ
δλ = (γβ)b−1γ
κη = (βγ)b−1β
λβ = (ηδ)c−1η, γκ = (δη)c−1δ
γβδ = 0, δηγ = 0, λκη = 0
a, b, c ≥ 1 (at most one equal 1)

These algebras are of quaternion type:

derived equivalence classification (Holm, 1999)

tameness: degeneration argument (Geiss)

Ω4
Λe(Λ) ∼= Λ (Erdmann-Skowroński, 2004)
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Corollary (Erdmann-Skowroński, 2004).

Let Λ be a basic, connected, finite dimen-

sional symmetric, tame algebra over an alge-

braically closed field K, with all indecompos-

able nonprojective finite dimensional modules

ΩΛ-periodic. Then

(1) The Cartan matrix CΛ of Λ is singular if

and only if Λ is isomorphic to the trivial

extension T(B) of a tubular algebra B.

(2) If Λ is representation-infinite with non-

singular Cartan matrix CΛ then Λ has at

most 4 simple modules.

(3) If Λ is representation-infinite then Λ has

at most 10 simple modules.

CT(B) = −(ΦB − In)CB, n = rkK0(B),

ΦB = CtBC
−1
B Coxeter matrix of B

B tubular algebra ⇒ 1 is an eigenvalue of ΦB
⇒ detCT(B) = 0.
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Calabi-Yau stable module categories

Λ selfinjective algebra

modΛ category of finite dimensional Λ-modules

modΛ stable category of modΛ

modΛ triangulated category, T = Ω−
Λ shift

functor

modΛ has Serre duality S = ΩΛNΛ

NΛ = DHomΛ(−,Λ) Nakayama functor

HomΛ(X,Y ) ∼= DHomΛ(Y,S(X))

for all X,Y ∈ modΛ

Following Kontsevich modΛ is Calabi-Yau

if S ∼= Tn (on modΛ) for some n ≥ 0

⇐⇒ Ω−n−1
Λ

∼= NΛ for some n ≥ 0.

CYdim(modΛ) = minimal n with this property

Calabi-Yau dimension of modΛ
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Λ symmetric

modΛ is Calabi-Yau ⇐⇒ Ωn+1
Λ

∼= 1modΛ for

some n ≥ 0

CYdim(modΛ) = n ⇐⇒ n minimal number

such that Ωn
Λ(M) ∼= M for all indecomposable

nonprojective finite dimensional Λ-modules

Theorem (Erdmann-Skowroński, 2004).

Let Λ be a tame symmetric algebra over an

algebraically closed field. Then modΛ is Calabi-

Yau ⇐⇒ all indecomposable nonprojective

finite dimensional Λ-modules are periodic.

Theorem (Erdmann-Skowroński, 2004).

(i) For any natural number n there exists a

symmetric algebra Λ of Dynkin type with

CYdim(modΛ) = n.

(ii) Let Λ be a symmetric algebra of tubular

type. Then CYdim(modΛ) ∈ {2,3,5,7,11}.

(iii) Let Λ be a symmetric algebra of quater-

nion type. Then CYdim(modΛ) ∈ {2,3}.
Moreover, CYdim(modΛ) = 3 if Λ is not

of tubular type.
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V. Periodicity and

hypersurface singularities

R commutative noetherian local ring

m maximal ideal of R

dimR Krull dimension of R (the length of

maximal chain of prime ideals of R)

M right R-module

A sequence x1, . . . , xn ∈ m is a regular se-
quence on M if xi is not a zero-divisor of
M/M(x1, . . . , xi−1), for any i ∈ {1, . . . , n}

depth(M) = the maximal length of regular se-

quences on M (depth of M)

M is a (maximal) Cohen-Macaulay R-

module if depth(M) = dimR.

R is a Cohen-Macaulay ring if RR is a

Cohen-Macaulay R-module.

R is regular (nonsingular) if m is gener-

ated by a regular sequence (equivalently,

gl.dimR = dimR, by the Auslander-

Serre theorem).
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R is an isolated singularity if R is nonregular

and the localization Rp is regular (nonsin-

gular) for any prime ideal p 6= m.

K algebraically closed field

S = K[[x0, x1, . . . , xn]] power series K-algebra

S is a commutative, complete, noetherian,

regular, local K-algebra with dimS = n+ 1

m = (x0, x1, . . . , xn) unique maximal ideal of

S

For 0 6= f ∈ m2,

R = S/(f) is called a hypersurface singu-

larity

R is a commutative, complete, noetherian,

local K-algebra with dimR = n

J (f) =
(
f, ∂f∂x0

, ∂f∂x1
, . . . , ∂f∂xn

)
Jacobian ideal

of f

R is an isolated hypersurface singularity if

and only if dimk S/J (f) is finite
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Remark. If R = S/(f) is an isolated hyper-

surface singularity then R ∼= S/(F ) for a poly-

nomial F ∈ K[x0, x1, . . . , xn] (Greuel-Kröning).

Let R be a hypersurface singularity.

CM(R) category of finitely generated maxi-

mal Cohen-Macaulay R-modules.

CM(R) is a Krull-Schmidt category (unique

decomposition of objects into direct

sums of indecomposable objects).

R is called of finite Cohen-Macaulay type

(shortly, finite CM-type) if CM(R) has

only a finite number of pairwise noniso-

morphic indecomposable objects.

Theorem (Auslander, 1986). Let R be a

hypersurface singularity of finite CM-type.

Then R is an isolated singularity.
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Let R be an isolated hypersurface singularity.

Then

• CM(R) is a Frobenius category (projec-

tive objects are injective), and R is a unique

indecomposable projective object.

• CM(R) admits Auslander-Reiten sequences

(Auslander, 1986)

ΓR = ΓR(CM(R)) Aulander-Reiten quiver

of R

CM(R) stable category of CM(R)

ΓsR = ΓR(CM(R)) stable Aulander-Reiten

quiver of R (obtainded from ΓR by deleting

R and the arrows attached to R)
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Moreover, we have equivalences of functors

from CM(R) to CM(R):

• Ω2
R

∼= idCM(R)

• τR
∼= idCM(R) if dimR is even

• τR
∼= ΩR if dimR is odd.

R = S/(f) hypersurface singularity

c(f) the set of all proper ideals I of S =

K[[x0, x1, . . . , xn]] such that f ∈ I2.

R is called a simple hypersurface singular-

ity) if c(f) is finite.
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Theorem (Arnold, 1972). Let R be a hy-

persurface singularity of dimension d over an

algebraically closed field K of characteristic

0. Then the following statements are equiv-

alent:

(1) R is a simple hypersurface singularity.

(2) R is of finite deformation type.

(3) R ∼= K[[x0, x1, . . . , xd]]/(f
(d)
∆ ), for a Dynkin

graph ∆ of type An(n ≥ 1), Dn(n ≥ 4),

E6, E7, or E8, where

f
(d)
An

= x2 + yn+1 + z22 + · · · + z2d ,

f
(d)
Dn

= x2 + yn−1 + z22 + · · · + z2d ,

f
(d)
E6

= x3 + y4 + z22 + · · · + z2d ,

f
(d)
E7

= x3 + xy3 + z22 + · · · + z2d ,

f
(d)
E8

= x3 + y5 + z22 + · · · + z2d .
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Finite deformation type means that R can be

deformed only into finitely many other noni-

somorphic singularities.

K[[x0, x1, . . . , xd]]/(f
(d)
∆ ) is called the Arnold’s

simple hypersurface singularity of dimen-

sion d and Dynkin type ∆.

Theorem (Buchweitz-Greuel-Schreyer,

Knörrer, 1985-1987). Let R be a hyper-

surface singularity of dimension d over an al-

gebraically closed field K of characteristic 0.

Then R is of finite Cohen-Macaulay type if

and only if R ∼= K[[x0, x1, . . . , xd]]/(f
(d)
∆ ), for

some Dynkin graph ∆.
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Knörrer’s periodicity

S = K[[x0, x1, . . . , xn]]

R = S/(f) isolated hypersurface singularity

S♯ = S[[u]]

R♯ = S♯/(f + u2)

Theorem (Knörrer, 1987). Let R be an

isolated hypersurface singularity over an alge-

braically closed field K of characteristic 6= 2.

Then R is of finite Cohen-Macaulay type if

and only if R♯ is of finite Cohen-Macaulay

type. Moreover, if R is of finite Cohen-Macaulay

type, then

(1) CM(R♯) ∼= CM(R)[Z2] skew group cate-

gory, and hence Γs
R♯

is a twisted quiver

of ΓsR.

(2) CM((R♯)♯) ∼= CM(R), and hence the trans-

lation quivers Γs
(R♯)♯

and ΓsR are isomor-

phic.
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Solberg’s periodicity

R = S/(f) isolated hypersurface singularity

R∗ = S[[u, v]]/(f + uv)

Theorem (Solberg, 1989). Let R = S/(f)

be an isolated hypersurface singularity over

an arbitrary algebraically closed field K. Then

R is of finite Cohen-Macaulay type if and only

if R∗ is of finite Cohen-Macaulay type. More-

over, if R is of finite Cohen-Macaulay type,

then there is an equivalence of categories

CM(R)
∼

−→ CM(R∗), which induces an iso-

morphism of stable Auslander-Reiten quivers

ΓsR
∼

−→ ΓsR∗.

For K of characteristic 6= 2, the Solberg’s

periodicity is equivalent to the Knörrer’s pe-

riodicity.
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Kleinian singularities

Let K be an algebraically closed field of char-

acteristic 0.

SL2(K) = {A ∈M2×2(K) | detA = 1}

It is a classical result that every finite sub-

group of SL2(K) is conjugate in SL2(K) to

one of the following Klein groups

C∗n cyclic group of order n, n ≥ 1

D∗
2n binary dihedral group of order 4n, n ≥ 2

T ∗ binary tetrahedral group of order 24

O∗ binary octahedral group of order 48

I∗ binary icosahedral group of order 120
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Let G be a group of the above form. We

associate to G a Dynkin graph ∆ = ∆(G) as

follows:

An = ∆(C∗n+1), n ≥ 1

Dn = ∆(D∗
2(n−1)

), n ≥ 4

E6 = ∆(T ∗)

E7 = ∆(O∗)

E8 = ∆(I∗)

G a finite subgroup of SL2(K).

Then G acts on the algebra K[[X,Y ]]: for(
a b
c d

)
∈ SL2(K) and f(X,Y ) ∈ K[[X,Y ]]

(
a b
c d

)
f(X,Y ) = f



(
a b
c d

)−1(
X
Y

)


= f(dX − bY,−cX + aY ).

We may consider the invariant algebra

K[[X,Y ]]G.
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Theorem (Klein, 1884). Let K be an alge-

braically closed field of characteristic 0, and

G a finite subgroup of SL2(K). Then

K[[X,Y ]]G ∼= K[[x, y, z]]/(f∆)

where ∆ = ∆(G) is the Dynkin graph of G,

and

fAn = x2 + yn+1 + z2

fDn = x2y+ yn−1 + z2

fE6
= x3 + y4 + z2

fE7
= x3 + xy3 + z2

fE8
= x3 + y5 + z2

Hence, f∆ = f
(2)
∆ with z = z2, and K[[X,Y ]]G

are the Arnold’s simple hypersurface singular-

ities of dimension 2.

For K = C, the orbit space C2/G is a com-

pact Riemann surface with at most 3 singular

points, and the Dynkin graph ∆(G) describes

the multiplicities of these singular points.
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Theorem (Artin-Verdier, Esnault-Knörrer,

1985). Let R be a hypersurface singularity

of dimension 2 over an algebraically closed

field K of characteristic 0. Then R is of fi-

nite Cohen-Macaulay type if and only if R ∼=

K[[X,Y ]]G, for a finite subgroup G of SL2(K).

Theorem (Auslander-Reiten, 1986). Let

R = K[[x, y, z]]/(f∆) be an Arnold’s simple

hypersurface singularity of dimension 2 over

an algebraically closed field K of arbitrary

characteristic. Then the Auslander-Reiten

quiver ΓR is of the form
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∆ = An

n ≥ 1
R

uukkkkkkkkkkkkkkkkkkkk

))RRRRRRRRRRRRRRRRRR

• //

55kkkkkkkkkkkkkkkkkkkk
•oo

// •oo oo ... // • // •oo

iiRRRRRRRRRRRRRRRRRR

(n+ 1 vertices)

∆ = Dn

n ≥ 4

•

��?
??

??
??

? R

~~}}
}}

}}
}}

•

__????????

~~}}
}}

}}
}}

// •oo
// •oo oo ... // • // •oo

>>}}}}}}}}

!!C
CC

CC
CC

C

•

>>}}}}}}}}

•

aaCCCCCCCC

(n+ 1 vertices)

∆ = E6 R

��
•

OO

��
• // •oo

// •oo
//

OO

•oo
// •oo

∆ = E7 •

��
R

// •oo
// •oo

// •oo
//

OO

•oo
// •oo

// •oo

∆ = E8 •

��
• // •oo

// •oo
//

OO

•oo
// •oo

// •oo
// •oo

//
Roo

and, in all cases, τR = identity.
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Simple plane curve singularities

R = K[[x, y]]/(g∆), ∆ Dynkin graph

g∆ = f
(1)
∆ is of the form

gAn = x2 + yn+1

gDn = x2y+ yn−1

gE6
= x3 + y4

gE7
= x3 + xy3

gE8
= x3 + y5

Theorem (Dieterich-Wiedemann (1986),

Kiyek-Steineke (1989)). Let R = K[[x, y]]/(g∆)

be a simple plane curve singularity over an

algebraically closed field K of arbitrary char-

acteristic. Then the Auslander-Reiten quiver

ΓR is of the form
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∆ = A2m

m ≥ 1
•@ABGFE �� // •oo

// •oo oo ... // • // •oo
//
Roo

(m+ 1 vertices, τR = ΩR = identity)

∆ = A2m−1

m ≥ 1
•
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?

___ •

__????????

����
��

��
��

// •oo
// •oo oo ... // • // •oo

//
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•

??��������

(m+ 2 vertices, τR = ΩR = reflection
at the horizontal line)

∆ = D2m

m ≥ 2
• // • //

����
��
��
��
��
��
��
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�

... // • // • //
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��
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��

b

����
��
��

c
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d
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• // • //

XX000000000000000

•

XX000000000000000
... // • // • //

WW///////////////

•

WW///////////////

<<zzzzzzzzz

88qqqqqqqqqqqqq

(4m+ 1 vertices, τR = ΩR = reflection
at the horizontal line through R, a, b, c,
d, with τRa = d, τRb = c, τ2

R = id)

∆ = D2m+1

m ≥ 2
• // • //

����
��
��
��
��
��
��
�
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•
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��
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��
�

... // • // • //
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@

R

��
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��~~
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• // • //

XX000000000000000

•

XX000000000000000
... // • // • //

WW///////////////

•

WW///////////////

??~~~~~~~~

(4m vertices, τR = ΩR = reflection at
the horizontal line through R and a)
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∆ = E6 •
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ZZ66666666666666666

(7 vertices, τR = ΩR = reflection at the
horizontal line through R, a and b)
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(15 vertices, τR = ΩR = reflection at
the horizontal line through R, a and b,
with τRa = b, τRb = a)
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ZZ4444444444444444

(17 vertices, τR = ΩR = reflection at
the horizontal line through R, a and b,
with τRa = b, τRb = a)

151



Greuel and Kröning introduced the concept

of finite deformation type of hypersurface

singularities for algebraically closed fields of

positive characteristic and proved the theo-

rem of the form

Theorem (Greuel-Kröning, 1990). Let R

be a hypersurface singularity. The following

statements are equivalent:

(1) R is a simple hypersurface singularity.

(2) R is of finite deformation type.

(3) R is of finite CM-type.

In characteristic 6= 2,3,5, the Arnold’s sim-

ple hypersurface singularities are all simple

hypersurface singularities.
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The normal forms of simple hypersurface sin-

gularities of dimension 1 were classified by

Kiyek and Steineke (1985).

The normal forms of simple hypersurface sin-

gularities of dimension 2 were classified by

Artin (1977).

The normal forms of simple hypersurface sin-

gularities of dimensions ≥ 3 can be obtained

from the normal forms of dimensions 1 and

2 by Solberg’s periodicity theorem (Solberg

(1989), Greuel-Kröning (1990)).

Theorem (Solberg (1989), Greuel-Kröning

(1990)). Let R be a hypersurface singularity

of finite CM-type over an algebraically closed

field K of arbitrary characteristic. Then the

Auslander-Reiten quiver ΓR of R is isomor-

phic to the Auslander-Reiten quiver of an

Arnold’s simple hypersurface singularity of di-

mension 1 or 2 (simple plane curve singularity

or Kleinian singularity).
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Stable Auslander algebras

Let R be a hypersurface singularity of finite

CM-type over an algebraically closed field K

of arbitrary characteristic.

CM(R) is a Frobenius category of finite type.

Let M1,M2, . . . ,Mn be a complete set of

pairwise nonisomorphic indecomposable

nonprojective objects in CM(R)

M = M1 ⊕M2 ⊕ · · · ⊕Mn

Consider the endomorphism algebra

A(R) = EndCM(R)(M)

of M = M in the stable category CM(R),

and call the stable Auslander algebra of R.

For a Dynkin graph ∆, denote

P (∆) = A(K[[x, y, z]])/(f∆))

P (∆)∗ = A(K[[x, y]])/(g∆))
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Theorem. Let ∆ be a Dynkin graph. The

following statements hold:

(1) P (∆) is a basic finite dimensional selfin-

jective K-algebra. Moreover, the Nakayama

permutation ν of P (∆) is the identity for

∆ = A1, Dn (n even), E7, E8, and of or-

der 2 for ∆ = An (n ≥ 2), Dn (n odd),

E6.

(2) P (∆)∗ is a basic finite dimensional, sym-

metric K-algebra.

From the above remarks, the stable Auslan-

der algebra A of any hypersurface singularity

R of finite CM-type of even dimension (re-

spectively, odd dimension) is isomorphic to

P (∆) (respectively, P (∆)∗), for some Dynkin

graph ∆.
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P (∆) is the preprojective algebra of Dyn-

kin type ∆ (introduced by Gelfand

and Ponomarev)

P (∆)∗ the twisted preprojective algebra of

Dynkin type ∆

For K of characteristic 6= 2,

P (∆)∗ ∼= P (∆)[Z2] (skew group algebra)

P (∆) ∼= P (∆)∗[Z2] (skew group algebra)

for the corresponding actions of Z2 on the

algebras P (∆) and P (∆)∗.

We also note that, with few exceptions, the

algebras P (∆) and P (∆)∗ are of wild

representation type.
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K algebraically closed field.

Let B be a K-category of one of the two

types:

• CM(R) for an isolated hypersurface sin-

gularity R over K.

• modΛ for a finite dimensional selfinjec-

tive K-algebra Λ.

Then B is a Frobenius category with Auslander-

Reiten sequences. Denote C = modB =

(Bop,Ab) the category of finitely presented

contravariant functors from the stable cat-

egory B of B to the category Ab of abelian

groups.

Theorem (Auslander-Reiten). The follow-

ing statements hold:

(1) C is a Frobenius abelian K-category whose

projective objects are the representable

functors HomB(−, B), B objects of B.

(2) C admits Auslander-Reiten sequences.
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Denote by NB, τB, ΩB (respectively, NC , τC ,

ΩC ) the Nakayama, Auslander-Reiten and syzygy

functors on B (respectively, on C ).

Theorem (Auslander-Reiten, 1996). In the

above notation, the following statements hold:

(1) NC (HomB(−, B)) = HomB(−,Ω−1
B τB(B))

for any object B of B.

(2) The functors τC ,Ω
2
C
NC ,NCΩ2

C
: C → C

are equivalent.

(3) If the functor Ω−1
B τB : B → B has order s

and the functor Ω2
B : B → B has order t,

and r = lcm(s,3t), then τr
C

∼
−→ idC .
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Theorem (Auslander-Reiten, 1996). Let

C = modCM(R) for an isolated hypersurface

singularity R over K. The following state-

ments hold:

(1) If R has even dimension, then each inde-

composable object of C is τC -periodic of

period dividing 6.

(2) If R has odd dimension, then each inde-

composable object of C is τC -periodic of

period dividing 3.

Proof. We have Ω2
R

∼
−→ idCM(R).

(1) If dimR is even then τR
∼

−→ idCM(R).

Hence Ω−1
R τR = Ω−1

R has order 2, and

so r = lcm(2,3 · 1) = 6.

(2) If dimR is odd then τR
∼

−→ ΩR. Hence

Ω−1
R τR = idCM(R), and so r = lcm(1,3 ·

1) = 3.
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Assume R is a hypersurface singularity over

K of finite CM-type.

Then CM(R) has only a finite number of in-

decomposable objects, and hence we have an

equivalence

modCM(R)
∼

−→ modA(R)

which commutes with the Auslander-Reiten

translations τR on modCM(R) and τA(R) =

DTr on A(R). Recall that τA(R) = Ω2
A(R)

NA(R).

We also note that P (∆) (respectively, P (∆)∗)

is semisimple if and only if ∆ = A1.

Therefore we obtain
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Theorem (Auslander-Reiten, 1996). Let

∆ be a Dynkin graph 6= A1. The following

statements hold:

(1) τ6
P (∆)

∼= 1modP (∆), Ω3
P (∆)

∼= N−1
P (∆)

and

Ω6
P (∆)

∼= 1modP (∆) as functors on modP (∆).

(2) τ3
P (∆)∗

∼= 1modP (∆)∗ and Ω6
P (∆)∗

∼= 1modP (∆)∗

as functors on modP (∆)∗.

In fact, we have the following

Theorem (Schoefield (1990), Erdmann-

Snashall (1998)). Let ∆ be a Dynkin graph

6= A1. Then Ω6
P (∆)e

P (∆) ∼= P (∆) in modP (∆)e.

Theorem (Bia lkowski-Erdmann-Skowroński

(2005)). Let ∆ be a Dynkin graph 6= A1.

Then Ω6
(P (∆)∗)e

P (∆)∗ ∼= P (∆)∗ in mod(P (∆)∗)e.

Corollary. Let ∆ be a Dynkin graph 6= A1.

Then modP (∆) and modP (∆)∗ are Calabi-

Yau triangulated categories (of Calabi-Yau

dimensions 0, 2, or 5).
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Generalized Dynkin graphs

An
n ≥ 1

• • • ... • •

Bn
n ≥ 2

•
(1,2)

• • ... • •

Cn
n ≥ 3

•
(2,1)

• • ... • •

Dn
n ≥ 4

•
MMMMMMMM

• • ... • •

•

qqqqqqqq

E6
•

• • • • •
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E7
•

• • • • • •

E8
•

• • • • • • •

F4 • •
(1,2)

• •

G2 •
(1,3)

•

Ln
n ≥ 1

•@ABGFE • • ... • •
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Mesh algebras of generalized Dynkin
type

(1) The mesh (preprojective) algebras P (∆)

of types

∆ ∈ {An,Dn,E6,E7,E8,Ln},

where P (Ln) = P (A2n)
∗ for n ≥ 1.

(2) The mesh (twisted) algebras Λ(∆) of types

∆ ∈ {Bn,Cn,Dn,E6,E7,E8,F4,G2},

such that

Λ(B2) = P (A3)
∗,

Λ(B2m) = P (D2m+1)
∗ for m ≥ 2,

Λ(Cn) = P (A2n−1)
∗ for n ≥ 3,

Λ(D2m) = P (D2m)∗ for m ≥ 2,

Λ(E7) = P (E7)
∗, Λ(E8) = P (E8)

∗,

Λ(F4) = P (E6)
∗,

Λ(G2) is given by the quiver and relations

•

α
��

•

β∗yysssssssss

γ∗
OO

α∗
%%KKKKKKKKK

•

γ 99sssssssss

•β

eeKKKKKKKKK

α∗β + β∗γ + γ∗α = 0

αα∗ = 0, ββ∗ = 0, γγ∗ = 0.
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More generally, one defines the deformed

mesh algebras of generalized Dynkin type

P f(∆), ∆ ∈ {An,Dn,E6,E7,E8,Ln}

Λf(∆), ∆ ∈ {Bn,Cn,Dn,E6,E7,E8,F4,G2}

(f elements of products of at most two copies

of certain finite dimensional local selfinjective

algebras)

which are basic, indecomposable, finite

dimensional selfinjective algebras with

dimK P
f(∆) = dimK P (∆)

and

dimK Λf(∆) = dimK Λ(∆).

Theorem (Bia lkowski-Erdmann-Skowroński,

2005). Let A be a deformed mesh algebra of

a generalized Dynkin type. Then there is a

positive integer m = mA such that Ω6m
Ae (A) ∼=

A in modAe.
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Theorem (Bia lkowski-Erdmann-Skowroński,

2005). Let A be a basic, indecomposable,

finite dimensional selfinjective but not Nakayama

algebra over an algebraically closed field K.

The following statements are equivalent:

(1) Ω3
A(S) is simple for any simple right A-

module S.

(2) A is isomorphic to a deformed mesh al-

gebra P f(∆) or Λf(∆) of a generalized

Dynkin type ∆ 6= A1,A2,L1.

Theorem (Bia lkowski-Erdmann-Skowroński,

2004). Let A be a basic, indecomposable,

finite dimensional selfinjective algebra over

an algebraically closed field K. The following

statements are equivalent:

(1) Ω3
A(S) ∼= NA(S) for any nonprojective

simple right A-module S.

(2) Ω3
A(S) ∼= N−1

A (S) for any nonprojective

simple right A-module S.

(3) A is isomorphic to a deformed prepro-

jective algebra P f(∆) of a generalized

Dynkin type ∆.
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Theorem (Bia lkowski-Erdmann-Skowroński,

2005). Let A be a basic, indecomposable,

finite dimensional selfinjective algebra over

an algebraically closed field K. The following

statements are equivalent:

(1) Ω3
A(S) ∼= S for any simple right A-module S.

(2) A is isomorphic to a deformed preprojec-

tive algebra P f(∆) of type

∆ ∈ {Dn(n even),E7,E8,Ln}.

Let Λ be a finite dimensional selfinjective al-

gebra of finite representation type over an

algebraically closed field K.

Let M1,M2, . . . ,Mn be a complete set of pair-

wise nonisomorphic indecomposable nonpro-

jective Λ-modules

M = M1 ⊕M2 ⊕ · · · ⊕Mn

A(Λ) = EndΛ(M) stable Auslander algebra

of Λ.

Observe that the functors τΛ, ΩΛ, NΛ =

Ω−2
Λ τΛ have finite orders on modΛ.

Applying the Auslander-Reiten theorem to

C = modmodΛ = modA(Λ) we obtain
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Theorem. Let Λ be a finite dimensional self-

injective K-algebra of finite representation

type and A the stable Auslander algebra of

Λ. Moreover, let s be the order of Ω−1
Λ τΛ

on modΛ, t the order of Ω2
Λ on modΛ and

r = lcm(s,3t). Then

(1) A is a finite dimensional Frobenius K-

algebra with the Nakayama automorphism

νA of order s.

(2) τrA
∼

−→ idmodA and Ω2r
A

∼
−→ idmodA as

functors on modA.

We note that, if Λ is symmetric, then Ω−1
Λ τΛ =

ΩΛ and r = lcm(s,3t) = 3s.

Therefore there are many finite dimensional

Frobenius algebras A for which all indecom-

posable nonprojective modules are τA-periodic

and ΩA-periodic.
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