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I. Selfinjective algebras

K algebraically closed field
A finite dimensional K-algebra

mod A category of finite dimensional right
A-modules

ACP opposite algebra of A, ax*xb=ba

mod A°P = A-mod category of finite dimen-
sional left A-modules

D = Homg(—, K)

mod A mod A®CP  duality

D

D-D gmodAr D-D= 1modAOp

ng may(i)

1A—Z Z €ij

1=1 5=
€ pairwise orthogonal primitive idempotents

esz = eij’A for all j,j/ e {1,... ,mA(z')}
€Z]A 7 ei/jA for ¢ £~ i



We will abbreviate e; = ¢e;1 for i€ {1,...,n4}

P,=eA, 1 < i < nyu, complete set of
pairwise nonisomorphic indecomposable
projective right A-modules

I, = D(Ae;1), 1 < i < ny, complete set of
pairwise nonisomorphic indecomposable
injective right A-modules

Ais basic if my(i) =1 forallie{l,...,n4}

In general, consider the basic idempotent of A

A nA
e= ) e1= ) ¢
i=1 i=1

AP = eAe basic algebra of A

mod A (H)e mod AP equivalence of categories
_®AbA

A is Morita equivalent to AP



proj A category of projective modules in mod A
proj A = add{ Py, Pp,..., Py}
inj A category of injective modules in mod A

injA = add{]l,IQ, .. .,In}

proj A inj A°P

D

inj A proj A°P

D

Proposition. The following are equivalent for
an algebra A:

(1) A4 is injective.
(2) projA =injA.

(3) proj A°P = inj A°P,
(4) 4A is injective.

A is selfinjective if A4 and 4A are injective.



A selfinjective = ej14,e01A,...,e,1A COM-
plete set of pairwise nonisomorphic in-
decomposable injective right A-modules

Hence, there exists a permutation v of {1,...,n4},
called the Nakayama permutation such that

tope;1 A =soce, ;1A for all t € {1,...,n4}

Theorem (Nakayama, 1941). An algebra
A is selfinjective if and only if there exists
a permutation v of {1,...,n4} such that
tope;1A = soce, ;)1 A forallie{1,...,na}.

D(A) = Homk (A, K) is an A-A-bimodule
(af)(b) = f(ba),  (fa)(b) = f(ab)
fora,be A, f e D(A).

D(A) 4 injective cogenerator in mod A

4D (A) injective cogenerator in mod A°P



Theorem (Brauer, Nesbitt, Nakayama,
1937—1939). The following statements are
equivalent for an algebra A:

(1) There exists a nondegenerate K-bilinear
form (—,—) : A x A — K such that
(a,bc) = (ab,c) for all a,b,c € A.

(2) There exists a K-linear form ¢ : A — K
such that ker ¢ does not contain nonzero
right ideal of A.

(3) There exists an isomorphism
0: Ay — D(A)y oOf right A-modules.

(4) There exists a K-linear form ¢’ : A — K
such that ker ¢/ does not contain nonzero
left ideal of A.

(5) There exists an isomorphism
o' : 4A — 4D(A) of left A-modules.



Proof. (1) = (2) Let (—,—) : Ax A — K be
a nondegenerate associative K-bilinear form.
Define K-linear map ¢ : A — K by

o(a) = (a,1) = (1,a) for a € A.
Let I be a right ideal of A such that (1) = 0.
Takea e I. Then (a,A) = (aA,1) = p(al) =
O implies (a,—) = 0, and so a = 0. Hence
I = 0.

(2) = (1),(3) Let ¢ : A — K be a K-linear
map such that ¢(I) %= 0 for any nonzero
right ideal I of A. Define K-bilinear form
(—,—): Ax A— K by

(a,b) = p(ab) for all a,b € A.
Observe that

(a,bc) = p(albe)) = ¢((ab)c) = (ab, c),

for a,b,c € A. Let a € A. If (a,—) = 0 then
o(aA) = (a,A) = 0 implies a = 0. Assume
(—,a) = 0. Then (a,—) = 0, and hence a = 0.



Indeed, consider a K-linear basis aq,...,am Of
A. Then a =370 1 Na; for some Aq,...,Am €
K, and, for any j € {1,...,m}, we have
0 = (aj,a) = X4 Ni(aj,a;), or equivalently

[(aj, CLZ)} : = 0.

Taking the transpose, we get

A1 ] [(asa9)| =0,

or equivalently 0 = > ; A\i(a;,a5) = (a,a;)
for any j € {1,...,m}. Hence (a,—) = O,
as required. Therefore (—,—) is a nonde-
generate associative K-bilinear form, and (1)
holds.

For (3), define the K-linear map
0 =0,:A— D(A) =Homg(A,K)

such that 6(a)(b) = ¢(ab), for a,b € A. Then
0 is a homomorphism of right A-modules: for
a,b,c € A, we have 0(ab)(c) = ¢((ab)ec) =
w(a(bc)) = 6(a)(bc) = (0(a)b)(c), and hence



O0(ab) = 6(a)b. Moreover, 0 is a monomor-
phism, because, for a € A, 0(a) = 0 implies
o(aA) = 0(a)(A) = 0, and hence aA = O,
and consequently a = 0, by the condition
(2). Since dimg A = dimg D(A), we con-
clude that 0 is an isomorphism of right A-
modules.

(3) = (2) Assume that 6 : A — D(A) is an

isomorphism of right A-modules. Define the

K-linear map ¢ = ¢y = 0(1) € D(A). Let

I be a right ideal of A such that ¢(I) = 0.

Then, for any a € A, we have aA C I, and

hence we obtain 0 = p(ad) = 0(1)(aA) =

(0(1)a)(A) = 6(a)(A) and hence a = 0, be-

cause 0 is and isomorphism of right A-modules.
Hence I = 0, and (2) holds.

In a similar way, we prove the equivalences
(1) < (4) < (5). L]



An algebra A statisfying one of the equiva-
lent conditions (1)—(5) is called a Frobenius
algebra.

T he class of Frobenius algebras coincides with
the class of algebras for which the left and
the right regular representations are equiva-
lent, introduced in 1903 by Frobenius.

A Frobenius = A selfinjective
(Ay = D(A)4 = Ay is injective)

A basic, selfinjective = A Frobenius

In particular, every selfinjective algebra A is
Morita equivalent to a Frobenius algebra, namely
its basic algebra AP.

In general, we have the following

Theorem (Nakayama 1939). Let A be a
selfinjective algebra. Then A is a Frobenius
algebra if and only if, for the Nakayama per-
mutation v = vy of A, we have my(i) =
ma(v(2)) forallie {1,...,n4}.



Example. A = KQ/I where @ is the quiver

(87

B
I = {(afB,Ba). Then A is a basic, connected
selfinjective algebra with rad2 A = 0. More-
over,

1 2

N=¢e1 AP e\

Take A = A(2,1) = Endp(e1\ @ e1 N\ P esN).
Then A is a 9-dimensional selfinjective non-
Frobenius algebra exhibited already by
Nakayama.

Hence, the class of Frobenius algebras is not
closed under Morita equivalences. The class
of selfinjective algebras is the smallest class
of algebras containing the Frobenius algebras
and closed under Morita equivalences.

10



An important class of Frobenius algebras is
formed by the symmetric algebras.

Theorem (Brauer, Nesbitt, Nakayama,
1937—-1941). The following statements are
equivalent for an algebra A:

(1) There exists a nondegenerate symmetric
K-bilinear form (—,—) : Ax A — K.

(2) There exists a K-linear form ¢ : A — K
such that ¢(ab) = p(ba) for all a,b € A,
and ker o does not contain nonzero one-
sided ideal of A.

(3) There exists an isomorphism 0 : 4Ay, —
AD(A) 4 of A-A-bimodules.

Proof. This follows from the proof of the
characterizations of Frobenius algebras. [ ]

An algebra A satisfying one of the equiva-
lent conditions (1)—(3) is called a symmetric
algebra.

11



Let A be a finite dimensional Frobenius K-
algebra and (—,—) : AxA — K a nondegener-
ate associative K-bilinear form. Then there
exists a unique K-algebra isomorphism

vp-A— A

such that (a,b) = (b,v4(a)) for all a,b € A,
called the Nakayama automorphism of A.

We will see later that v4 induces the Nakayama
permutation of A.

Moreover, vy = id 4 if A is symmetric.

Theorem (Nakayama, 1939). Let A be a
selfinjective algebra. Then soc(4A) = soc(Ay).
In particular, soc(A) := soc(4A) = soc(Ay)
is an ideal of A.

Two selfinjective algebras A and A are said
to be socle equivalent if the factor algebras
A/soc(A) and A/soc(A) are isomorphic.

12



Examples.

(1) Let A = K[X]/(X"™),n > 1, be a trun-
cated polynomial algebra. Then A is a com-
mutative local K-algebra with A = D(A) as
A-A-bimodules, and hence A is symmetric.
Therefore, every finite dimensional com-
mutative K-algebra is a symmetric alge-
bra.

(2) G finite group, A = KG group algebra

AZ{Z)\gg | )\QGK}

geG
(—,—):AxA—-K

(Z Xgg, D Nhh> = D Aghg

9geG he H geG

symmetric, associative, nondegenerate K-bilinear
form. Hence, A = KG is a symmetric alge-
bra.

13



(3) A arbitrary finite dimensional K-algebra

T(A) = Ax D(A) trivial extension of A by
the A-A-bimodule D(A)

T(A) = A® D(A) as K-vector space

(a, ), f') = (ad',af" + fa')
for a,a’ € a, f,f' € D(A)

T(A) is a symmetric algebra,

(—, =) T(A) XxT(A) - K

((a, ), (d, f)) = f(a') + f'(a)

for a,a’ € A, f, f' € D(A), is a symmetric, as-
sociative, nondegenerate, K-bilinear form for
T(A).

Observe that D(A) =04 D(A) is a two-sided
ideal of T(A) and A=T(A)/D(A).

T he class of symmetric algebras is closed un-
der Morita equivalences (A is symmetric <
AP is symmetric)

14



(4) For A € K\ {0}, let Ay, = KQ/I,, where

Q: alleB
I = (a?,8%,a8 — \Ba). Then A, is a 4-
dimensional local Frobenius algebra. But
Ay Is symmetric <— \ = 1.
Indeed, let a = a+ 1, b = 8+ 1,. Then
1,a,b,ab = A\ba is a basis of A, over K.
Define ¢y, : Ay — K by

(1) = p(a) = (b)) =0, ¢(ab) =1
ker o does not contain nonzero right (left)
ideal of Ay

For A =1, ¢ = 1 has the property p(zy) =
o(yx) for all z,y € Aj.

For A%=1, A, is not symmetric. Assume

Vv A—- K, Y(zy)=y(yx) for all x,y € Aj,

ker ) does not contain nonzero one-sided ideal
of Ay. Then Kab = Kba is a nonzero ideal
and hence

0 % h(ba) = W(ab) = P(\ba) = Mp(ba) = A\ = 1.

15



Finite dimensional Hopf algebras

A K-vector space A is a K-algebra if and
only if there are K-linear maps
m.: AR A—A and n:K—A
multiplication unit

such that the following diagrams are commu-
tative

AR AR AP A g A

[m

m&1

Ko A" A AT A0y K
o) lm ~
A

Dually, a K-vector space C'is a K-coalgebra
if there are K-linear maps

A:C—-CQQgC and e¢:(C - K
comultiplication counit

16



such that the following diagrams are commu-
tative

C A C Rk C

.

C@KC'WC@KC'@KC

1A

Kol owy CL2ECc o) K
o IA o
A
A K-vector space H is a K-bialgebra if there

are K-linearmapsm : HQyH — H,n: K — H,
A:H— HQ®gHand ¢: H— K such that

(1) (H,m,n) is a K-algebra
(2) (H,A,e) is a K-coalgebra

(3) A, are homomorphisms of K-algebras

17



If H = (H,m,n,A,e) is a bialgebra over K
then we have the convolution map

x : Homg (H, H)xHomg(H, H) — Homg(H, H)

which assigns to f,g € Homg(H, H) the com-
position

frg: HA HeorH Y Hepw H-™ H

Then a bialgebra H = (H, m,n,A,e) over K
is a Hopf algebra if there exists a K-linear
map

s: H— H antipode

such that s xidg = ne = idgx*s. Then
Hom g (H, H) has a group structure with the
multiplication x, the unit ne, and the inverse
—1 given by =1 = fs, for f € Homy(H, H).

18



Examples. (1) The group algebra KG of a
finite group G is a Hopf algebra with the co-
multiplication A, the counit ¢ and the an-
tipode s given by

A(g) = g®g, e(g) =1, s(g) =g 1, forgeG.

(2) Let H = (H,m,n,A,e,s) be a finite di-
mensional Hopf algebra over K. Then the
dual space H* = Homg(H, K) is again a Hopf
algebra H* = (H*, A*,e*, m*, n*, s*) with

A*H* @ HY =5 (H 9 H)* 25 H,
e T K=K — H",

m* H* 25 (H@p H)* =5 H* @ H”,
n*:H — K=K,
s*: H* — H*.

For an antipode s of a Hopf algebra H,

we have s(xzy) = s(y)s(x) for z,y € H and
s(1) = 1.

19



Theorem (Radford, 1976). An antipode s
of a finite dimensional Hopf algebra H has a
finite order. Then s is an antiisomorphism of
the algebra H.

Let H = (H,m,n,A,s,s) be a Hopf algebra
over K. Then the set

.
/Hz{a;eH(a:hza(h)azforauhEH}

is called the space of right integrals of H

Theorem (Larson-Sweedler, 1969). Let H
be a finite dimensional Hopf algebra over K.
Then the following statements hold

(1) dimg [;; =1 and dimg [77+ = 1.
(2) For ¢ € [;;+\{0}, the K-bilinear form
(—,—):HxH—K

such that (a,b) = @(ab) for a,b € H, is
nondegenerate and associative.

In particular, H is a Frobenius algebra.

20



Let H be a finite dimensional Hopf algebra
over K. Then there exists a homomorphism
of K-algebras

¢ . H— K modular function on H

such that hz = {(h)x for all h € H,x € [77.

Consider the convolution map

cxidy  H 2 Heor HEOY Ko, H S H

Theorem (Fischman-Montgomery-Schnei-
der, 1997). Let H be a finite dimensional
Hopf algebra over K. Then the following
statements hold:

(1) vy = (€xidy) - s~2 is the Nakayama au-
tomorphism of the Frobenius algebra H,
that is, (a,b) = (b,vg(a)) for all a,b € H.

(2) vy has finite order dividing 2dimy H.

21



Example. Let H = K@ be the group algebra
of a finite group G. Then [ = Kt, where

t=24ecGY

f=e¢:H—> K, s2=idy

Exidy =exidyg = idy

vip = (Exidy)s™ 2 =idy

This is correct because KG is a symmetric
algebra.

Example. Let n > 2 and X\ be a primitive
n-th root of unity (hence char K f n). Let
H=H_>(\) = K(g,z)/(¢g" —1,2", 29 — A\gx)

Then H >()) is an n?-dimensional Hopf al-
gebra, with K-basis {g'z? | 0 < i,57 < n—1},
and the comultiplication A, counit € and an-
tipode s given by

A(g) =9g®g, A(z) =gQz+z®1

e(g) =1, e(x)=0

s() =971, s(@)=-g '

H _>()) is called the Taft algebra.

22



The Taft algebra is neither commutative nor
cocommutative (For n = 2, Hs()\) is the 4-
dimensional Sweedler’s algebra)

Since s2(z) = Az, s2(g) = g, s has order 2n.
Further, [;; = Kt, where

n—1
— ( Z )\—mgm)wn—l
m=0
The modular function ¢ : H — K is given by
£(g) =2, &=)=0

Then the convolution éxidg : H — H is given
by Aidgz and hence the Nakayama automor-
phism vy = (€ *idg)s™2 is given by

vi(g) =Ag~ ', vp(a) ==

Hence vy has order n.

23



As an algebra H = H >()\) is isomorphic
to the skew group algebra A[G] where
A = Klz]/(z"™), G = (g) of order n, and
G acts on A by ¢(Z) = \1Z, # = residue
class of z, and ¢gzg = ¢(Z)gg = N\ 1Zgg im-
plies xg = A\gzx.

Moreover, H = H_>()\) is isomorphic to the
bound quiver algebra KQn/In, where Q is
the cyclic quiver of the form

1
Qn 1
n/ \2
Q‘n—/4 YQ
n—1
O‘n—Q‘ a3
n—2 4

and I is generated by the paths o471 ... 41,
1 <i<n. Hence, as an algebra, H >(}) is a
selfinjective Nakayama algebra.

24



Selfinjective orbit algebras

A connected K-category R is locally bounded
if:

e distinct objects of R are nonisomorphic

e VYV R(x,x)is alocal algebra
rcobR

o V Y (dimg R(z,y)+dimg R(y,x)) < oo
ZCEObRyEobR

= R = KQ/I, Q locally finite connected quiver,
I admissible ideal of the path category K@

mod R  category of finitely generated
contravariant functors R — mod K

Mmod R = repgi(Q, 1)

R bounded (has finitely many objects) =
GR= & R(x,y) finite dimensional basic
TyCoblt connected K-algebra

We will identify a bounded K-category
R with the associated finite dimensional
algebra ©R

25



R locally bounded K-category
G group of K-linear automorphisms of R

G is admissible if G acts freely on the objects
of R and has finitely many orbits

R/G orbit (bounded) category
objects: G-orbits of objects of R
(R/G)(a,b) =

(z,y)€Eaxb
F : R — R/G canonical Galois covering

ob(R)dx+— Fr=G-x € ob(R/G)

\/ \/ F' induces isomorphisms
x€0bR acob(R/G)
P R(z,y) — (R/G)(Fz,a),
Fy=a

@ R(y,z) — (R/GQ)(a, Fx)
Fy=a

26



The group G acts also on mod R

ModR> M — gM = Mg~ ! € modR

We have also the push-down functor
(Bongartz-Gabriel)

Fy :mod R — mod R/G

M € mod R,a € ob(R/G) = (F\M)(a) = @ M(x)

TEa

Assume G is torsion-free. Then F) induces
an injection (Gabriel)

( G-orbits of ) ([ isoclasses of )

) iIsoclasses of Q indecomposable
indecomposable modules in

(modules in mod R | | mModR/G )

R is locally support-finite if for any z € obR

U supp(M) is a bounded category
Meind R
M (x)#0

Dowbor-Skowronski

R locally support-finite
IS dense

Fy

Then Mg, = Mg/G (Gabriel)

27



R selfinjective locally bounded K-category

G admissible group of automorphisms of R
= R/G basic connected finite dimensional
selfinjective K-algebra

B basic, connected, finite dimensional K-algebra

lp=e1+--+en
e1,...,en Orthogonal primitive
idempotents of B

B repetitive category of B
(selfinjective locally bounded K-category)

objects: ey ;,me€ Z,1 <i<mn

~ e;Be; ,r=m
B(em iser) = D(e;Bej) ,r=m+1
0 , otherwise
ejBei = HomB(eiB, €jB), D(eiBej) = ejD(B)ei
&, B(—,erj)(em,;) = e;B&D(Be;)

(m,i)eZx{1,....,n}

28



T herefore, for any admissible group G of au-
tomorphisms of B, we obtain a basic, con-
nAected, finite dimensional selfinjective K-algebra
B/G.

In particular, consider the Nakayama auto-

morphism v of B such that

vi(em,i) = emt1,; for all m,i € Zx {1,...,n}.

Then, for each positive integer r, the infinite
cyclic group (V%) is an admissible group of

automorphisms of l§, and we have the selfin-
jective algebra

T(B)(") = B/(WE)

by O O
fo by O 0
0 f3 b3
O Jr—1 br—1 O
i 0 Ji b1
\bl,...,br,a_lEB,fl,...,fr_léD(B) )

r-fold trivial extension algebra of B

The Nakayama automorphism of T(B)(T) has
order r.

Observe that T(B)(1) 2 T(B) = B x D(B).

29



o] 8% ap—1

A 1253 —..-—>n—1—n
B=KA
I, generated by all compositions (2. n)
of n 4+ 1 consecutive arrows in Q2
A (1,1)
R B — B Nakayama automor- (1.2)
phism, v5(r,2) = (r + 1,1) o
(r i) € Z x {1,...,n}
p:B— B, son_l/g (1,n—1)
Ny, = B/(gom) = KCm/JImmn Grn
S (1,7’L)
mi}l A1 p
aVr k Z . (07 1)
m—1 2 ( Oéo,)l
0,2
AN / (0,n — 1)
Jm.n denerated by all composi- (O,,,;’)"_l
tions of n 4+ 1 consecutive Qo
(_17 1)

arrows in Cpy,

a_11

N]! Nakayama algebra, NJ] =T(B) (-1,2)

NJl symmetric <— m | n <

@™ is a root of Vg

30
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A finite dimensional selfinjective K-algebra A
IS said to be a Nakayama algebra if the inde-
composable projective A-modules are unise-
rial (the sets of submodules are linearly or-
dered by inclusion)

Theorem. Let A be an indecomposable fi-
nite dimensional selfinjective K-algebra. The
following statements are equivalent:

(1) A is a Nakayama algebra.

(2) The indecomposable finite dimensional
A-modules are uniserial.

(3) A is Morita equivalent to N for some
m,n > 1.

Assume B is triangular (Qp has no oriented
cycles)

Then B is triangular

B is the full bounded subcategory of B given
by the objects
en,i»1 <1< n

31



Let ¢ be a sink of Qp
B — Sj'B reflection of B at 1

S:FB the full subcategory of B given by the
objects
€0,y 1 <j<n,j7#F1i andey; =vgz(eg;).

ai‘"QB = QS+B reflection of Qp at ¢

Observe that B = S"'B and hence
T(B)") 2 T(5+tB)™ for any r > 1.

Reflection sequence of sinks of Qp: a se-

quence 11,...,1+ Of vertices of Qp such that
is is a sink of oi ... o7t Qp for 1 <s<t.

Two triangular algebras B and C' are said to
be reflection equivalent if C & S ... sFB
for a reflection sequence of sinks %1,...,% oOf

QB-

B, C reflection equivalent triangular algebras
= B2C, T(B)") 2 T(C)" for all r > 1

32



II. Periodicity of modules
and algebras

Let A be a finite dimensional selfinjective K-

algebra. Then A°P is also selfinjective and

we have the duality between mod A and A°P
HOmA(—,AA)

dA op
Mo Hom xop (—4A) mod A

Then we have the selfequivalence functor
Ny = DHomy(—, 4A) :modA — mod A
called the Nakayama functor. Moreover,
Ngl = Hom 4op(—, 4A)D
is the inverse of N 4.
Proposition. The functors
Ny, — @4 D(A) :mod A — mod A

are equivalent.

33



Proof. For any module M in mod A, we have
a natural isomorphism of right A-modules

op M @4 D(A) — DHomy (M, A) = Na(M)

such that ¢y (m®f)(g) = f(g(m)) form € M,
fe D(A) =Homg(A, K)and g € Hom4(M, A).
This induces an equivalence of functors
b — R4 D(A) — Ny.
L]

For a K-algebra automorphism o of A, we
denote by

(=)o :modA —modA

the induced functor such that, for any mod-
ule M in mod A, M, is the module with the
twisted right A-module structure

m*a = mo(a)

for me M and a € A.

34



Proposition. Let A be a Frobenius algebra
and v, its Nakayama automorphism. Then
the functors

Ny, (_)VZ ' mod A — mod A

are equivalent.

Proof. A required equivalence

Y :(=),- — Ny
A

IS given by the family of isomorphisms of right
A-modules

e MVE — N (M) = DHom 4(M, A),
M modules in mod A, such that

Yar(m)(g) = (g(m),1) = (1,9(m))

for m € M, g € Hom4(M,A), where (—,—)
IS the nondegenerate associative K-bilinear
form defining the Nakayama automorphism

v ]

35



Hence, if A is a Frobenius algebra, and

na ma(i)

la=2, >, ey

i=1 j=1
is the standard decomposition of 14 into the
sum of pairwise orthogonal primitive idem-
potents, then we have isomorphisms of right
A-modules

Na(ei;jA) = (67;3'14),/21 — vy(ei)A =va(eiA)

(eija) b= (ejja)v T (b) — va(e;ja)b
for a,b € A. Moreover, Ny(e;;A) = D(Ae;;).
Hence we obtain that
top(e;;A) = socvy(e;;)A.

In particular, the Nakayama automorphism
v, induces a Nakayama permutation v = vy

of {1,...,nA}.

For a symmetric algebra A, we have vg = idy
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In particular, for a symmetric algebra A, we
have

top P = socP

for any indecomposable projective A-module
P, that is, A is a weakly symmetric alge-
bra (the trivial permutation of {1,...,n4} is
a Nakayama permutation of A).

Let A be a finite dimensional selfinjective K-
algebra

modA the stable category of A
modA = mod A/ proj A
The Nakayama functors

NA,NA_l :mod A — mod A

induce the Nakayama functors

NA,Ngl : modA — modA

because N4 (projA) = inj A = proj A.
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We have also the Auslander-Reiten
functors

TA=DTr,7, = TrD:modA — modA.

Consider also the (Heller's) syzygy
functors

Q4,21 : modA — modA

For a module M in mod A without projective
direct summands, we have exact sequences

0—QA(M) - Py(M) — M — 0O

0— M — I4(M) — Q1 (M) -0

where P4(M) is the projective cover of M
and I4(M) is the injective envelope of M in
mod A.

Proposition. Let A be a selfinjective alge-
bra.
(1) The functors

DTr, Q3N 4, N4Q% : modA — modA
are isomorphic.
(2) The functors
Tr D,QZQJ\/Zl,J\/ZlQZQ ' modA — modA
are isomorphic.
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Proof. For a module M in mod A without
projective direct summands, we have

0 — Q4(M) — Py(M) — Po(M) - M — 0

minimal projective presentation of M in mod A

0 — Homu(M, Ayx) — Homu(Po, Ayg) — Homu (P (M), Ax) — TrM — 0

0~ DTrM»DHomA(Pl Ap) > DHOI’T]A(PQ(M) Ap) > DHOFT]A(M Apx)=0
NA(Pl(M)) NA(PO(M)) NA(M)

minimal projective presentation of N4 (M)

Hence, Q4N (M) 2 DTrM = N Q5(M).
]

Corollary. Let A be a symmetric algebra. Then
(1) The functors D Tr,Q24 : modA — modA
are isomorphic.

(2) The functors Tr D, ;% : modA — modA
are isomorphic.



[ 4 Auslander-Reiten quiver of A

P indecomposable projective-injective A-module,
then we have in mod A an Auslander-Reiten
sequence of the form

O—radP —-radP/socP® P — P/socP — 0
For A selfinjective,

I‘f4 stable Auslander-Reiten quiver of A

(obtained from 4 by removing the
projective-injective vertices and the
arrows attached to them)

We may recover I 4 from % if we know the
positions of rad P (equivalently, P/socP),
P indecomposable projectives, in Ff4.

Two selfinjective algebras A and A are said
to be stably equivalent if the stable module
categories modA and modA are equivalent.
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Let A be a finite dimensional K-algebra

A module M in mod A is called 2 4-periodic
(shortly, periodic) if Q% (M) = M for some
n > 1.

PROBLEM. Determine the finite dimen-
sional K-algebras A whose all indecom-
posable nonprojective finite dimensional
right A-modules are periodic (say up to
Morita equivalence).

We will see later that all such algebras are
selfinjective.

Similarly, a module M in mod A is called D Tr-
periodic if (DTr)"(M) = M for somen > 1.

PROBLEM. Determine the finite dimen-
sional K-algebras A for which all inde-
composable nonprojective finite dimen-
sional right A-modules are D Tr-periodic.
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It is clear that such algebras are selfinjec-
tive, because the D Tr-orbit of an indecom-
posable injective A-module consists of one
module, which is an indecomposable projec-
tive A-module.

Let A be a selfinjective algebra. Then D Tr =
Q3N as functors on modA. Hence, the € 4-
periodicity in modA coincides with the D Tr-
periodicity in modA if the Nakayama functor
N4 on modA has finite order.

For example, it is the case for all finite di-
mensional Hopf algebras H, because they are
Frobenius algebras with the Nakayama au-

tomorphism vy of finite order, and Ny =
(=) -1 on modH.
YH

Obviously, it is also the case for all symmetric
algebras.
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Proposition. Let A be a finite dimensional
selfinjective K-algebra of finite representa-
tion type. Then all indecomposable nonpro-
Jective finite dimensional A-modules are 2 4-
periodic and D Tr-periodic.

Proof. Let M be an indecomposable non-
projective right A-module. If M is not $24-
periodic (respectively, D Tr-periodic) then

(M), n > 0 (respectively, (D Tr)*(M), n >
0) is an infinite family of pairwise nonisomor-
phic indecomposable modules in mod A, and
hence A is of infinite representation type, a
contradiction. ]

We will now discuss the <2 4-periodicity of
modules.
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Let A be a basic, indecomposable, finite di-
mensional selfinjective K-algebra.

Lemma. T he following statements for A are

equivalent:

(1) Q24(S) is simple for any simple A-module
S.

(2) A= N for some m > 1.

Proof. (1) = (2) For any simple A-module
S, we have an exact sequence

0 — Qu(S) — P(S) — S — 0.

Hence, Q4(S) = soc P4(S) = rad P4(S), and
consequently J(A)2 = 0 (J(A) Jacobson rad-
ical of A). Then A = N1 for some m > 1.

For (2) = (1) note that J(IN1)2 = 0. (]

Corollary. The following statements for A
are equivalent:
(1) Q4(S) = S for any simple A-module S.

(2) Qu(M) = M for any indecomposable non-
projective A-module M.

(3) A = N{(2 Kl[z]/(z?) & T(K) = K x
D(K)).
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Theorem. The following statements for A
are equivalent:

(1) Q32(S) is simple for any simple A-module
S.

(2) DTr(S) issimple for any simple A-module
S.

(3) A= N for some m,n > 1.
(characterization of the Nakayama algebras)

Proof. For (1) & (2), observe that for any
simple A-module S, N4(S) is simple (because
the Nakayama functor Ny = DHom4(—, A)
is exact) and D Tr(S) = Q3N4(S).

(1) = (3) Since A is basic and indecompos-
able, A= KQ/I for a connected quiver @Q and
an admissible ideal I of K. For a simple
A-module S, we have an exact sequence

0 — Q34(S) — Pa(rad P4(S)) — P4(S) — S — 0.

Q2(S) simple implies P4(rad P4(S)) indecom-
posable, and hence top(rad P4(S)) is simple.
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T herefore, every vertex of () is the starting
(respectively, ending) vertex of exactly one
arrow.

Then A= N} for some m,n > 1.

(3) = (1) follows from the above exact se-
quences and the bound quiver presentation
of N*. H

Corollary. The following statements for A
are equiva/ent'
(1) Q2 4(8) = S for any simple A-module S.

(2) Q2 4(M) = M for any indecomposable non-
prOJect/ve finite dimensional A-module M .

(3) A= N, n+ 1 divisible by m.

Corollary. The following statements for A

are equivalent:

(1) A is symmetric and Q2 4(8) = S for any
simple A-module S.

(2) DTr(S) =S for any simple A-module S.

(3) DTr(M) = M for any nonprojective in-
decomposable finite dimensional A-module
M.

(4) A= NP2 K(z]/(z"T1) for somen > 1.
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Proof. (1) & A= N with m |n, m|n+1
& A= N7, hence (1) & (4).

(4) = (3) = (2) known.
(2) = (4) follows because (2) implies
AZ NP L]

Example. Let H = H >()\), n > 2, be the
Taft (Hopf) algebra. Then H = N,,"g_l. Hence,
for any indecomposable nonprojective finite
dimensional H-module M, we have

Q2(M) = M and Q%(M) % M.
On the other hand, we have
(DTr)"(M) = M and (TrD)" (M) 2 M,
for 1 < r < n, because

DTr(M) = Q3N (M) = Ny (M) = M, 3,
and the Nakayama automorphism vy has or-

der n.
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Proposition. Let H be a finite dimensional
Hopf algebra over K. The following state-
ments are equivalent:

(1) The trivial H-module K is Qg-periodic.

(2) All indecomposable nonprojective finite
dimensional H-modules are 2g-periodic.

Proof. Let H = (H,m,n,A,e,s). Then the
counit € : H — K induces on K the structure
of trivial right H-module

Axh=Xe(h), for \€ K,h € H.

Clearly, K is an indecomposable H-module.
Moreover, K is projective if and only if H is
semisimple. Hence (2) = (1) holds.

For (1) = (2), we first observe that for any
projective module P in mod H and any mod-
ule M in modH, P g M is a projective-
injective module in mod H. The structure
of right module on P ®x M is given by

(P®KM)®HMP®KM®KH®KH%(P®KH)®K(M®KH>

ia@ﬂ
P®r M
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where 7 . M Q¢ H — H Qi M is the
exchanging map, and a | P® H — P,
B MQg H— M are the right H-module
structure maps.

Moreover, the following well-known isomor-
phism of functors on mod K

Homyg (PR M, —) — Homg (P,Hom g (M, —))
induces an isomorphism of functors on mod H
Hompyg (PR M, —) — Homg(P,Homyg (M, -)).

Hence the functor Homyg (PR M, —) : mod H —
mod H is exact, and consequently P®p M is
a projective right H-module. Since H is a
Frobenius algebra, P @y M is also injective.

Assume now that Q% (K) = K for some n >
1. Then there exists a long exact sequence
of the form in mod H

0—-QY(K)— P, 1—+—P;,—Pp—K—>0
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with Py, P1,..., P,_1 projective modules. Let
M be an indecomposable nonprojective mod-
ule in mod H. Then we obtain a long exact
sequence in mod H

O—>Qn(K)®KM—>Pn 1Qk M — - > P1QQx M — PoQx M —- K Qx M — 0

with Po Qg M, P1 Qg M, ..., Pp_1 Q¢ M pro-
jective H-modules.

We know that Q% (M) is an indecomposable
nonprojective H-module. Hence

HK) @ M =Qy(M)a P

for some projective H-module P. On the
other hand, we have

Hence Q%(M) M, and M is Qpg-periodic.
Therefore, (1) = (2). L]
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Proposition. Let A be a selfinjective alge-
bra, M a module in mod A, and r a positive
integer. Then

(1) The functors Ext” (M, —),Hom 4 (2 (M), —) :
modA — modA are equivalent.

(2) The functors Ext’y(—, M), Hom4(—, 2" (M)) :
modA — modA are equivalent.

A selfinjective, M module in mod A

Ext (M, M) = B Extr r (M, M)

r=0

= @ Hom 4 (€2 (M), M)

r=0

Ext-algebra of M (graded K-algebra)

£ € Hom 4(Q" (M), M), g € Hom 4(S25,(M), M)

frg=[foQ(g), QLT(M)— Qu(M)— M.
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Observe that, if M is €2 4-periodic of period
d, then

Ext’F4(M, N) £ Exty (M, N)
for all 2 > 1 and modules N in mod A. Indeed,
ExtiFd(M, N) =2 Hom 4 (Q5M(M), N)
= Hom 4 (94 (2%(M)), N)
Hom 4 (€2 (M), N)
Exty (M, N)

112

112

Theorem (Carlson, 1977). Let A be a fi-
nite dimensional selfinjective K-algebra and
M be an indecomposable 2 4-periodic A-module
of period d. Moreover, let N(M) be the ideal
of the algebra Ext% (M, M) generated by all
nilpotent homogeneous elements. Then

Ext*, (M, M)/N (M) = K|z

as graded K-algebras, where x is of degree d.
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Proof. We identify
Hom 4 (24 (M), M)

Ext?, (M, M)

Hom 4 (M, 2" (M))
for any 7 > 1.

Let f € Hom4(25 (M), M) be a homoge-
neous nilpotent element of Ext* (M, M) and

g € Hom (2} (M), M) an arbitrary homoge-
neous element of Ext* (M, M).

We claim that

fxg=f%(g) € Hom4 (7 1(M), M)
is again a nilpotent element of Ext¥ (M, M).

Choose r such that r(m + s) = qd for some
g > 1, and consider h = (f€2%5(g))" in
Ext%(M,M). Then

h € Hom 4(QU(M), M) = Hom 4 (M, M),

because Qi{ld(M) = M. Suppose h is an iso-
morphism. Then f : Q%(M) — M is a split
epimorphism, and hence an isomorphism, since
M and 2% (M) are indecomposable. But then
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f is not nilpotent in Ext% (M, M), a contra-

diction. Therefore, h belongs to the radical

of the local algebra End4(M), and hence h

is nilpotent. Then Q¥ (h) € End (M) are

nilpotent for all + > 0, and hence belong to

the radical of End 4(M). Since (rad End 4(M))!
= 0 for some I > 1, we get A = 0. But

then fxg = fQ%(g) is a nilpotent element in

Ext% (M, M). Similarly, using

Ext!y(M, M) = Hom 4 (M, Q,"(M)),i > 1,
we prove that gxf is nilpotent in Ext¥ (M, M).

Let s = pd for all p > 1. We show that any
element f € Hom 4(2% (M), M) is a nilpotent
element of Ext% (M, M).

Choose r > 1 such that rs = gd for some
g > 1, and take h = f" in Ext% (M, M). Since
d is period of M and s is not divisible by d, we
conclude that f is not an isomorphism. Then
h is not an isomorphism, hence h € End 4(M)
iSs nilpotent. Therefore, h is a nilpotent ele-
ment in Ext% (M, M), and so f is nilpotent in
Ext® (M, M).
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Let z € Hom(Q%(M),M) = Hom4(M, M)
corresponds to the residue class of the iden-
tity map from M to M. Observe that x is
not nilpotent in Ext% (M, M). We claim that
™ ¢ N'(M) for any n > 1. Suppose that z! €
N (M) for somet > 1. Then ot = g, f; *h;,
where f; are homogeneous nilpotent elements
of Ext%(M,M) and g;, h; are elements of
Ext% (M, M). We may assume that the el-
ements g;, h; are also homogeneous.

It follows from the first part of the proof that
g; * f; xh; = (g; * f;) = h; are nilpotent elements
in Ext%(M,M), and hence are nilpotent in
End 4 (M). But then > g; = f; * h; are nilpo-
tent in End(M), and hence in Ext% (M, M).
This implies that zf, and hence z, is nilpo-
tent in Ext% (M, M), a contradiction. Since
End 4(M)/radEndy (M) = K, we conclude
that Ext% (M, M)/N(M) = Klx] as graded
K-algebras, with = of degree d. | ]
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Let A be a finite dimensional K-algebra

lgy=e1+ex+---+em

e1,eo,...,em pairwise orthogonal primitive idem-
potents of A

A¢ = A°P @ A enveloping algebra of A

_ / ,
1 pge = Z e; ®e;
1<e,5<m
1 pge = Z e;; ® e;
1<z,j<m
6’1 = 61,6’2 = eo,...,e = em Primitive idem-

potents of A°P

mod A€ = category of finite dimensional
A-A-bimodules

A is a right A®-module by

a(x @y) =xzay forac A, x € A°P, yc A
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P(i/,j) — (62' 0 €j)A€ — eiAOp QK ejA
= Ae; Qp ejA

A= & P>, 75)
1<i,j<m

P(i,5) indecomposable projective right A¢-
modules (projective A-A-bimodules)

AP, 5) = (Ae;)9MK €4 projective left
A-module

P(i',j) 4 2 (ejA)MK A¢i projective right
A-module

Hence every projective right A®-module is a

projective left A-module and a projective right

A-module.

Lemma. Let A be a finite dimensional K-
algebra. For each i > 0, Q4.(A4) is a pro-
jective left A-module and a projective right
A-module.
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Proof. Consider a minimal projective resolu-
tion of A in mod A¢€

- — ,L-_|_1—>PZ-—>---—>P1—>PO—>A—>O

For each 7+ > 0, we have an exact sequence
in mod A¢€

0— Qiltl(A) — P, — Q4%.(A) — 0,

which is an exact sequence in mod A°P and in
mod A. Since the projective right A®~-modules
are projective left A-modules and projective
right A-modules, by induction on 2z, we con-
clude that these sequences split in mod A°P
and in mod A, and hence Qféle(A) are projec-
tive left A-modules and projective right A-
modules. ]

Lemma. Let A be a selfinjective algebra and
M be a module in mod A without projective
direct summands. Then, for each 1 > 0, we
have

L(M) =2 M ®4 Q4% (A) in modA.
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Proof. We may assume that M is indecom-
posable. The splitting exact sequences (as
in the above lemma)

0— Qiltl(A) — P, — Q4%e(A) — 0,
for ¢+ > 0, induce the exact sequences
0 — M@ H(A) = MR 4P, — M®424(A) — 0
in mod A, and
i > M®@APy1 > M®AP,— - > M®sPo— M®sA—0

is a projective resolution of M = M ®4 A in
mod A. Since, for each i > 0, Q4 (M) is an
indecomposable nonprojective A-module, we
conclude that

M ®4 4e(A) 2 QYU(M) ® P(i)

for some projective module P(i) in mod A.
Therefore,

i (M) 2 M ®4 Qe (A) in modA.
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Lemma (Green-Snashall-Solberg, 2003).
Let A be a finite dimensional K-algebra.
Assume there exists a positive integer d and
an automorphism o of A such that Q%.(A) =
1As in mod A€. Then A is selfinjective.

Proof. We have an isomorphism of A-A-bimodules
a:D(A)®41Ac — D(A)s

such that a(f ® a) = fa for f € D(A) and

Consider a minimal projective resolution

- — i—|—1_>Pz'_>"'_>P1_>PO_>A_>O

of A in mod A¢. Hence we obtain an exact
sequence

0 — D(A) ®4 Q% (A) — D(A) ®4 Py 1 — D(A) @4 Q% 1(A) — 0
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in mod A. Moreover, D(A) ® 4 P;_1 is a pro-
jective right A-module. On the other hand,
Q4.(A) 2 1As in mod A¢ implies that there
is @ monomorphism D(A)s — D(A) ®4 Py_1
in mod A. Further, the automorphism o in-
duces an isomorphism 1A__1 — ,A71 of A-
A-bimodules, and then the right A-modules
D(A)a = D(O'Al) and J_lD(A) = D(lAg—l)
are isomorphic. Therefore, the injective co-
generator D(A) in mod A is a direct summand
of the projective module D(A) ®4 P;_1, and
SO is projective. Clearly then A is selfinjec-
tive. [ ]
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A finite dimensional K-algebra A is called
periodic if A is a periodic module in mod A¥€,
that is, Q%.(A) = A in modA¢ for some
d> 1. It follows from the above lemma that
then A is selfinjective.

Corollary. Let A be a finite dimensional
periodic K-algebra. Then all indecomposable
nonprojective modules in mod A are periodic.

Proof. Assume Q%.(A) & A in mod A for some
d>1. Let M be an indecomposable nonpro-
jective module in mod A. Since A is selfinjec-
tive, invoking the corresponding lemma, we
have in modA isomorphisms

QUM) =M @4 Q% (M) =M@ A M.

Then Q4 (M) 2 M in mod A, because Q% (M)
and M are indecomposable nonprojective mod-
ules. L]

PROBLEM. Determine the finite
dimensional periodic algebras (up to
Morita equivalence).
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Lemma. Let A be a finite dimensional K-
algebra. Then A is selfinjective if and only if
A€ s selfinjective.

Proof. Since (A®)P & (AP)e and the class of
selfinjective algebras is closed under Morita
equivalences, we may assume that A is basic.
Then A€ is basic. Assume A is selfinjective.
Then A is a Frobenius algebra and we obtain
iIsomorphisms

A€ ACP R A= D(A°P) R D(A)
D(A°P ®4 A) = D(A®)
in mod A€, and hence AF€ is selfinjective.

112 112

Conversely, if A€ is selfinjective then
AP @ A= D(A®P) @ D(A)
in mod A€, and hence
AdimK(Aop) ) D(A)dimKD(AOp)

in mod A. Then A4 is injective, and hence A
is selfinjective. L]
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Theorem (Green-Snashall-Solberg, 2003).
Let A be a finite dimensional indecompos-
able K-algebra. The following statements
are equivalent:

(1) Allsimple right A-modules are Q2 4-periodic.

(2) There exists a natural number d and an
algebra automorphism o of A such that
Q4.(A) 2 145 in mod A¢, and o(e)A =
eA for any primitive idempotent e of A.

Proof. (1) = (2). Let d be a minimal natural
number such that Q%(S) £ S for any simple
right A-module S.

Let B = Q%.(A). We know that Q%.(A) is
a projective left A-module. Hence we have
the exact functor —® 4 B : mod A — mod A.
Moreover, for any simple right A-module S,
we have S®4 B = S®4Q4(A) 2 Q4(S) = S.
Then by induction on the length of a module,
we conclude that /(M ® 4 B) = ¢(M) for any
module M in mod A.
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We prove now that P® 4 B = P for any pro-
jective module Pin mod A. Let P be an inde-
composable projective right A-module. Then
the exact sequence

00— PJ(A) — P— P/PJ(A) — O,

where J(A) is the Jacobson radical of A,
induces the exact sequence

0— PJ(A)®4B — PRy4B — (P/PJ(A))®4B — 0.

The module P® 4 B is a projective right A-
module, as a direct summand of the projec-
tive right A-module A ®4 B = Q4.(A), and
(P ®4 B) = 4(P). Further, (P/PJ(A)) ®
B = P/PJ(A), and hence P/PJ(A) is a direct
summand of the top P4 B/(P®4B)J(A) of
P4 B. Then P is a direct summand of
P ®4 B, and consequently P®4 B = P, be-
cause /(P ®4 B) = ¢(P). Therefore, there
exists an isomorphism A®4 B — A of right
A-modules, and hence B as a right A-module
is isomorphic to Ay4.
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We claim now that B as a left A-module is
isomorphic to 4A. Let T be a simple left
A-module. Since B is isomorphic to A4 in
mod A, we have BT = AT = T as
K-vector spaces. Further, for any simple
right A-module S, we have S®4 By T =
S ®4T (from the first part of the proof)
and S®4 T # 0 if and only if S = D(T) =
Homg (T, K). Then (A/J(A)@4BRAT =T.
On the other hand, we have in mod A°P = A-
mod the commutative diagram with exact
rows

0+J(A) R4 (BRAT)>AR4(BRaT)—=(A/J(A)) @4 (B®4aT)—0

- - -

0—J(A)(B®aT) B®aT B®aT/J(A)(BRAT)—~0

and hence (B4 T)/J(A)(B®AT) = T in
mod A°P.
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Since dimyg B4 T = dimg T we obtain that
B®asaT = T as left A-modules. Therefore,
BT =T in A-mod for all simple left A-
modules T'. Applying now arguments from
the first part of the proof we conclude that
B as a left A-module is isomorphic to 4A.

Let v : A — B be an isomorphism of left A-
modules, and b = ¢(1). Then v (a) = ab for
a€ A, and Ab = B.

Define 0 : A — A by o(a) = ¢p~1(ba) for a €
A. Then, for a € A, we have

ba = (1 (ba)) = ¢(o(a)) = ¢(c(a)l)
o(a)i(1l) = o(a)b

Next we show that o is a homomorphism
of K-algebras. Obviously, o is K-linear and

o(l) =y~ 1) =1.
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Moreover, for a,a’ € A, we have

o(aa’)b = b(aa’) = (ba)a’ = (c(a)b)d’
= o(a)(ba’) = o(a)(o(a’)b)
= (a(a)a(a’))b.
Hence, we obtain
Y(o(aa’)) = ¢P(o(aa’)l) = o(aa")(1) = o(aa’)b
= (0(a)a(a'))b = (o(a)o(a’))(1)
= ¢(o(a)o(a))

and so o(aa’) = o(a)o(a’).

T herefore, o isa homomorphism of K-algebras.

We claim that ¢ is an automorphism. It is
enough to show that keroc = 0. Let a €
kero. Then 0 = o(a)b = ba and hence Ba =
(Ab)a = A(ba) = 0. Since B is isomorphic to
A as aright A-module, we obtain Aa = 0, and
hence a = 0. Therefore, indeed kero = 0.
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Finally, observe that the isomorphism
v . A — B of left A-modules is an isomor-
phism ¢ : 1A, — B of A-A-bimodules.
Indeed, for x,a € A, we have

Y(zo(a)) = (zo(a))b = z(c(a)b) = z(ba)
= (zb)a = ¢(z)a

Therefore, Q%.(A) £ 1A, in mod A°.

Let e be a primitive idempotent of A. Then
we have isomorphisms of right A-modules

o(e)A/o(e)J(A) — Q% (a(e)A/o(e)J(A))
— (0(e)A/o(e)J(A)) ®4 140
— (a(e)A/a(e)J(A))s
= eA/eJ(A).

Hence, o(e)A — eA in mod A.
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(2) = (1) Let Q4.(A) =2 1A, for some d >
1 and an automorphism o of A such that
o(e)A = eA for any primitive idempotent e of
A. We know that then A and A€ are selfinjec-
tive. Then for any simple right A-module S,
the right A-modules Q¢ %(S) and S@Q (A) =
S®4As = Sg are isomorphic. Every simple
right A-module S is isomorphic to a mod-
ule of the form eA/eJ(A) for some primi-
tive idempotent e of A. Since eA = og(e)A
in mod A, the automorphism o induces iso-
morphisms of right A-modules eA — (eA)y,
eJ(A) — (eJ(A))s, and hence S — S, in
mod A. Therefore, Q¢ %(S) = S for any sim-
ple right A-module S. [ ]

Corollary. Let A be a finite dimensional K -
algebra whose all simple right A-modules are
periodic. Then A is a selfinjective algebra.
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A finite dimensional K-algebra
HH*(A) = Ext%c(A, A) = P Extye(A, A)
i>0
Hochschild cohomology algebra (graded

commutative K-algebra with the Yoneda prod-
uct)

HHO9(A) = Z(A) the center of A
HH(A) = Derg (A, A)/ Der®.(4, A)

osrs(a. ) = {s e womia 0| R 1)

(derivations of A)

Der%.(A,A) = {59,; € Homg (A, A)

d.(a) = ax — a:a}

x,a € A
(inner derivations of A)

HHY(A) the space of outer derivations of A
HH™(A), n > 2, control deformations of A
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Two algebras A and B are said to be de-
rived equivalent if the derived categories
DP(mod A) and D°(mod B) are equivalent as
triangulated categories.

For selfinjective algebras we have

Morita N derived  Rickard stable
equivalence equivalence " equivalence

Theorem (Happel, Rickard, 1989). Let A
and B be two derived equivalent K-algebras.
Then HH*(A) = HH*(B) as graded K-algebras.
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Theorem (Green-Snashall-Solberg, 2003).
Let A be a finite dimensional indecomposable
K-algebra. Assume that Q7%.(A) = 1A, for
a positive integer n and an algebra automor-
phism o of A. Then

K, or

K|z]

where N'(A) is the ideal of HH*(A) generated
by all nilpotent homogeneous elements.

Moreover, HH*(A) = K, if Q.(A) 2 A for
all m > 1.

HH*(A)/N(A) & {

Proof. Since Q".(A) & 1A,, A is selfinjec-
tive. Then A€ is selfinjective, and we may
identify

HH'(A) = ExtYe(A4, A) = Hom 4e(24%:(A), A)

If Q.(A) = A for some m > 1, then by the
Carlson’s theorem we have HH*(A)/N(A) £
Klz], where x is of degree d = period of A in
mod A€. In particular, it is the case if ¢ has
finite order.
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Assume now that Q7.(A) 2 A in mod A® for
anym>1. Theno has infinite order. Let s >
1 and n € Hom($25.(A),A) = HH®(A). We
claim that n is nilpotent in HH*(A). Assume
first that s = np for some p > 1. Then, for
any ¢ > 1 we have Q"’”p(A) = 1A _p is an
indecomposable right A°~-module and

91(426 1)7’Lp( ) QZ?’Lp(A) N Qge—l)np(A)

IS not an isomorphism. Further, our assump-
tion Q1. (A) = 1A, implies that the A°-modules
mp(A) i > 1, have bounded length (dimen-
sion). Then, applying the Harada-Sai lemma,
we conclude that there exists a natural num-

ber t such that

nt = QP(n) ... QP ()R E(n) =0

in the algebra HH*(A). Hence, n is nilpotent.
Assume now that n fs. Then there are posi-
tive integers r and g such that rs = ng. Then
n" € HH™(A), and hence (by the above ar-
gument) QT’ IS nilpotent, and consequently n
IS nilpotent.
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We proved that every homogeneous element
of HH*(A) of positive degree is nilpotent.
Moreover, A is indecomposable, and then
HHO9(A) =2 Z(A) is a commutative local
algebra, J(Z(A)) is nilpotent, and
Z(A)/J(Z(A)) = K. Therefore, we conclude
that HH*(A)/N(A) = K. ]

Corollary. Let A be a finite dimensional inde-
composable selfinjective K-algebra of finite
representation type. Then

" ~ | K,or
HH*(A)/N(A) = { Kz]
Proof. Since all indecomposable nonprojec-
tive (hence simple) modules in mod A are
periodic, applying the two Green-Snashall-
Solberg theorems, we get the claim. | ]
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Corollary. Let A and B be two derived equiv-
alent indecomposable finite dimensional self-
injective K-algebras. Then A is periodic if
and only if B is periodic.

Proof. We have (Happel-Rickard theorem) that
HH*(A) and HH*(B) are isomorphic graded
K-algebras. Assume that A is periodic in
mod A€, say of period d. Then, by Carlson’s
theorem HH*(A)/N(A) = K|z], where x is of
degree d. Hence HH*(B)/N(B) = K|z]. Ap-
plying Green-Snashall-Solberg theorem, we
then infer that B is periodic in mod B¢ (in
fact, we have Q%.(B) £ B in mod B?). ]
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III. Periodicity of finite groups

G finite group
7, ring of integers
Z(G group algebra of G over Z

We may consider the group Z as the trivial
ZG-module (m x g = m for any m € Z and
g€ GqG)

For n > 0 and a ZG-module M, let
H"(G,M) = Exty(Z, M)

n-th cohomology group of G with coeffi-
cients in M

In particular, we may consider the cohomol-
ogy groups of the trivial ZG-module Z

H'(G,Z) = Exty,(Z,7), i > 0.
A group G is called (globally) periodic if
there exists a positive integer d such that
HY(G,7Z) & H'TY%G,7) for all i > 1.

The minimal such d = the (cohomological)
period of G
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Example. Let m > 2, and G = Z,,, the cyclic
group of order m, say generated by an ele-
ment g. Then we have the following periodic
free Z(G-resolution of the trivial ZG-module Z

Nre e Mreitre 7 — 0
where e(g) = 1 for g € G, g — 1 is the left

multiplication by g—1, and N is the left mul-
tiplication by N=14¢g+--- 4+ ¢m 1.

Applying Homy,(—,7Z) we obtain the peri-
odic complex whose -th cohomology is the
group Extl,(Z,Z) = H'(G,Z). Then one ob-
tains H9(G,Z) £ 7, H?(G,7Z) = Z/mZ and
H2-1(G,7Z) = 0 for + > 1. In particular,
G = Zm is a periodic group of period 2.

In fact, the following is true.

Theorem. Let G be a finite group. Then
(G is periodic of period 2 if and only if G is
cyclic.
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Moreover, we have also the following theo-
rem.

Theorem. Let G be a periodic finite group.
Then H2~1(G,Z) = 0 for any i > 1. Hence
the period of G is even.

Zassenhaus considered the following prob-
lem, motivated by some topological problems
(free group actions on spheres).

PROBLEM. Describe all finite groups G
whose all commutative subgroups are cyclic.

Zassenhaus solved this problem in the solv-
able case. This was completed by Suzuki to
the general case.

Theorem (Suzuki-Zassenhaus, 1954-1955).
A complete list of finite groups with all com-
mutative subgroups cyclic is given by the fol-
lowing table

Family Definition Conditions

I Z]a X Z/b (a,b) =1

17 Z/a Xﬁ(Z/bXQQi) (a,b)Z(ab,2)=1

117 Z)a X~ (Z/bx T;) (a,b) = (ab,6) =1

1V Zja %, (/b x OF) (a,b) = (ab,6) =1

% (Z/a x4 Z/b) x SL2(F,) | (a,b) = (ab,p(p? —1)) =1
VI Z]a x, (Z]b x TL2(F,) | (a,b) = (ab,p(p®> —1)) =1

These 6 families of groups are given as semidi-
rect products of certain finite groups.
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We will exhibit (now and later) only some
natural examples of such groups.

Examples. (1) For m > 1, consider the
dihedral group

Doy = {wy \ 2 =1=y" yz = :vym_l}

of order 2m.

Form = 2r, {1,z,y", xy” = y"x} is a noncyclic
commutative subgroup of Dgy,.

For m odd, all commutative subgroups of
D»>,,, are cyclic.

Hence, D>, is periodic if and only if m is odd.

(2) For m > 1 consider the generalized
quaternion 2-group

Qom+2 = {x,y ‘ 2" = 2 ryr = a:}

of order 2™T2 Then every commutative
subgroup of Q2m+2 is cyclic.
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(3) Let p be a prime and F, the field with p
elements, and

SLo(Fp) = {M € Moy 2(Fp) \ det M = 1}
(2 x 2 special linear group of F;). Then

ISLo(Fp)| =p(p—1)(p+ 1).

Moreover, all commutative subgroups of SL>(F)
are cyclic. We also note that for p odd the
groups SL>(F,) are not solvable.

For a prime number p, Zg = Zp X -+ X Lp IS

7

"~

2
called the elementary p-group of rank r.

For a finite group G and a prime p with p“G|,
denote by r,(G) the maximal rank of elemen-
tary p-subgroup of G.

The following characterizations of periodic
groups show that the Suzuki-Zassenhaus the-
orem provides a complete classification of all
periodic finite groups.
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Theorem (Artin-Tate, Cartan-Eilenberg,
1956). Let G be a finite group. The follow-
ing statements are equivalent:

(1) G is periodic.
(2) HY(G,Z) = 7/|G|Z for some d > 1.

(3) H'T4(G, M) = H(G, M) for some d > 1,
all + > 1 and an arbitrary finitely gener-
ated ZG-module M.

(4) H'TUNG, Zy) = HY(G,Zyp) for some d > 1,
all i > 1 and any prime p dividing |G|.

(5) mp(G) <1 for any prime p dividing |G]|.

(6) For any prime p dividing |G|, the p-Sylow
subgroups of G are cyclic or generalized
quaternion 2-groups.

(7) Every commutative subgroup of G is cyclic.

T herefore, the subgroups of periodic groups
are periodic.
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For a prime p, we have
dimyz H"(Zp x Zp,Zp) =n+ 1 for any n > 0,

hence Zy x Zp is not periodic (application of
the Kunneth formula).

p-periodic groups

Let p be a prime number

m localization
Lp) = {; €Qm,nezp Xn} of Z at p.

Let G be a finite group such that p ‘|G|.
For each + > 1, let
H'(G,Z) ) & H(G,Z) ®z L.

A group G is called p-periodic if there exists
a positive integer d such that

HZ(G,Z)(p) = Hi_l_d(G,Z)(p) for all : > 1.

The minimal such d = dp, = the (cohomo-
logical) p-period of G.
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Theorem. Let G be a finite group, p a prime
number, and p )|G|. The following state-
ments are equivalent:

(1)
(2)

(3)
(4)
(5)
(6)
(7)

(8)

(9)

G is p-periodic.
H' TG, Zy) & HY(G,Zyp) for some d > 1
and any > 1.

e N .
Exti d(Zp, M) Ext!, (Zp, M) for some
d>1, any i > 1, and arbitrary finite di-
mensional Z,G-module M .
Q%pG(Zp) = 7, for some d > 1.

Every p-Sylow subgroup of G is either
cyclic or generalized quaternion 2-group.

Every commutative p-subgroup of G is
cyclic.

For any algebraically closed field K of
characteristic p, Q% ,(K) 2 K for some
d> 1.

For any algebraically closed field K of
characteristic p, there exists d > 1 such
that Q4.~(M) = M for any indecom-
posable nonprojective finite dimensional

KG-module M.
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Observe that a finite group G is periodic if
and only if G is p-periodic for any prime p
dividing |G].

Example. Let p be an odd prime number,
qg=7p", n > 2, Fq the field with ¢ elements,
and G = SLy(F,). Then |G| = ¢(¢° — 1).
Moreover, we have

e the 2-Sylow subgroups of G are general-
ized quaternion 2-groups

e for any odd prime [ # p the [-Sylow sub-
groups of GG are cyclic

e the p-Sylow subgroups of G are not cyclic

Then G is not p-periodic, and hence is not
periodic. Moreover, G is l-periodic for any
prime such that [ ‘|G| and [ # p.

There is no chance for a classification of
all finite p-periodic groups, for any fixed
prime p.
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Let G be a finite group, p a prime number,
D ‘|G| Let

H®(G,Zp) = @ H?(G,Zp)
n>0

even cohomology algebra of G at p.

H®(G,7Zp) is a graded commutative ring.

Theorem (Evans-Venkov, 1959-1961).
H¢(G,Zyp) is a noetherian ring.

dim H® (G, Zp) = Krull dimension of H¢Y(G, Zp)
(length d of the maximal chain of distinct

graded prime ideals pg C p; C --- C py of

H (G, Zyp)).

Theorem (Quillen, 1971). Let G be a fi-
nite group and p a prime number dividing |G|.
Then

Hence the Krull dimensions of the rings
H(G,Zp), p ‘ |G|, p prime, measure the com-
plexity of the group G.
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Corollary. Let G be a finite group and p a
prime number dividing |G|. Then G is p-
periodic if and only if dim H®V(G,Zp) = 1.

Representation type of group
algebras

Let K be an algebraically closed field of char-
acteristic p. By the well-known Maschke’s
theorem the group algebra KG of a finite
group G is semisimple if and only if p )(|G|.

Theorem (Higman, 1954). Let G be a fi-
nite group and p ‘|G|. Then KG is of finite
representation type if and only if the p-Sylow
subgroups of G are cyclic.
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Theorem (Bondarenko-Drozd, 1975). Let
G be a finite group and p ‘|G|. Then KG
is tame of infinite representation type if and
only if p = 2 and the 2-Sylow subgroups of
G are of one of the following types: dihe-
dral, semidihedral, or generalized quaternion
groups.

Corollary. Let G be a finite group, p a prime
number, p ‘|G, and assume that |G| is p-
periodic. Then

(1) KG is of tame representation type.
(2) Ifp is odd, then KG is of finite represen-
tation type.

Theorem (Erdmann-Holm (1999), Erd-
man-Skowronski (2005)). Let G be a finite
group, p a prime, p MG, and A = KG. If G
is p-periodic then A is periodic in mod AF€.
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More generally,
CharK =p >0
G finite group, p‘|G|

KG:BOXle---XBr,«,
Bo, B1,...,Br indecomposable
algebras (blocks of KG)

Bg block containing the trivial module K
B a block of K¢

B — D = Dpg defect group of KG
D p-subgroup of GG
modB > X = X is a direct summand of
Y Qxp KG, for some Y €
mod KD
Dp, = p-Sylow subgroup of G

B of finite type <= Dp is cyclic

B tame of infinite type <«—
p = 2 and Dpg is dihedral,

semidihedral or generalized
quaternion
B is periodic in mod B¢ <«—
Dp is cyclic or generalized
quaternion 2-group
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Topological sources of periodic groups

Let G be a finite group.

We may consider G as a topological group
with the discrete topology.

G acts on a topological space X if there
IS a group homomorphism

G — Homeo(X) group of homeomorphisms of X

G acts freely on X if gx #= « for all x € X and
g € G\ {e}.

Assume X is a CW-complex (admits a cell
decomposition) and G is a finite group of
homeomorphisms of X.

We say that G acts freely on X if G acts
freely on a cell decomposition of X:

glo)C |J
THO

for all g € G\ {1} and all cells o of X.
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Example. For any m > 2, the cyclic group
G = (g) of order m acts freely on the one-
dimensional sphere S1

931926921
3 ® ()
y ‘% g1
o

X

o]

%’mle

o m—1

g 1
gm%x. — .%26
gm—31 g € gm—21

Spherical space form problem: Describe
the finite groups G acting freely on spheres
S™ and the orbit spacesS™ /G (spherical spaces).

Theorem (Smith, 1938-1939). Let G be
a finite group acting freely on a sphere S™.
Then every abelian subgroup of GG is cyclic.

Topological motivation for the Zassenhaus
problem.
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Theorem. Let G be a finite group acting

freely on a sphere S™. Then

(1) For m even, we have |G| < 2.

(2) Form odd, we have H"TY(G,7Z) 2 7/|G|Z.
In particular, GG is periodic with even pe-
riod dividing m + 1.

Proof. (1) An application of Lefschetz fix
point theorem.

(2) Application of cohomological methods
(spectral sequence of the fibration
S™ — S™/G — BG). o

Example. (1) Consider the (division) algebra
of quaternions

H=RaRi®Rj® Rk

ij = —ji =k, ki = —ik = j, jk = —kj = 1,
2 =j%=k%=—1.

S3={a—l—bz’—l—cj—l—dkEH‘a2+b2—|—c2+d2:1}

S3 3-dimensional sphere in R* = H.

There is a group epimorphism S3 — SO(3,R)
(group of rotations of R3) with the kernel
(+1}.
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It is known that every noncyclic finite sub-
group of S3 is conjugate in S3 (hence iso-
morphic) to one of the groups

e D3, n > 2, binary dihedral group

e 7* binary tetrahedral group

e O binary octahedral group

e 7™ binary icosahedral group

The groups D5, 7*, O*, I* admit a unique
normal subgroup Z, = {£1} of order 2 such
that

D3, /Zo = Doy, dihedral group

e 7*/7, =T tetrahedral group of rotations

of tetrahedron
o O*/7Z, = O octahedral group of rotations

of octahedron (equivalently,
cube)

e I* /7> = 1 icosahedral group of rotations
of icosahedron (equivalently,
dodecahedron)

Then |D3. | = 4n, |77 = 24, |OF| = 48,
I7*| = 120.
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The groups D5, 7%, O*, I* act freely on the
sphere 83, and hence are periodic groups of
period 4 (only cyclic groups may have period
2).

Q4n :DEn — <£E,y ’ ajn — y2,£Uy$ — y>7n 2 2
IS called a generalized quaternion group.

For n = 2™, we get the generalized quater-
nion 2-group Q,m+2 considered before.

We have the following embedding of groups
Qan, — S> CH=R*

- e7rz/n

y—7
Qg = {£1, 44, +5, £k}
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(2) Linear actions on spheres

Let V=R?" n>1,

(—,—) the Euclidean R-bilinear form
e1,€o,...,eo, the standard basis of R2"

Let G be a finite group of R-linear automor-
phisms of V

Assume G acts freely on V \ {0}: the eigen-
values of all g € G\ {1} are different from 1.

(—, =) G-invariant R-bilinear form induced
by (_7 _)
1
(z,9)g = — > (9(x),g9(y)) for z,y € V

S={zeV|(zx,xr)g =1}
S is an (2n — 1)-dimensional sphere

G acts freely on S. In fact,
(G acts freely on a cell decomposition of S.

Indeed, let C be the convex hull of the finite
set {+g(e;) | g € G,1 <i<2n} in R?",
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Then S is the border of C and admits the
induced cell decomposition.

Since G acts freely on V' \ {0}, G acts freely
on this cell decomposition of S.

In particular, G is periodic of (even) period
dividing 2n.
(one can construct such groups of period 2n)

Does every periodic group act freely on
a sphere?

No.

Theorem (Milnor, 1957). Let G be a finite
group acting freely on a sphere S™. Then G
admits at most one element of order 2, and
such an element is central.

For example, for m odd, the dihedral group
D>, is periodic, but does not act freely on a
sphere.

In particular, this is the case for the symmet-
ric group Sz = Dy.3 = Dg.
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The following theorem proved by Swan shows
that the periodic groups are finite groups act-
ing freely on CW-complexes homotopically
equivalent to spheres.

Theorem (Swan, 1960). Let G be a finite
group. The following statements are equiva-
lent:

(1) G is periodic.

(2) There exists an odd natural number m,
an m-dimensional CW-complex X (Swan
complex) homotopically equivalent to S™
such that G acts freely on X.

Theorem (Madsen-Thomas-Wall, 1978).
et G be a finite group. The following state-
ments are equivalent:

(1) G acts freely on a sphere.

(2) G admits at most one element of order
2, and such element is central.

(3) For each prime p, every subgroup G of
order p? or 2p is cyclic.
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Example. For each odd prime p, the group
SLo(IF,) acts freely on a sphere. Indeed,

Ty

is the unique element of order 2 in SLy(Fp),
and is central.

We note that SL,(IF5) £ S3 = Dg, SLo(F3) =
7*, and SLo(Fg) = 7~.

The groups SLo(Fp), p > 5, do not admit
linear free actions on spheres.

Theorem (Wolf, 1967). A finite group G
acts freely and linearly on some sphere if and
only if the following conditions are satisfied:

(1) For all primes p and q, the subgroups of
G of orders pq are cyclic.

(2) G has no subgroup isomorphic to SLo(FFp)
for a prime p > 5.
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IV. Periodicity of tame
symmetric algebras

K algebraically closed field
N\ finite dimensional K-algebra

A\ tame: delaMl,.--,Mnd K|[x]-N\-bimodules
such that

e M, free left K[x]-modules of finite rank

e all but finitely many isoclasses of inde-
composable right A-modules of dimen-
sion d are of the form
Klz]/(x = A) ®g[z) Miy 1 <i<ng, A€EK

up(d) = least number on Klx]-A-bimodules

satisfying the above condition for d

N\ tame =
finite dis- }U{ ua(d) one-para- }

Indg A = { crete set meter families
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: Drozd : ]
A is not tame > N\ is wild (representa-

tion theory of A comprises the representation
theories of all finite dimensional K-algebras)

A is of finite (representation) type if and only
if upn(d) = 0 for all d > 1 (solution of the
second Brauer-Thrall conjecture).

THEOREM (Erdmann-Skowronski, 2004).
Let N\ be a nonsimple, basic, indecompos-
able, finite dimensional algebra over an alge-
braically closed field K. Then N is symmet-
ric, tame, with all indecomposable nonpro-
jective finite dimensional modules periodic if
and only if \ is isomorphic to an algebra of
one of the forms:

e symmetric algebra of Dynkin type;
e symmetric algebra of tubular type;

e algebra of quaternion type.
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algebra = basic, indecomposable, finite
dimensional K-algebra

N algebra = A= KQ/I

Q = Qa Gabriel quiver of A, I admissible
ideal in the path algebra K@ of @

mod A\ = repr(Q, 1)

standard algebras
admit simply connected
Galois coverings

tame (basic) /

selfinjective
algebras \

nonstandard algebras

Representation theory of tame standard
selfinjective algebras can be reduced to the
representation theory of tame algebras of
finite global dimension (tame simply connec-
ted algebras with nonnegaive Euler forms)
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B basic connected K-algebra

T(B) = B x D(B) trivial extension
T(B) = B® D(B) as K-vector spaces
(a, f) - (b,g) = (ab, fb+ ag)

T(B) symmetric algebra

((a, ), (b,9)) = f(b) + g(a)

G finite group of K-algebra automorphisms
of T(B)

We may consider the invariant algebra

T(B)Y = {2 € T(B) (g(a;) =z for all g € G}
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G acts freely on T(B) if there is a decom-
position

lypy=e1+ex+--+en
where eq,eo,...,en are orthogonal primitive
idempotents of T(B) such that
(1) g(e;) € {e1,...,en} for all g € G and i €
{1,...,n}.
(2) if g(e;) = e; for some i € {1,...,n} then
g=1.
It is known that G acts freely on T(B) if
and only if GG acts freely on the isoclasses of

simple T (B)-modules, for the induced action
of G on mod T(B).

Proposition. Assume G acts freely on T(B).
Then T(B)Y is a weakly symmetric (hence
selfinjective) algebra.

Proof. The invariant algebra T(B)¢ is iso-
morphic to the orbit algebra T(B)/G (in the
sense of Gabriel). Since T(B) is symmet-
ric, T(B) is weakly symmetric, and hence
T(B)¢ 2 T(B)/G is weakly symmetric. [

We note that in general T(B)% is not neces-
sarily a symmetric algebra.
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Symmetric algebras of Dynkin type
A € {A,, Dy, Eg,E7,Eg} Dynkin graph

A 2 Dynkin quiver with underlying graph A
H = KA the path algebra of A

T € mod H tilting H-module:
Ext}(T,7) =0
T=T1€B---@Tn, n = |A0|
11, ...,Ty indecomposable pairwise
nonisomorphic

B = Endy(T) tilted algebra of type A
e gl.dmB <2
e B is of finite type
e [ he Auslander-Reiten quiver ['g of B is
of the form

—

Dynkin section A
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Trivial extensions of finite type

Theorem (Hughes-Waschbusch,1983).
Let A be an algebra. Then T(A) is of finite
type if and only if T(A) & T(B) for a tilted
algebra B of Dynkin type.

B tilted of Dynkin type A

The Auslander-Reiten quiver of I'r(pg)

= the stable finite cylinder ZA/(+™4) com-
pleted by |Agl|-projective-injective modules

ma = ha — 1, hao Coxeter number of A

lisoclases of indecomposable T(B)-modules|
= number of roots |Ag|lha Of type A

ha,, = m+1, hp, = 2m — 2, hg, = 12,

m

hg, = 18, hg, = 30

105



B, B’ tilted of Dynkin type
T(B) 2 T(B) < B =S;...8B (finite
number of reflections)

PROBLEM. When a finite group G acts
freely on the trivial extension T(B) of a
tilted algebra B of Dynkin type?

By general theory such a group G is cyclic.

Theorem (Bretscher-Laser-Rietdmann, 1981).
et G be a finite group acting freely on the
trivial extension T(B) of a tilted algebra B

of Dynkin type A, A € {Eg,E7,Eg}. Then

G = {1}.

There are respectively 22, 143, 598 isoclasses
of the trivial extensions T(B) of tilted alge-
bras B of types Eg, E7, Eg (Riedtmann).

These are all symmetric algebras of Dynkin
types E6, E7, Eg.

The tilted algebras B of Dynkin types for
which T(B) admit a free action of a non-
trivial finite group G are very exceptional.

106



Brauer tree algebras

Brauer tree: a finite connected tree T’ = Tjg”
together with

e a Circular ordering of the edges converg-
ing at each vertex

e One exceptional vertex S with multiplicity
m>1

Brauer tree T' — Brauer quiver Q:
e the vertices of Q are the edges of T’

e there is an arrow 7 — j in Qp < j
IS the consecutive edge of ¢ in the circu-
lar ordering of the edges converging at a
vertex of T

QT has the following structure:

e Q7 is a union of oriented cycles corre-
sponding to the vertices of T

e Every vertex of Q1 belongs to exactly two
cycles
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The cycles of Qr are divided into two camps:

a-camps and g-camps such that two cycles

of Q7 having nontrivial intersection belong to

different camps. We assume that the cycle of

QT corresponding to the exceptional vertex S

of T' is an «a-cycle.

1 vertex of Qr

i —% (i) the arrow in a-camp of Qp
starting at 2

iiﬂ(i) the arrow in pg-camp of Qp
starting at ¢

02 (i) <O (3) (i) 22 g2(3)

SRS

. auV W 1) .
\ /

o 2(i);—m 0 (i) OP RO
B~=(%)

Aj = ajog(yy---aq-1) Bi = BiBay - - - Bg-15)
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T =T — AT) = A(TY") = KQrp/I¥
Brauer tree algebra
Ig' ideal in KQng generated by elements :
o 55—1@)0% and oza_l(z-)ﬁi
o A" — B; if the a-cycle passing through 1
IS exceptional

e A, — B, if the a-cycle passing through ¢
IS not exceptional

We note that the ideal Ig” IS not an admissible
ideal of KQTgL.

For the multiplicity m = 1, the Brauer tree
algebras A(T) = A(T%) are exactly the trivial
extension algebras T (B) of the tilted algebras
of types A,.

For the multiplicity m > 2, we have A(Tg") =
T(B)%m for an exceptional tilted algebra B =
B(Tgﬁ) of type A,, and the cyclic group Zm
acting freely on T(B).

(here n = me, e the number of edges of T{")
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Example. Let T'=Tg" be the star

A(Tg") is a symmetric Nakayama algebra

Moreover, A(TT) = A(T')%m for the star T'
with me edges and the multiplicity 1, and
A(T"Y = T(B) for the path algebra KQ of
the equioriented quiver of type Ae

1—2 — ... — me
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Theorem (Dade-Janusz-Kupisch,1966-1969).
Let B be a block of a group algebra KG with
cyclic defect group Dg. Then B is Morita
equivalent to a Brauer tree algebra A(TZE").

(Here me+ 1 =9p" if | Dg|=p"™ and B has e
simple modules)

Remark. Most of the Brauer tree algebras
A(T!™) are not Morita equivalent to blocks
of group algebras (Feit, 1984 ).

Theorem (Gabriel-Riedtmann (1979),
Rickard (1989)). Let A be a selfinjective
algebra. TFAE:

(1) A is Morita equivalent to a Brauer tree
algebra.

(2) A is stably equivalent to a symmetric
Nakayama algebra.

(3) A is derived equivalent to a symmetric
Nakayama algebra.
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Let T'="Tq be a Brauer tree with at least two
edges and an extreme exceptional vertex S

51 g™
T
/ r—1

s

Then the Brauer quiver Qr is of the form

j_
QBQ\%../

@B;

For each edge i of T' (vertex i of Q) we have
the cycles A; and B; around ¢

Define B; = ﬁj...ﬂralﬁl...ﬂi_l, 7 #=1, 7€
5o
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For each A\ € K, define the algebra

D(T57>\) — KQT/I(T57>‘)

where I(Tg, ) is the ideal of KQp generated
by

® Bg-1pnoi and o, -1,Bi, 1 € (Qr)o \ {1},
o A? = By,

o Aj—Bj, i€ (Q71)o\ Sp,

e Aj—Bj, j€Sp\ {1},

® 5rB1 — ABra1 1.

Proposition. (1) D(Tg,\), A € K, are sym-
metric algebras of finite type.

(2) For \,u € K\ {0}, D(Tg,\) = D(Tg, ).

(3) D(Tq,0) = D(Tg,1) < char K # 2.

(4) D(T¢,0) and D(Tg,1) are socle equiva-
lent.

(5) D(Tg,0) = T(B)£3, for an exceptional
tilted algebra B = B*(Tg) of Dynkin type
Ds,, and Zs acting freely on T(B).

(6) For char K =2, D(Tg,1) is nonstandard
and degenerates to D(Tg,0).

113



Example. T = T7 of the form

g1 o2 4.3 ,

QT = QTg of the form

B2 a3
041Cl 5 2 & 3353

D(Ts,0) = KQ1/I(Ts,0) | D(Tg,1) = KQr/I(Ts,0)
I(Tg,0) generated by I(Tg,1) generated by
Bran, azf2 Bran, azfo
Bzaz, a3 Bzaz, arf3
a? — 315 ai — B162
azaz — PBoa1 51 asaz — PBoa 51
azan — 33 azap — (3
B261 B281 — Bra151
Hl(QT?I(TS7O)) =7 Hl(QT?I(T57 1)) trivial
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Let B= KQ/I where

7 Br 2 9

4 >< o0

Q : B Qg
4 5 8

o ><68 3
1 5

and [ is generated by agaq1—06708s, 3284, agfs.
Then B is a tilted algebra of type Dg = 3.3

Moreover, T(B) £ KQ'/I’, where

Q/ . 1 4
58] s lﬁ4
ag 8a7 5 (6715%
0 /049%7‘%504;\ 6

and the ideal I’ is generated by agqo; — B78s,

aray — BafPs, aras — L1062, B28a, BsB7, Bl
Bian, azf, Baas, aglfs, Brag, agly, araz —
Boa1 81, asag — Bsasfs, agag — Bgar 7.

Then Zs acts freely on T(B) by the rotation
and T(B)%3 = D(Tg,0).
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Theorem (Riedtmann, Waschbusch, ...).
Let N\ be a nonsimple standard selfinjective
algebra. TFAE:

(1) A is symmetric of finite type.

(2) A is isomorphic to T(B)C, B tilted alge-
bra of Dynkin type, GG finite group acting
freely on T(B).

(3) A is isomorphic to one of the algebras:
(a) T(B), B tilted of Dynkin type.

(b) A(TE'), TG Brauer tree, S excep-
tional of multiplicity m > 2.

(c) D(Tq,0), Tg Brauer tree, S extreme
exceptional.

Theorem (Riedtmann (1983), Waschbusch

(1981)). Let A\ be a selfinjective algebra over

K. TFAE:

(1) A is nonstandard of finite type,

(2) A is nonstandard symmetric of finite type,

(3) N=D(Tq,1), Tg Brauer tree, S extreme
exceptional, and char K = 2.
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Symmetric algebras of tubular type

B tubular algebra (in the sense of Ringel) =
tilted algebra End~(T") of a canonical tubu-
lar algebra C (T tilting module of nonnega-
tive rank) of one of tubular types (2,2,2,2),
(3,3,3), (2,4,4), or (2,3,6).

B tubular =
e gl.dimB =2
e rk Ko(B) =6, 8,9, or 10
e B is of polynomial growth

e [ he Auslander-Reiten quiver ['g of B is
of the form

= s -2

qe@-l- IZZ]
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Canonical tubular algebras

Cy = C(2,2,2,2,)), A e K\ {0,1},
E.///
51 5o

bounded by asaq + 8261 + v2v1 = 0,
azaq + AB2B1 + 0201 = 0.

C(p7 Q7 /r)' (p7 Q7 r) — (37 37 3)7 (2747 4)7 (27 37 6)

0-22 o c e oap_lo
a7 Qp
.B/l. P2 o .5q—1.5\q.

N -

*5® S *5—1®

bounded by
ap...apa1 + Bg... 0201 +vr...v2v1 =0
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Nehring-Skowronski (1989
B tubular algebra = ﬁg )

T(B) symmetric standard tame algebra of
polynomial growth and the Auslander-Reiten
quiver of T(B) is of the form

N Y Y
\>l</¥/¥/

*

To =1r
SO Vewn T Vaeg®
Tr—1 7
\/qe@?ﬁ% a - Veeqy

T0,71,...,7, P1(K)-families of quasi-tubes
(stable tubes with inserted projective-injective
vertices x)

759 € QT =Qn(i—1,i),1 <i<r, Pi(K)-
families of stable tubes
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Theorem (Biatkowski-Skowronski, 2003).
Let N\ be a representation-infinite algebra.
TFAE:

(i) N\ is tame, standard, weakly symmet-
ric, with all indecomposable nonprojec-
tive modules periodic and singular Car-
tan matrix.

(ii)) N\ is tame, standard, symmetric, with
all indecomposable nonprojective mod-
ules periodic and singular Cartan matrix.

(iii) A= T(B) for a tubular algebra B.

Nehring-Skowronski (1989
B, B’ tubular algebras \ )

T(B) & T(B) < B =S ...8FB (finite
number of reflections)

There are 4 families of nonisomorphic trivial
extensions of tubular algebras of tubular type
(2,2,2,2), and 38, 85, 4953 isoclasses of the
trivial extensions of tubular types (3,3,3),
(2,4,4), (2,3,6), respectively (Biatkowski).
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PROBLEM. When a finite group acts freely
on the trivial extension T(B) of a tubular
algebra B?

By general theory such a group G is cyclic.

Theorem (Lenzing-Skowronski,2000). Let
G be a finite group acting freely on the triv-
ial extension T(B) of a tubular algebra B of
type (2,3,6). Then G = {1}.

Theorem (Biatkowski-Skowronski,2002).
Let B be a tubular algebra such that a non-
trivial finite group G acts on T(B). Then
T(B) 2 T(B') for a tubular algebra B’ given
by one of the following bound quivers.

N e
@3 o 0
1 2
pya = ¢of3 Sa=mny, (a=uwy
Yya = A\po3 o =nB, (o= g
Bi(M) Bo (M)
A e KN\{0,1) A e KNV{0,1)
/ N\, s

\7
N /\ i
Kj ., AU

B4
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Bes \517

7 {8 9

IS
5<\4 %

s :

Bg

; - j 7><T /ji
N N

17 D i %3

B4 B3
(where a dotted line means that the sum of
paths indicated by this line is zero if it indi-
cates exactly three parallel paths, the com-
mutativity of paths if it indicates exactly two
parallel paths, and the zero path if it indi-

cates only one path).

Here, B1()\), B>(\) are of type (2,2,2,2), Bs,

Ba, Bs, Bg, B7, Bg are of type (3,3,3), and

Bg, B1o., B11, Bi12, B3 are of type (2,4,4).
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Theorem (Biatkowski-Skowronski, 2003).
Let N\ be a representation-infinite algebra.
TFAE:

(i) N\ tame standard weakly symmetric, with
all indecomposable nonprojective finite
dimensional modules periodic and non-
singular Cartan matrix.

(i) A = T(B)C for a tubular algebra B and
a nontrivial finite group G acting freely

on T(B).
(iii) A isisomorphic to one of the bound quiver
algebras.
o o O
B o S P
ayo = aof o = o7y
Bya = ABof AB? = o
Yoy = oy ya = By
yao = Aofo o = ao
A1(A) ET(B1(A)= Ax(N) = T(Ba(N))
Ae K\{0,1} Ae K\{0,1}
"""
5Hv 5Hv o
%%\Q‘ %%\F\‘ o =~
Ba+déy+e£=0 Ba+dy+e£=0 Bay =0
af=0, &=0 af=0, =0

v =0 £6=0

Az &2 T(B3)™ Ay &= T(B3)™ As & T(Bag)%
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(o2
da = ¢ef,v¢ = Bo,ac =0
eyd = 0,07ey =10

Ag = T(Be)?

753

vBa =0, B(6B)>=0
A1 2 T(Bg)%

AT

B @

YBa = 0,

o? =66
B6 = 0,0 = 0,ad = o7

A1s 2 T(B12)%

o 9 €
p Y §
Ba = &y
76 = €€
ade =0
§&vyB=0

A7 2 T(Ba)?

Sa
gaf = &€
afBd = 6v€6

Ba=0,(7£6)*y =0

Ao = T(Br)”

HB_,%QL,
- /7 '< 0_
o =~B, B6=0, 78=0
oy=0, ad=0, ca=0
o® = éo

A3 £ T(B1o)?

apy =0,
68 =0,0a0=0,a =~o

A1 2 T(B13)%

td—Li é‘ﬂazo
(8% daB =0
fhepE
.T». afBoc =0
afa =0, &y =0
BafB =~6, do0 =20

Ag & T(Bs)?%

a Y )
yaB =&y
apf = &v¢

Ba=0, éy=0
=0, (v)*=¢s
A11 2 T(Bg)?

o 6,
BT
Ba = 675y
adéyd =0
Yoy8 =20
af =0

A1a 2 T(B11)"

o? = (3§

(all except A4 for char K #= 2 are symmetric)
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Theorem (Biatkowski-Skowronski, 2003).
Let N\ be a nonstandard symmetric algebra
over an algebraically closed field K. Then
/\ IS socle equivalent to a standard represen-
tation-infinite tame symmetric algebra A with
all indecomposable nonprojective modules pe-
riodic if and only if exactly one of the follow-
ing cases holds:

(i) K is of characteristic 3 and N\ is isomor-
phic to one of the bound quiver alge-
bras

o? =~f o’y =0, fo®=0
Bay = Bay Y8y =0, pBy8=0

payB =0 By = Boy

YBay =0 o’ =1p

/\1 /\2

(ii) K is of characteristic 2 and N\ is isomor-
phic to one of the bound quiver algebras
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~_O0  r
o S8 B
a*=0, v’ =0, a?0=0 ) o
o> =oy+a3 MNP =n~0 a? =~p, a® =4do0, =0
Yo =By, of=ac 085 = ay,” (85)°8 =0 oy=0, ad =0, ca=0

/\3()\) Wajyﬂ:a & ﬁgf@%: 0 1By =0, B1B=0, By = fay
Ae K\ {0,1} AV Ns

£

A 753 757

adyd =0, ~yB3=20 OéC;é‘_. aC<_L .

afa =0, Paf=0 23 B

af = adyp 86 = Bad,ac = 0,a6 = oy 68 = daf,0a0=0,a =~o

Bo = 5v6y YBa= 0,02 = 66,736 =0 afy=0,a% = 35,667y =0
/\6 868 =0, /\7 6B6 =0 BB =0, /\8 086 =0

o
17%‘?
G

<

. . Mﬂ:o, om:O, /804:57
] =

Ba,+ 57=+of§a,3a — g fo=np, 08 =7E+0d0b

pap =0, af = adyp 60éc =0, {&y§y =0

No N1o

A nonstandard (above) = A degenerates to
a standard symmetric algebra A’ = T(B)¢
for an exceptional tubular algebra B and a
nontrivial group G acting freely on T(B).
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Example. The trivial extension T (Bg) of the
tubular algebra Bg of type (3, 3, 3) is the bound
quiver algebra KQ2/J

’7/6\36

al

\78
/58

Q. ﬁ/
7\

a5
s

and the ideal J is generated by ajayag —
Yv80s, azaiar —y202, asazal —yaba, arasaz—
Y66, Bave: Bevg: Bgv2, Bova, Beaiar, Bgazaz,
Borasas, Baaras, a1arya, A7y, A5Q378, A30176-

Then Z, acts on T(Bs) by the rotation and
T(Bs)™ = Ag = KQ/T

where
(@7

Y
o 3
B
and I is generated by a3 —~8, B, Ba?, a?y.

Consider the algebra
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Ao = KQ/IM, 1) = (a3 —~B, By~ fory, fa?, 027),
Ag, N\ selfinjective algebras of dimension 11

Ag = No < char K # 3

char K =3 = A5 is nonstandard

Ag/soC Ag = Np/sOC N\

AN = KkQ/I1®, 1) = <043—7ﬁ,67—t5a%5a2,a2}>,
A® = A = A, for t € K\ {0} be

Ag = ANO) = lim AD Ag e GL11(K)A5

Ag is a degeneration of A> (A5 is a deformation
of A6)

- ﬁﬁﬁ

/ 7(1) — 7(0) — 7<0> \
’ AeIPl(K) |
qeQn(0,1)
7(0) —

)\Epl(K) 108



Algebras of quaternion type

cCharK =p >0

G finite group

B block of the group algebra KG

D defect group of B (p-subgroup of GG)

B is representation-infinite p=2
and all indecomposable non- and D is a
projective finite dimensional quaternion
B-modules are Q2p-periodic group

An algebra A is of quaternion type if

e A\ issymmetric, connected, representation-
infinite, tame.

e [ he indecomposable nonprojective finite
dimensional A-modules are 2a-periodic
of period dividing 4.

e T he Cartan matrix of A is nonsingular.
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Theorem (Erdmann, 1988). Let A be an
algebra of quaternion type. Then N\ is Morita
equivalent to one of the bound quiver alge-

bras:

aCoDﬁ

0? = (Ba)16, 2 = (aB)* o
(aB)F = (Ba)*, (aB)Fa =0
k>2

Y8y = (vaB) 1y

BvB8 = (aBy)tap

a? = (Bya)* 18y + c(Bya)”
a?B =0

k>2, ce K

B
aCo;an

af = 0n, ny =ya, by =«
v8=mn*+an*"* +cn’
048+1 — O, ns—l—l =0

yat~1 =0, a*718=0
s>4, ae K*, ce K

2

Bén = (By)*1p

oy = (1B) 1y
nyB = d(nd)*~in
B8 = d(én)s~1é
Bondé =0, nyBy =20
ks>2, dec K*

(k=s=2=d#1, elsed=1)

aCoDIB
char K =2
o = (Ba)s~16 + c(aB)”
B2 = (ap)ta+ d(ap)k
(aB)r = (Ba)¥, (aB)fa =0
(Ba)kB =0
k>2,cdeK, (cd)# (0,0)

5
aCo;an

Y8 =n*"1, Bn = (afy)" tas
ny = (yaB) tya

o = a(Bya) 1By + c(Bra)*
a’B=0, ya? =0
k>1,s>3, ace K*, ce K

B
aCo%’an

af = pn, ny =a, By =«
V6 = an'~t + cnf

a4:O, nt+1:O, ’70&2:
o’ =0
t>3,ae K*, ce K
t=3=a#1,t>3=>a=1)

2

o
BB = (Bénvy)186n
vBy = (6nyB)*~ Loy
nén = (nyB8)*1nvyp
énd = (vBén)"1vB8
ByBd =0, nony =0

k>?2
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AN
OéC.(T.?.

By ="t

o = (Bény)*~186n
oo = (6nyB) Loy
nén = (nyB8)*nvp
énd = (yBon)k~1vB8
a’B3 =0, B6né =0
k>1,s>3

B $
aCo%)o;oag

By =

ya = (6nyB)Ftony
o = (Bény)*~18sn
775 — gt—l

66 = (vBén) 1yB8
&n = (MyB8)F1nyp
oz26 =0, nd=0
k>1, st>3

B( s
o__ _o__ o
Y n

Bo=0, oy=0, no*=0

026 =0

n—vB8 = 0°"1, no= (nd)k1n
o6 = (6n)F=16, (By)* 185 =0

(né)kIny =0
k>2,s>3
B
e____ "o
&VV
A )
°
B6 = (kX)) 1k
my = (AR)*7IN
A= (v8)" 1y
kn = (By)"13

AB = (n6)tn, vk = (dn)“ 1o
Y6 =0, dny =0, Akn =0
a,b,c> 1 (at most one equal 1)

These algebras are of quaternion type:
derived equivalence classification (Holm, 1999)
tameness: degeneration argument (Geiss)
Q4.(N) =2 A (Erdmann-Skowronski, 2004)
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Corollary (Erdmann-Skowronski, 2004).
Let N\ be a basic, connected, finite dimen-
sional symmetric, tame algebra over an alge-
braically closed field K, with all indecompos-
able nonprojective finite dimensional modules
Qa-periodic. Then

(1) The Cartan matrix Cp of N\ is singular if
and only if N\ is isomorphic to the trivial
extension T (B) of a tubular algebra B.

(2) If N\ is representation-infinite with non-
singular Cartan matrix Cp then N\ has at
most 4 simple modules.

(3) If N\ is representation-infinite then N\ has
at most 10 simple modules.

Crp) = —(®p—In)Cp, n =rkKo(B),

®p = CLORZ' Coxeter matrix of B

B tubular algebra = 1 is an eigenvalue of &g
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Calabi-Yau stable module categories
N\ selfinjective algebra
mod A category of finite dimensional A-modules

mod A stable category of modA

mod A triangulated category, T = Q/_\ shift
functor

mod A has Serre duality S = QAN
NAx = DHoma(—,A\) Nakayama functor

Homa(X,Y) = DHoma (Y, S(X))
for all X,Y € modA

Following Kontsevich mod A is Calabi-Yau
if S=T" (on modA) for some n >0
<— Q/_\”_l = N for some n > 0.

CYdim(modA) = minimal n with this property

Calabi-Yau dimension of modA
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/A symmetric

mod A is Calabi-Yau <= QhTt =1, .4, for
some n >0

CYdim(modA) = n <= n minimal number
such that QR (M) = M for all indecomposable
nonprojective finite dimensional A-modules

Theorem (Erdmann-Skowronski, 2004).
Let N\ be a tame symmetric algebra over an
algebraically closed field. Then mod A is Calabi-
Yau <= all indecomposable nonprojective
finite dimensional N-modules are periodic.

Theorem (Erdmann-Skowronski, 2004).

(i) For any natural number n there exists a
symmetric algebra N\ of Dynkin type with
CYdim(modA) = n.

(ii) Let N\ be a symmetric algebra of tubular
type. Then CYdim(modA) € {2,3,5,7,11}.

(iii) Let A\ be a symmetric algebra of quater-
nion type. Then CYdim(modA) € {2, 3}.
Moreover, CYdim(modA) = 3 if \ is not
of tubular type.
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V. Periodicity and
hypersurface singularities

R commutative noetherian local ring
m maximal ideal of R

dim R Krull dimension of R (the length of
maximal chain of prime ideals of R)

M right R-module

A sequence z1,...,Tn € M IS a regular se-
quence on M if x; is not a zero-divisor of
M/M(xq,...,x,_1), forany i € {1,...,n}
depth(M) = the maximal length of regular se-
quences on M (depth of M)

Mis a (maximal) Cohen-Macaulay R-
module if depth(M) = dim R.

R is a Cohen-Macaulay ring if Rp is a
Cohen-Macaulay R-module.

R is regular (nonsingular) if m is gener-
ated by a regular sequence (equivalently,
gl.dimR = dimR, by the Auslander-

Serre theorem).
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R is an isolated singularity if R is nonregular
and the localization Ry is regular (nonsin-
gular) for any prime ideal p %= m.

K algebraically closed field
S = K|[xg,x1,...,rn]] power series K-algebra

S is a commutative, complete, noetherian,
regular, local K-algebra with dimS=n-+41

m = (xg,x1,...,Tn) UNique maximal ideal of
S

For 0 # f € m?,
R = S/(f) is called a hypersurface singu-
larity

R is a commutative, complete, noetherian,
local K-algebra with dimR =n

J(f) = (f,%,%,...,%) Jacobian ideal
of f

R is an isolated hypersurface singularity if
and only if dim, S/J(f) is finite
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Remark. If R = S/(f) is an isolated hyper-
surface singularity then R = S/(F) for a poly-
nomial F € K|xqg,x1,...,xn] (Greuel-Kroning).

Let R be a hypersurface singularity.

CM(R) category of finitely generated maxi-
mal Cohen-Macaulay R-modules.

CM(R) is a Krull-Schmidt category (unique
decomposition of objects into direct
sums of indecomposable objects).

R is called of finite Cohen-Macaulay type
(shortly, finite CM-type) if CM(R) has
only a finite number of pairwise noniso-
morphic indecomposable objects.

Theorem (Auslander, 1986). Let R be a
hypersurface singularity of finite CM-type.
Then R is an isolated singularity.
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Let R be an isolated hypersurface singularity.
Then

e CM(R) is a Frobenius category (projec-
tive objects are injective), and R is a unique
indecomposable projective object.

e CM(R) admits Auslander-Reiten sequences
(Auslander, 1986)

p = Nr(CM(R)) Aulander-Reiten quiver
of R

CM(R) stable category of CM(R)

% = FrR(CM(R)) stable Aulander-Reiten
quiver of R (obtainded from g by deleting
R and the arrows attached to R)
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Moreover, we have equivalences of functors
from CM(R) to CM(R):

o QF Zidon(r)

[ ’TR = IdCM(R) |f d|mR iS even

® TR = QR if dim R is odd.

R = S/(f) hypersurface singularity

c(f) the set of all proper ideals I of S =
K[[zg,x1,...,zn]] such that f € IZ.

R is called a simple hypersurface singular-
ity) if c¢(f) is finite.
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Theorem (Arnold, 1972). Let R be a hy-
persurface singularity of dimension d over an
algebraically closed field K of characteristic
O. Then the following statements are equiv-
alent:

(1) R is a simple hypersurface singularity.
(2) R is of finite deformation type.

(3) R Kl[zg, a1, ..,24]l/(f¥P), for a Dynkin
graph A of type Ap(n > 1), Dp(n > 4),
Eg, E-, or Eg, where

fP =2yt B4,
fSP =22 4+y" B4 2]
KD =aP 4yt 4B+ 423
fE7>—w +ay’ 254+ 2],

KD =aP 4y + B+ + 2
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Finite deformation type means that R can be
deformed only into finitely many other noni-
somorphic singularities.

K([zo, 21, . .,z4l/(f\) is called the Arnold’s
simple hypersurface singularity of dimen-
sion d and Dynkin type A.

Theorem (Buchweitz-Greuel-Schreyer,
Knorrer, 1985-1987). Let R be a hyper-
surface singularity of dimension d over an al-
gebraically closed field K of characteristic O.
Then R is of finite Cohen-Macaulay type if
and only if R 2 K[[zg,1,...,x4))/(f), for
some Dynkin graph A.

141



Knorrer’s periodicity

S = K|[[zg,z1,...,zn]]

R = S/(f) isolated hypersurface singularity
St = S[[u]]

R = S%/(f +u?)

Theorem (Knorrer, 1987). Let R be an
isolated hypersurface singularity over an alge-
braically closed field K of characteristic # 2.
Then R is of finite Cohen-Macaulay type if
and only if R! is of finite Cohen-Macaulay
type. Moreover, if R is of finite Cohen-Macaulay
type, then

(1) CM(RY) = CM(R)[Z>] skew group cate-
gory, and hence I‘SRti is a twisted quiver
of I'y.

(2) CM((RHY) = CM(R), and hence the trans-

lation quivers rthi)ﬂ and ', are isomor-
phic.
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Solberg’s periodicity

R = S/(f) isolated hypersurface singularity
R* = S[[u, v]]/(f + uv)

Theorem (Solberg, 1989). Let R = S/(f)

be an isolated hypersurface singularity over
an arbitrary algebraically closed field K. Then
R is of finite Cohen-Macaulay type if and only

if R* is of finite Cohen-Macaulay type. More-

over, if R is of finite Cohen-Macaulay type,

then there is an equivalence of categories

CM(R) = CM(R*), which induces an iso-

morphism of stable Auslander-Reiten quivers

M5 — M.

For K of characteristic = 2, the Solberg’s
periodicity is equivalent to the Knorrer's pe-
riodicity.
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Kleinian singularities

Let K be an algebraically closed field of char-
acteristic 0.
SLo(K) = {A € Myy>(K) | det A = 1}

It is a classical result that every finite sub-
group of SL»(K) is conjugate in SL,(K) to
one of the following Klein groups

C; cyclic group of order n, n > 1

D3, binary dihedral group of order 4n, n > 2
7* binary tetrahedral group of order 24

O* binary octahedral group of order 48

T* Dbinary icosahedral group of order 120
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Let G be a group of the above form. We
associate to G a Dynkin graph A = A(G) as
follows:

Ap=A(C 4 1),n>1

Ee = A(T*)
E; = A(O%)
Eg = A(T%)

G a finite subgroup of SLy(K).
Then G acts on the algebra KI[[X,Y]]: for

( CCL Z ) € SLo(K) and f(X,Y) € K[[X,Y]]

(2 2Yseen =s((22)(3))

= f(dX —bY,—cX +aY).
We may consider the invariant algebra
K[[X,Y]]°.
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Theorem (Klein, 1884). Let K be an alge-
braically closed field of characteristic 0, and
G a finite subgroup of SL>(K). Then

K[[X, Y]] 2 K[[z,y,2]]/(fa)

where A = A(G) is the Dynkin graph of G,
and

fa, = x2 4yl 4 22
fp, = 22y +y" 1 4 22
fi, = 23 4 y* + 22
fg, = 2> + oy> + 22
frg = o> +y° + 22

Hence, fao = f(AQ) with z = 25, and K[[X,Y]]¢
are the Arnold’s simple hypersurface singular-
ities of dimension 2.

For K = C, the orbit space C2/G is a com-
pact Riemann surface with at most 3 singular
points, and the Dynkin graph A(G) describes
the multiplicities of these singular points.
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Theorem (Artin-Verdier, Esnault-Knorrer,
1985). Let R be a hypersurface singularity
of dimension 2 over an algebraically closed
field K of characteristic 0. Then R is of fi-
nite Cohen-Macaulay type if and only if R =
K[[X,Y]]€, for a finite subgroup G of SL»(K).

Theorem (Auslander-Reiten, 1986). Let
R = Kl[z,y,z]]/(fa) be an Arnold’s simple
hypersurface singularity of dimension 2 over
an algebraically closed field K of arbitrary
characteristic. @~ Then the Auslander-Reiten
quiver I p Is of the form
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A=A,

(nj 1 vertices T
A=10D, e

<~ VT <= ¥ <

N
7 TN

o
n + 1 vertices)

A =FEg R
R
J J T.J/ [ [
R I
A =[Eg °
oo U e "e__"e_"e_ "R

and, in all cases, Tp = identity.
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Simple plane curve singularities

R = K[[z,y]]/(ga), & Dynkin graph
g = f(Al) is of the form

g, =z +y" T

9D, = 2%y +y" !

9Ee = =° +y*

9g, = o> + zy?

gEs = z° + y°
Theorem (Dieterich-Wiedemann (1986),
Kiyek-Steineke (1989)). Let R = K|[z,y]]/(gA)
be a simple plane curve singularity over an
algebraically closed field K of arbitrary char-

acteristic. Then the Auslander-Reiten quiver
[ 'p is of the form
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A = A
2m e _"e__"e_ ---"e__"®__"R

m>1
(m + 1 vertices, TR = Qr = identity)
A= Axm-1
m>1 \\
\ - _e__e_ ---_e__e__R

(m + 2 vertices, TR = QQr = reflection
at the horizontal line)

A =D
2m g e @ -0 -0 @

K A

[ e = -0 —>0——>0
(4m + 1 vertices, TR = Qr = reflection
at the horizontal line through R,a,b,c,

d, with Tra =d, TrRb = ¢, 75 = id)

A = Doptr e -0 -0 --- >0—>0—>@

LS

®o—>~0———>0— --- -0——>0—>0
(4m vertlces, TR = Qr = reflection at
the horizontal line through R and a)
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s

(7 vertlces, TR = Q2r = reflection at the
horizontal line through R, a and b)

XXX

(15 vertlces, TR = QR = ref/ect/on at
the horizontal line through R, a and b,
with Tra = b, Trb = a)

XXX

(17 vertices, Tr = Qr = reflection at
the horizontal line through R, a and b,
with TR = b, TRb: a)

A = ]E7.
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Greuel and Kroning introduced the concept
of finite deformation type of hypersurface
singularities for algebraically closed fields of
positive characteristic and proved the theo-
rem of the form

Theorem (Greuel-Kroning, 1990). Let R
be a hypersurface singularity. The following
statements are equivalent:

(1) R is a simple hypersurface singularity.
(2) R is of finite deformation type.
(3) R is of finite CM-type.

In characteristic #= 2,3,5, the Arnold’'s sim-
ple hypersurface singularities are all simple
hypersurface singularities.
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The normal forms of simple hypersurface sin-
gularities of dimension 1 were classified by
Kiyek and Steineke (1985).

The normal forms of simple hypersurface sin-
gularities of dimension 2 were classified by
Artin (1977).

The normal forms of simple hypersurface sin-
gularities of dimensions > 3 can be obtained
from the normal forms of dimensions 1 and
2 by Solberg’s periodicity theorem (Solberg
(1989), Greuel-Kroning (1990)).

Theorem (Solberg (1989), Greuel-Kroning
(1990)). Let R be a hypersurface singularity
of finite CM-type over an algebraically closed
field K of arbitrary characteristic. Then the
Auslander-Reiten quiver I'p of R is isomor-
phic to the Auslander-Reiten quiver of an
Arnold’s simple hypersurface singularity of di-
mension 1 or 2 (simple plane curve singularity
or Kleinian singularity).
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Stable Auslander algebras

Let R be a hypersurface singularity of finite
CM-type over an algebraically closed field K
of arbitrary characteristic.

CM(R) is a Frobenius category of finite type.

Let Mq,M>,..., M, be a complete set of
pairwise nonisomorphic indecomposable
nonprojective objects in CM(R)

M=M SM>D---O Mpn
Consider the endomorphism algebra
A(R) = Endg () (M)

of M = M in the stable category CM(R),
and call the stable Auslander algebra of R.

For a Dynkin graph A, denote
P(A) = A(K|l[z,y,2]])/(fa))

P(A) = A(K|[z,y]])/(9a))
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Theorem. Let A be a Dynkin graph. The
following statements hold:

(1) P(A) is a basic finite dimensional selfin-
Jjective K-algebra. Moreover, the Nakayama
permutation v of P(A) is the identity for
A=A, D, (n even), E;, Eg, and of or-
der 2 for A = A, (n > 2), Dy (n o0dd),
Ee.

(2) P(A)* is a basic finite dimensional, sym-
metric K-algebra.

From the above remarks, the stable Auslan-
der algebra A of any hypersurface singularity
R of finite CM-type of even dimension (re-
spectively, odd dimension) is isomorphic to
P(A) (respectively, P(A)*), for some Dynkin
graph A.
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P(A) is the preprojective algebra of Dyn-
kKin type A (introduced by Gelfand
and Ponomarev)

P(A)* the twisted preprojective algebra of
Dynkin type A

For K of characteristic # 2,
P(A)" = P(A)[Zo] (skew group algebra)

P(A) = P(A)*[Zo] (skew group algebra)

for the corresponding actions of Z, on the
algebras P(A) and P(A)*.

We also note that, with few exceptions, the
algebras P(A) and P(A)* are of wild
representation type.
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K algebraically closed field.

Let B be a K-category of one of the two
types:

e CM(R) for an isolated hypersurface sin-
qularity R over K.

e mod A for a finite dimensional selfinjec-
tive K-algebra A.

Then B is a Frobenius category with Auslander-
Reiten sequences. Denote ¥ = modB =
(B°P, Ab) the category of finitely presented
contravariant functors from the stable cat-
egory B of B to the category Ab of abelian
groups.

Theorem (Auslander-Reiten). The follow-
ing statements hold:

(1) € is a Frobenius abelian K-category whose
projective objects are the representable
functors Homg(—, B), B objects of B.

(2) € admits Auslander-Reiten sequences.
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Denote by Ng, 73, 25 (respectively, Ny, 7,
Q) the Nakayama, Auslander-Reiten and syzygy
functors on B (respectively, on ¥).

Theorem (Auslander-Reiten, 1996). In the
above notation, the following statements hold:

(1) Ny (Homg(—, B)) = Homg(—, 2z1m5(B))
for any object B of B.

(2) The functors 14, QN NgQZ © € — €
are equivalent.

(3) If the functor lerg . B — B has order s
and the functor Q% : B — B has order t,
and r = lem(s, 3t), then 7/, - ide .
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Theorem (Auslander-Reiten, 1996). Let
¢ = mod CM(R) for an isolated hypersurface
singularity R over K. The following state-
ments hold:

(1) If R has even dimension, then each inde-
composable object of € is t-periodic of
period dividing 6.

(2) If R has odd dimension, then each inde-

composable object of ¢ is rp-periodic of
period dividing 3.

Proof. We have Q% — idcy(p)-

(1) If dimR is even then 7p — idoy(R):

Hence nger = Q]_%l has order 2, and
sor =Ilem(2,3-1) =6.

(2) If dim R is odd then 7 — Qp. Hence
Qpltr = idgy(ry, and so r = lem(1,3
1) = 3. ]
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Assume R is a hypersurface singularity over
K of finite CM-type.

Then CM(R) has only a finite number of in-
decomposable objects, and hence we have an
equivalence

mod CM(R) — mod A(R)

which commutes with the Auslander-Reiten
translations 7 on mod CM(R) and 74(p) =

D Tron A(R). Recall that 74(gy = Q5 myNa(r):

We also note that P(A) (respectively, P(A)*)
is semisimple if and only if A = A;.

T herefore we obtain
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Theorem (Auslander-Reiten, 1996). Let
A be a Dynkin graph #= Aq. The following
statements hold:

S o~ 3 ~ ar—1
(1) 7P(a) = ImodpP(a) 2B(ay = Npiay and
Q?D(A) = 1modp(a) @s functors on modP(A).

Y

(2) T?’(A)* = 1modP(A)* and Q?’(A)* = 1modP(A)*
as functors on modP(A)*.

In fact, we have the following

Theorem (Schoefield (1990), Erdmann-
Snashall (1998)). Let A be a Dynkin graph

+ Aq. Then Q%(A)QP(A) =~ P(A) in mod P(A)E.

Theorem (Biatkowski-Erdmann-Skowronski
(2005)). Let A be a Dynkin graph # Aj.

Then Q?P(A)*)QP(A)* = P(A)* in mod(P(A)*)E.

Corollary. Let A be a Dynkin graph # A;.
Then modP(A) and modP(A)* are Calabi-
Yau triangulated categories (of Calabi-Yau
dimensions 0, 2, or 5).
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Generalized Dynkin graphs

An ° ° o — —e °
n>1
Br 0(1’2) o — . — e °
n>2
Cn 0(2’1)0 o — —e °
n>3
Dy, .
n>4
Bl \o o ... o °
o/
°
E6
° ° ° ° °
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e o o o o
.

e o o o o

o 0(1’2)0

.(1’3)0

e o o ... o o
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Mesh algebras of generalized Dynkin
type

(1) The mesh (preprojective) algebras P(A)
of types

A < {An,Dn,E6,E7,E8,Ln},
where P(Ly,) = P(A,,)* for n > 1.
(2) The mesh (twisted) algebras A(A) of types

A € {Bna Cna Dna E67 E77 E87 IF47 GQ})

such that
A(B2) = P(A3)",
AN(B2,,) = P(Doy,4-1)* for m > 2,
/\(Cn) = P(AQn—l)* for n > 3,
/\(ID)Qm) = P(]D)Qm)* for m Z 2,
N(E7) = P(E7)*, N(Eg) = P(Eg)™,
AN(Fq) = P(Eg)",

A(G») is given by the quiver and relations

* a’f+ By +v'a=0

SN aat=0, 88T =0, 7 =0

o~ 5* [ e
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More generally, one defines the deformed
mesh algebras of generalized Dynkin type

Pf(A)v A€ {An7Dn7E67E77E87Ln}
N (D), & € {By, Cn,Dn, Eg, E7, Eg, Fa, G}
(f elements of products of at most two copies

of certain finite dimensional local selfinjective
algebras)

which are basic, indecomposable, finite
dimensional selfinjective algebras with

dimgx P/ (A) = dimg P(A)
and

dimg A/ (A) = dimg A(D).

Theorem (Biatkowski-Erdmann-Skowronski,
2005). Let A be a deformed mesh algebra of

a generalized Dynkin type. Then there is a
positive integer m = m 4 such that Q9(A) =

A in mod A¥¢.
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Theorem (Biatkowski-Erdmann-Skowronski,

2005). Let A be a basic, indecomposable,

finite dimensional selfinjective but not Nakayama

algebra over an algebraically closed field K.

The following statements are equivalent:

(1) Q3(9S) is simple for any simple right A-
module S.

(2) A is isomorphic to a deformed mesh al-
gebra PF(A) or Af(A) of a generalized
Dynkin type A # Aq1,A>, L.

Theorem (Biatkowski-Erdmann-Skowronski,
2004). Let A be a basic, indecomposable,
finite dimensional selfinjective algebra over
an algebraically closed field K. The following
statements are equivalent:

(1) Q3(S) = NA(S) for any nonprojective
simple right A-module S.

(2) Q3(S) & N;1(S) for any nonprojective
simple right A-module S.

(3) A is isomorphic to a deformed prepro-
jective algebra PT(A) of a generalized
Dynkin type A.
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Theorem (Biatkowski-Erdmann-Skowronski,
2005). Let A be a basic, indecomposable,
finite dimensional selfinjective algebra over
an algebraically closed field K. The following
Sstatements are equivalent:

(1) 23(S) = S for any simple right A-module S.
(2) A is isomorphic to a deformed preprojec-
tive algebra PT(A) of type

A € {Dp(n even),Ez, Eg,Ly}.

Let A be a finite dimensional selfinjective al-
gebra of finite representation type over an
algebraically closed field K.

Let My, M>, ..., M, be a complete set of pair-
wise nonisomorphic indecomposable nonpro-
jective A-modules

M=M ©&Myd---O Mpn

A(N) = Enda (M) stable Auslander algebra
of A.

Observe that the functors 7a, Qa, NA =
Q/_\QT/\ have finite orders on modA.

Applying the Auslander-Reiten theorem to
¢ = mod modA = mod A(A) we obtain
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Theorem. Let A\ be a finite dimensional self-
injective K-algebra of finite representation
type and A the stable Auslander algebra of
N\. Moreover, let s be the order of Q/_\lr/\
on modA, t the order of Q% on modA and
r = lem(s,3t). Then

(1) A is a finite dimensional Frobenius K-
algebra with the Nakayama automorphism
v, Of order s.

Y Y

(2) 7 — idmoda and Q4 > idpmoda as
functors on modaA.

We note that, if Ais symmetric, then Q/_\lr/\ =
QA and r = lem(s,3t) = 3s.

Therefore there are many finite dimensional
Frobenius algebras A for which all indecom-
posable nonprojective modules are T4-periodic
and S2 4-periodic.
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