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NOTES ON THE GABRIEL-ROITER MEASURE

HENNING KRAUSE

1. Chains and length functions

1.1. The lexicographic order on finite chains. Let (S, 6) be a partially ordered
set. A subset X ⊆ S is a chain if x1 6 x2 or x2 6 x1 for each pair x1, x2 ∈ X. For
a finite chain X, we denote by minX its minimal and by maxX its maximal element,
using the convention

max ∅ < x < min ∅ for all x ∈ S.

We write Ch(S) for the set of all finite chains in S and consider on Ch(S) the lexicographic
order which is defined by

X 6 Y :⇐⇒ min(Y \X) 6 min(X \ Y )

for X, Y ∈ Ch(S).

Remark. (1) We have X 6 Y if X ⊆ Y .
(2) Suppose that S is totally ordered. Then Ch(S) is totally ordered. We may think

of X ∈ Ch(S) ⊆ {0, 1}S as a string of 0s and 1s which is indexed by the elements in S.
The usual lexicographic order on such strings coincides with the lexicographic order on
Ch(N).

Example. Let N = {1, 2, 3, · · · } and Q be the set of rational numbers together with
the natural ordering. Then the map

Ch(N) −→ Q, X 7→
∑
x∈X

2−x

is injective and order preserving, taking values in the interval [2−1, 1].

1.2. Length functions. Let (S, 6) be a partially ordered set. A length function on S
is by definition a map λ : S → N such that x < y in S implies λ(x) < λ(y). A length
function λ : S → N induces the following chain length function

S −→ Ch(N), x 7→ λ∗(x) := max{λ(X) | X ∈ Ch(S, x)},
where Ch(S, x) = {X ∈ Ch(S) | max X = x}.

1.3. Basic properties. Let λ : S → N be a length function and λ∗ : S → Ch(N) the
induced chain length function. We formulate some basic observations and collect a list
of properties (C0) – (C5) of λ∗.

Let x ∈ S and note that maxλ∗(x) = λ(x). For X ∈ Ch(N), we have

X \ {max X} = max{X ′ ∈ Ch(N) | X ′ < X and max X ′ < max X},
and therefore
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2 HENNING KRAUSE

(C0) λ∗(x) = maxx′<x λ∗(x′) ∪ {λ(x)}.
This shows that the function λ∗ : S → Ch(N) can be defined by induction on the length
of the elements in S. Next we state some basic properties which suggest to think of λ∗

as a refinement of λ.

Proposition. Let x, y ∈ S.
(C1) x 6 y implies λ∗(x) 6 λ∗(y).
(C2) λ∗(x) = λ∗(y) implies λ(x) = λ(y).
(C3) λ∗(x′) < λ∗(y) for all x′ < x and λ(x) > λ(y) imply λ∗(x) 6 λ∗(y).

Proof. Suppose x 6 y and let X ∈ Ch(S, x). Then Y = X ∪{y} ∈ Ch(S, y) and we have
λ(X) 6 λ(Y ) since λ(X) ⊆ λ(Y ). Thus λ∗(x) 6 λ∗(y). If λ∗(x) = λ∗(y), then

λ(x) = maxλ∗(x) = maxλ∗(y) = λ(y).

To prove (C3), we use (C0) and apply the following lemma with X = λ∗(x) and Y =
λ∗(y). �

Lemma. Let X, Y ∈ Ch(N). If X ′ := X \ {max X} < Y and max X > max Y , then
X 6 Y .

Proof. The assumption X ′ < Y implies by definition

minY \X ′ < minX ′ \ Y.

We consider two cases. Suppose first that X ′ ⊆ Y . If X ⊆ Y , then X 6 Y . Otherwise,

minY \X < max X = minX \ Y

and therefore X < Y . Now suppose that X ′ 6⊆ Y . We use again that max X > max Y ,
exclude the case Y ⊆ X, and obtain

minY \X = minY \X ′ < minX ′ \ Y = minX \ Y.

Thus X 6 Y and the proof is complete. �

We state some further elementary properties of the map λ∗.

Proposition. Let x, y ∈ S.
(C4) λ∗(x) 6 λ∗(y) or λ∗(x) > λ∗(y).
(C5) {λ∗(x) | x ∈ S and λ(x) 6 n} is finite for all n ∈ N.

Proof. (C4) is clear since Ch(N) is totally ordered. (C5) follows from the fact that
{X ∈ Ch(N) | max X 6 n} is finite for all n ∈ N. �

1.4. A recursive definition. Let λ : S → N be a length function. The function
λ∗ : S → Ch(N) can be defined by induction on the length of the elements in S be-
cause of the formula (C0). This observation suggests the following recursive definition
which avoids any reference to Ch(N). We define a surjective map µ : S → S/λ∗ and
a partial order on S/λ∗. More precisely, we provide an equivalence relation on S such
that S/λ∗ denotes the set of equivalence classes and µ(x) denotes the equivalence class
of each x ∈ S. The definition of µ is done by induction, that is, in step n > 1 we define
µ(x) and the relation µ(x) 6 µ(y) for all x, y ∈ S of length at most n as follows:

(1) If x or y is minimal, then

µ(x) 6 µ(y) :⇐⇒ min
x′6x

λ(x′) > min
y′6y

λ(y′).
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(2) If x and y both are not minimal, then

µ(x) = µ(y) :⇐⇒ max
x′<x

µ(x′) = max
y′<y

µ(y′) and λ(x) = λ(y);

µ(x) < µ(y) :⇐⇒

{
maxx′<x µ(x′) < maxy′<y µ(y′), or
maxx′<x µ(x′) = maxy′<y µ(y′) and λ(x) > λ(y).

Note that maxx′<x µ(x′) exists for each x ∈ S because the set {µ(y) | y ∈ S, λ(y) 6 n}
is finite for all n.

Proposition. Let λ : S → N be a length function. Then there exists an injective map
ν : S/λ∗ → Ch(N) making the following diagram commutative.

S
λ //

µ

��

λ∗

((QQQQQQQQQQQQQQ N

S/λ∗
ν // Ch(N)

max

OO

Moreover, ν(x) 6 ν(y) if and only if x 6 y for all x, y ∈ S/λ∗.

Proof. First observe, using the equation (C0), that λ∗ satisfies the defining relations of
µ. Now define ν(µ(x)) = λ∗(x) for µ(x) ∈ S/λ∗. The map ν is well-defined and injective
because λ∗ and µ satisfy the same relations. �

1.5. An axiomatic definition.

Proposition. Let λ : S → N be a length function. The induced chain length function
λ∗ : S → Ch(N) is the universal map µ : S → P into a partially ordered set P satisfying
for all x, y ∈ S the following:

(P1) x 6 y implies µ(x) 6 µ(y).
(P2) µ(x) = µ(y) implies λ(x) = λ(y).
(P3) µ(x′) < µ(y) for all x′ < x and λ(x) > λ(y) imply µ(x) 6 µ(y).

More precisely, for any such map µ we have

µ(x) 6 µ(y) ⇐⇒ λ∗(x) 6 λ∗(y) for all x, y ∈ S.

Proof. We have seen in (1.3) that λ∗ satisfies (P1) – (P3). So it remains to show that for
any map µ : S → P into a partially ordered set P , the conditions (P1) – (P3) uniquely
determine the relation µ(x) 6 µ(y) for any pair x, y ∈ S. In fact, we claim that (P1) –
(P3) imply µ(x) 6 µ(y) or µ(x) > µ(y). We proceed by induction on the length of the
elements in S. For elements of length n = 1, the assertion is clear. Now let n > 1 and
assume the assertion is true for all elements x ∈ S of length λ(x) < n. We choose for
each x ∈ S of length λ(x) 6 n a Gabriel-Roiter filtration, that is, a sequence

x1 < x2 < . . . < xγ(x)−1 < xγ(x) = x

in S such that x1 is minimal and maxx′<xi
µ(x′) = µ(xi−1) for all 1 < i 6 γ(x). Such

a filtration exists because the elements µ(x′) with x′ < x are totally ordered. Now
fix x, y ∈ S of length at most n and let I = {i > 1 | µ(xi) = µ(yi)}. We consider
r = max I and put r = 0 if I = ∅. There are two possible cases. Suppose first
that r = γ(x) or r = γ(y). If r = γ(x), then µ(x) = µ(xr) = µ(yr) 6 µ(y) by
(P1). Now suppose γ(x) 6= r 6= γ(y). Then we have λ(xr+1) 6= λ(yr+1) by (P2) and
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(P3). If λ(xr+1) > λ(yr+1), then we obtain µ(xr+1) < µ(yr+1), again using (P2) and
(P3). Iterating this argument, we get µ(x) = µ(xγ(x)) < µ(yr+1). From (P1) we get
µ(x) < µ(yr+1) 6 µ(y). Thus µ(x) 6 µ(y) or µ(x) > µ(y) and the proof is complete. �

2. Abelian length categories

2.1. Additive categories. A categoryA is additive if every finite family X1, X2, . . . , Xn

of objects has a coproduct
X1 ⊕X2 ⊕ . . .⊕Xn,

each set HomA(A,B) is an abelian group, and the composition maps

HomA(A,B)×HomA(B,C) −→ HomA(A,C)

are bilinear.

2.2. Abelian categories. An additive category A is abelian, if every map φ : A → B
has a kernel and a cokernel, and if the canonical factorization

Ker φ
φ′

// A
φ

//

��

B
φ′′

// Cokerφ

Cokerφ′
φ̄

// Ker φ′′

OO

of φ induces an isomorphism φ̄.

Example. The category ModΛ of (right) modules over an associative ring Λ is an
abelian category.

2.3. Subobjects. Let A be an abelian category. We say that two monomorphisms
X1 → X and X2 → X are equivalent, if there exists an isomorphism X1 → X2 making
the following diagram commutative.

X1

!!C
CCC

// X2

}}{{{
{

X

An equivalence class of monomorphisms into X is called a subobject of X. Given subob-
jects X1 → X and X2 → X, we write X1 ⊆ X2 if there is a morphism X1 → X2 making
the above diagram commutative. An object X 6= 0 is simple if X ′ ⊆ X implies X ′ = 0
or X ′ = X.

2.4. Length categories. Let A be an abelian category. An object X has finite length
if it has a finite composition series

0 = X0 ⊆ X1 ⊆ . . . ⊆ Xn−1 ⊆ Xn = X

(i.e. each Xi/Xi−1 is simple). In this case the length of a composition series is an
invariant of X by the Jordan-Hölder Theorem; it is called the length of X and is denoted
by `(X). Note that X has finite length if and only if X is both artinian (i.e. satisfies the
descending chain condition on subobjects) and noetherian (i.e. satisfies the ascending
chain condition on subobjects).

Definition. An abelian category is called a length category if all objects have finite
length and if the isomorphism classes of objects form a set.
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An object X 6= 0 is called indecomposable if X = X1 ⊕X2 implies X1 = 0 or X2 = 0.
A finite length object admits a finite direct sum decomposition into indecomposable
objects having local endomorphism rings. Moreover, such a decomposition is unique up
to an isomorphism by the Krull-Remak-Schmidt Theorem.

We denote by indA the set of isomorphism classes of indecomposable objects of A.

Example. (1) Let Λ be a right artinian ring. Then the category of finitely generated
Λ-modules form a length category which we denote by modΛ.

(2) Let k be a field and Q be any quiver. Then the finite dimensional k-linear repre-
sentations of Q form a length category.

3. The Gabriel-Roiter measure

3.1. The definition. Let A be an abelian length category. The isomorphism classes of
objects of A are partially ordered as follows:

X 6 Y :⇐⇒ there exists a monomorphism X → Y.

We consider the length function ` : indA → N and the induced map `∗ : indA → Ch(N)
is by definition the Gabriel-Roiter measure of A. We will not work with this definition
but take instead the properties (C1) – (C5) of λ∗. Thus we think of the Gabriel-Roiter
measure as a map µ : indA → P into a partially ordered set P , specifying only the
relation µ(X) 6 µ(Y ) for pairs X, Y ∈ indA.

Next we establish further properties (C6) – (C8) of the Gabriel-Roiter measure which
depend on the fact that A is a length category.

3.2. Gabriel-Roiter filtrations. A sequence X1 < X2 < . . . < Xn = X in indA is
called a Gabriel-Roiter filtration of X if X1 is minimal and maxX′<Xi

µ(X ′) = µ(Xi−1)
for all 1 < i 6 n. Clearly, each X admits such a filtration and the values µ(Xi) are
uniquely determined by X. Note that X1 is a simple object. Moreover, the value µ(X1)
is minimal among all values µ(Y ).

Proposition. Let X, Y ∈ indA.
(C6) X ∈ indA is simple if and only if µ(X) 6 µ(Y ) for all Y ∈ indA.
(C7) Suppose that µ(X) < µ(Y ). Then there are Y ′ < Y ′′ 6 Y in indA such that

µ(Y ′) = max
U<Y ′′

µ(U) 6 µ(X) < µ(Y ′′) and `(Y ′) 6 `(X).

Proof. For (C6), one uses that each indecomposable object has a simple subobject. To
prove (C7), fix a Gabriel-Roiter filtration Y1 < Y2 < . . . < Yn = Y of Y . We have
µ(Y1) 6 µ(X) because Y1 is simple and find therefore some i such that µ(Yi) 6 µ(X) <
µ(Yi+1). Now put Y ′ = Yi and Y ′′ = Yi+1. �

3.3. The main property.

Proposition (Gabriel). Let X, Y1, . . . , Yr ∈ indA.
(C8) Suppose that X ⊆ ⊕r

i=1Yi. Then µ(X) 6 max µ(Yi) and X is a direct summand
if µ(X) = maxµ(Yi).

Proof. The proof uses only the properties (C1) – (C3) of µ. Fix a monomorphism
φ : X → Y = ⊕iYi. We proceed by induction on n = `(X) + `(Y ). First observe that
µ(X) is minimal if and only if X is simple. Thus the case `(X) = 1 or n 6 2 is clear. Now
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suppose n > 2. We can assume that for each i the ith component φi : X → Yi of φ is an
epimorphism. Otherwise choose for each i a decomposition Y ′

i = ⊕jYij of the image of
φi into indecomposables. Then we use (C1) and have µ(X) 6 max µ(Yij) 6 max µ(Yi)
because `(X) + `(Y ′) < n and Yij 6 Yi for all j. Now suppose that each φi is an
epimorphism. Thus `(X) > `(Yi) for all i. Let X ′ ⊂ X be a proper indecomposable
subobject. Then µ(X ′) 6 max µ(Yi) because `(X ′) + `(Y ) < n, and X ′ is a direct
summand if µ(X ′) = max µ(Yi). We can exclude the case that µ(X ′) = max µ(Yi)
because then X ′ is a proper direct summand of X, which is impossible. Now we apply
(C3) and obtain µ(X) 6 max µ(Yi). Finally, suppose that µ(X) = max µ(Yi) = µ(Yk)
for some k. We claim that we can choose k such that φk is an epimorphism. Otherwise,
replace all Yi with µ(X) = µ(Yi) by the image Y ′

i = ⊕jYij of φi as before. We obtain
µ(X) 6 max µ(Yij) < µ(Yk) since Ykj < Yk for all j, using (C1) and (C2). This
is a contradiction. Thus φk is an epimorphism and in fact an isomorphism because
`(X) = `(Yk) by (C2). In particular, X is a direct summand of ⊕iYi. This completes
the proof. �

Corollary. Let X, Y ∈ indA and suppose that X ⊂ Y with µ(X) = maxY ′<Y µ(Y ′). If
X ⊆ U ⊂ Y in A, then X is a direct summand of U .

Proof. Let U = ⊕iUi be a decomposition into indecomposables. Now apply (C8). We
obtain µ(X) 6 max µ(Ui) 6 µ(Y ) and our assumption on X ⊂ Y implies that X is a
direct summand of U . �

3.4. Gabriel-Roiter inclusions.

Proposition (Ringel). Let X, Y ∈ indA and suppose that X ⊂ Y with µ(X) =
maxY ′<Y µ(Y ′). Then Y/X is an indecomposable object.

Proof. Let Z = Y/X and denote by π : Y → Z the canonical map. Now assume that
Z = Z ′ ⊕ Z ′′ and Z ′′ 6= 0. Then we have X ⊆ π−1(Z ′) ⊂ Y and therefore the inclusion
X → π−1(Z ′) splits by Corollary 3.3. Thus the inclusion Z ′ → Z factors through π via
a map Z ′ → Y . This map is a split monomorphism and therefore Z ′ = 0. �

Corollary. Let Y be an indecomposable object in A which is not simple. Then there
exists a short exact sequence 0 → X → Y → Z → 0 in A such that X and Z are
indecomposable.

Proof. Take X ⊂ Y with µ(X) = maxY ′<Y µ(Y ′). �

4. Finiteness results

4.1. Covariant finiteness. A subcategory C of A is called covariantly finite if every
object X ∈ A admits a left C-approximation, that is, a map X → Y with Y ∈ C such
that the induced map HomA(Y, C) → HomA(X, C) is surjective for all C ∈ C. We have
also the dual notion: a subcategory C is contravariantly finite if every object in A admits
a right C-approximation.

Lemma. Let C be a subcategory of A which is closed under taking subobjects. Then C
is a covariantly finite subcategory of A.

Proof. Fix X ∈ A. Let X ′ ⊆ X be minimal among the kernels of all maps X → Y with
Y ∈ C. Then the canonical map X → X/X ′ is a left C-approximation. �
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Remark. The proof shows that the inclusion functor C → A admits a left adjoint
F : A → C which takes X ∈ A to X/X ′. Note that the adjunction map X → FX is a
left C-approximation.

Let M be any set of values µ(X). Then we define the subcategory

A(M) := {⊕iXi ∈ A | µ(Xi) ∈ M for all i}.

Proposition. Let M be a set of values µ(X) which is closed under predecessors, that is,
µ(X) 6 µ(Y ) ∈ M implies µ(X) ∈ M . Then A(M) is a covariantly finite subcategory
of A.

Proof. The subcategory A(M) is closed under taking subobjects by (C8). �

4.2. Immediate successors.

Lemma. Let X, Y ∈ indA and suppose that X < Y with µ(X) = maxY ′<Y µ(Y ′). If
X → X̄ is a left almost split map in A, then Y is a factor object of X̄.

Proof. The monomorphism X → Y factors through X → X̄ via a map φ : X̄ → Y . Let
U be the image of φ. Applying Corollary 3.3, we find that U = Y . �

Proposition. Suppose that each object in indA admits a left almost split map. Let
X ∈ indA such that {Y ∈ indA | µ(Y ) 6 µ(X)} is finite. Then there exists a minimal
element in

{µ(Y ) | Y ∈ indA and µ(X) < µ(Y )}
provided the set is not empty.

Proof. We fix for each Y ∈ indA a left almost split map Y → Ȳ . Let n = `(Ȳ )
be the maximal value such that µ(Y ) 6 µ(X). Now let µ(Y ) > µ(X). We apply
(C7) and find Y ′ < Y ′′ 6 Y in indA such that µ(Y ′) 6 µ(X) < µ(Y ′′) 6 µ(Y ) and
µ(Y ′) = maxU<Y ′′ µ(U). The preceding lemma implies `(Y ′′) 6 n, and (C5) implies
that the number of values µ(Y ′′) is finite. Thus there exists a minimal element among
those µ(Y ′′). �

Remark. The assumption on X that {Y ∈ indA | µ(Y ) 6 µ(X)} is finite can be
removed provided we have a bound n ∈ N such that `(Y ) 6 `(X) implies the existence
of a left almost split map Y → Ȳ with `(Ȳ ) 6 n. (Such a bound exists for instance
when A = modΛ for an artin algebra Λ.)

4.3. A finiteness criterion.

Proposition. Let A be a length category with left almost split maps and only finitely
many isomorphism classes of simple objects. Suppose that C is an additive subcategory
such that

(1) C is covariantly finite in A, and
(2) there exists n ∈ N such that `(X) 6 n for all indecomposable X ∈ C.

Then there are only finitely many isomorphism classes of indecomposable objects in C.

Proof. We claim that we can construct all indecomposable objects X ∈ C in at most
2n steps from the finitely many simple objects in A as follows. Choose a non-zero map
S → X from a simple object S and factor this map through the left C-approximation
S → S′. Take an indecomposable direct summand X0 of S′ such that the component
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S → X0 → X is non-zero. Stop if X0 → X is an isomorphism. Otherwise take a left
almost split map X0 → Y0 and a left C-approximation Y0 → Z0. The map X0 → X
factors through the composition X0 → Y0 → Z0 and we choose an indecomposable direct
summand X1 of Z0 such that the component X0 → Y0 → X1 → X is non-zero. Again,
we stop if X1 → X is an isomorphism. Otherwise, we continue as before and obtain in
step r a sequence of non-invertible maps

X0 → X1 → X2 → . . . → Xr

such that the compsition is non-zero. The Harada-Sai Lemma implies that r < 2n

because `(Xi) 6 n for all i by our assumption. Thus X is isomorphic to Xi for some
i < 2n, and we obtain X in at most 2n steps, having in each step only finitely many
choices by taking an indecomposable direct summand. We conclude that C has only a
finite number of indecomposable objects. �

4.4. The initial segment.

Theorem (Ringel). Let A be a length category such that indA is infinite. Suppose
also that A has only finitely many isomorphism classes of simple objects and that every
indecomposable object admits a left almost split map. Then there exist infinitely many
values µ(X1) < µ(X2) < µ(X3) < . . . of the Gabriel-Roiter measure of A having the
following properties.

(1) If µ(X) 6= µ(Xi) for all i, then µ(Xi) < µ(X) for all i.
(2) The set {X ∈ indA | µ(X) = µ(Xi)} is finite for all i.

Proof. We construct the values µ(Xi) by induction as follows. Take for X1 any simple
object. Observe that µ(X1) is minimal among all µ(X) by (C6) and that only finitely
many X ∈ indA satisfy µ(X) = µ(X1) because A has only finitely many simple objects.
Now suppose that µ(X1) < . . . < µ(Xn) have been constructed, satisfying the conditions
(1) and (2) for all 1 6 i 6 n. We can apply Proposition 4.2 and find an immediate
successor µ(Xn+1) of µ(Xn). It remains to show that the set {X ∈ indA | µ(X) =
µ(Xn+1)} is finite. To this end consider M = {µ(X1), . . . , µ(Xn+1)}. We know from
Proposition 4.1 that A(M) is a covariantly finite subcategory. Clearly, `(X) is bounded
by max{`(Xi) | 1 6 i 6 n + 1} for all indecomposable X ∈ A(M). We conclude
from Proposition 4.3 that the number of indecomposables in A(M) is finite. Thus
{X ∈ indA | µ(X) = µ(Xn+1)} is finite and the proof is complete. �

Corollary (Brauer-Thrall I). Let A be a length category satisfying the above conditions.
Then for every n ∈ N there exists an indecomposable object X ∈ A with `(X) > n.

Proof. Use that for fixed n ∈ N, there are only finitely many values µ(X) with `(X) 6 n,
by (C5). �

4.5. The terminal segment.

Theorem (Ringel). Let A be a length category such that indA is infinite. Suppose
also that A has a cogenerator (i.e. an object Q such that each object in A admits a
monomorphism into a direct sum of copies of Q) and that every indecomposable ob-
ject admits a right almost split map. Then there exist infinitely many values µ(X1) >
µ(X2) > µ(X3) > . . . of the Gabriel-Roiter measure of A having the following properties.

(1) If µ(X) 6= µ(Xi) for all i, then µ(Xi) > µ(X) for all i.



NOTES ON THE GABRIEL-ROITER MEASURE 9

(2) The set {X ∈ indA | µ(X) = µ(Xi)} is finite for all i.

The proof is based on the following lemma.

Lemma. Let A be a length category such that every indecomposable object admits a
right almost split map. Let X ∈ A and denote by AX the subcategory formed by all
objects in A having no indecomposable direct summand which is isomorphic to a direct
summand of X. Then AX is a contravariantly finite subcategory of A.

Proof. See Proposition 3.13 in [1]. �

Proof of the theorem. We construct the values µ(Xi) by induction as follows. Take for
X1 any indecomposable direct summand X of Q such that µ(X) is maximal. Observe
that µ(X1) is maximal among all µ(X) with X ∈ indA by (C8) and that only finitely
many X ∈ indA satisfy µ(X) = µ(X1) because Q has only finitely many indecomposable
direct summands. Now suppose that µ(X1) > . . . > µ(Xn) have been constructed,
satisfying the conditions (1) and (2) for all 1 6 i 6 n. Denote by P the direct sum of
all X ∈ indA with µ(X) > µ(Xn) and let P ′ → P ⊕ Q be a right AP -approximation.
Now take for Xn+1 any indecomposable direct summand X of P ′ such that µ(X) is
maximal. Observe that any indecomposable object X ∈ AP is cogenerated by P ⊕ Q
and therefore by P ′. Thus (C8) implies that µ(X) is bounded by µ(Xn+1). Moreover, if
µ(X) = µ(Xn+1), then X is isomorphic to a direct summand of P ′. Thus {X ∈ indA |
µ(X) = µ(Xn+1)} is finite and the proof is complete. �
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