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NOTES ON THE GABRIEL-ROITER MEASURE

HENNING KRAUSE

1. CHAINS AND LENGTH FUNCTIONS

1.1. The lexicographic order on finite chains. Let (S,<) be a partially ordered
set. A subset X C S is a chain if 1 < x9 or x2 < x1 for each pair x1,22 € X. For
a finite chain X, we denote by min X its minimal and by max X its maximal element,
using the convention

max() < x <min@ forall ze€S.

We write Ch(.S) for the set of all finite chains in S and consider on Ch(S) the lezicographic
order which is defined by
X<Y <= minlY\X)<minX\Y)
for X,Y € Ch(S).
Remark. (1) We have X <Y if X CY.
(2) Suppose that S is totally ordered. Then Ch(S) is totally ordered. We may think
of X € Ch(S) C {0,1}" as a string of 0s and 1s which is indexed by the elements in S.

The usual lexicographic order on such strings coincides with the lexicographic order on
Ch(N).

Example. Let N = {1,2,3,---} and Q be the set of rational numbers together with
the natural ordering. Then the map

Ch(N) —Q, XY 277
reX

is injective and order preserving, taking values in the interval 271, 1].

1.2. Length functions. Let (5, <) be a partially ordered set. A length function on S
is by definition a map A: S — N such that z < y in S implies A(z) < A(y). A length
function A: S — N induces the following chain length function

S — Ch(N), z+— A (z):=max{\(X) | X € Ch(S,x)},
where Ch(S,z) = {X € Ch(S) | max X = z}.
1.3. Basic properties. Let A\: S — N be a length function and A\*: S — Ch(N) the
induced chain length function. We formulate some basic observations and collect a list

of properties (C0) — (C5) of \*.
Let x € S and note that max A*(xz) = A(x). For X € Ch(N), we have

X\ {max X} = max{X’ € Ch(N) | X’ < X and max X' < max X},
and therefore
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2 HENNING KRAUSE

(C0) A*(x) = maxy <y A*(2") U{A(z)}.
This shows that the function A*: S — Ch(N) can be defined by induction on the length
of the elements in S. Next we state some basic properties which suggest to think of \*
as a refinement of .
Proposition. Let x,y € S.

(Cl) = <y implies X*(x) < A" (y).

(C2) M(x) = X*(y) implies A\(x) = A(y).

(C3) X*(2) < X*(y) for all ¥’ < x and N x) = My) imply X*(x) < X*(y).
Proof. Suppose x < y and let X € Ch(S,x). Then Y = X U{y} € Ch(S,y) and we have
A(X) < A(Y) since A(X) C A(Y). Thus X*(x) < X*(y). If X*(z) = X\*(y), then

A(z) = max A" (z) = max A*(y) = A(y).

To prove (C3), we use (C0) and apply the following lemma with X = A*(z) and YV =
A*(y)- O

Lemma. Let X,Y € Ch(N). If X' := X \ {max X} <Y and max X > maxY, then
X<Y.

Proof. The assumption X’ <Y implies by definition
minY \ X’ < min X"\ Y.
We consider two cases. Suppose first that X’ C Y. If X C Y, then X < Y. Otherwise,
minY \ X <maxX =min X \Y
and therefore X < Y. Now suppose that X’ Z Y. We use again that max X > maxY,
exclude the case Y C X, and obtain
minY \ X =minY \ X' <min X'\ Y =min X \ Y.
Thus X <Y and the proof is complete. O

We state some further elementary properties of the map A\*.

Proposition. Let x,y € S.
(C4) A*(x) < X*(y) or A*(z) = A (y).
(C5) {X\*(x) |z € S and X\(z) < n} is finite for alln € N.

Proof. (C4) is clear since Ch(N) is totally ordered. (C5) follows from the fact that
{X € Ch(N) | max X < n} is finite for all n € N. O

1.4. A recursive definition. Let A\: S — N be a length function. The function
A*: S — Ch(N) can be defined by induction on the length of the elements in S be-
cause of the formula (C0). This observation suggests the following recursive definition
which avoids any reference to Ch(N). We define a surjective map pu: S — S/A* and
a partial order on S/A*. More precisely, we provide an equivalence relation on S such
that S/A* denotes the set of equivalence classes and p(z) denotes the equivalence class
of each x € S. The definition of i is done by induction, that is, in step n > 1 we define
p(x) and the relation p(x) < p(y) for all z,y € S of length at most n as follows:

(1) If z or y is minimal, then

p(r) < ply) = minA(z') > min A\(¢/).
' Y’y
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(2) If z and y both are not minimal, then
o) =ply) = maxp(e’) =maxu(y) and Az) = My);

maxy <, ((2') < maxy <, u(y'), or
) < <
wlo) < uly) {maXm (') = maxy < u(y') and A(z) > A(y).

Note that max, ., p(z’) exists for each x € S because the set {u(y) | y € S, A\(y) < n}
is finite for all n.

Proposition. Let A: S — N be a length function. Then there exists an injective map
v: S/\* — Ch(N) making the following diagram commutative.

S A > N

.| \ [

S/A* ——“ 5 Ch(N)

Moreover, v(z) < v(y) if and only if x <y for all x,y € S/\*.

Proof. First observe, using the equation (C0), that A\* satisfies the defining relations of
w. Now define v(u(x)) = A*(x) for p(z) € S/A*. The map v is well-defined and injective
because A* and u satisfy the same relations. O

1.5. An axiomatic definition.

Proposition. Let A\: S — N be a length function. The induced chain length function
A*: S — Ch(N) is the universal map p: S — P into a partially ordered set P satisfying
for all x,y € S the following:

(P1) = <y implies p(x) < p(y).

(P2) p(x) = ply) implies A(z) = A(y).

(P3) p(2) < puly) for all 2" <z and N(z) = A(y) imply p(z) < p(y).
More precisely, for any such map p we have

p(x) <ply) <= AN(z)<A(y) forall z,yels.

Proof. We have seen in (1.3) that \* satisfies (P1) — (P3). So it remains to show that for
any map p: S — P into a partially ordered set P, the conditions (P1) — (P3) uniquely
determine the relation p(x) < p(y) for any pair x,y € S. In fact, we claim that (P1) -
(P3) imply pu(x) < p(y) or p(x) > u(y). We proceed by induction on the length of the
elements in S. For elements of length n = 1, the assertion is clear. Now let n > 1 and
assume the assertion is true for all elements x € S of length A(x) < n. We choose for
each z € S of length \(z) < n a Gabriel-Roiter filtration, that is, a sequence

1 <2 < ... < Tyizg)-1 < Ty(z) =T

in S such that z; is minimal and max, ,, p(z') = p(x;—1) for all 1 < i < y(x). Such
a filtration exists because the elements p(z') with ' < z are totally ordered. Now
fix z,y € S of length at most n and let I = {i > 1 | p(z;) = p(yi)}. We consider
r = max] and put r = 0 if I = (). There are two possible cases. Suppose first
that r = y(z) or r = 3(y). If r = y(x), then p(x) = p(xr) = ply,) < ply) by
(P1). Now suppose y(z) # r # 7(y). Then we have A(x,+1) # A(yr+1) by (P2) and
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(P3). If A(wy41) > Myr41), then we obtain p(z,+1) < p(yr4+1), again using (P2) and
(P3). Iterating this argument, we get u(z) = (2 () < (yr1). From (P1) we get
w(x) < plyr+1) < w(y). Thus p(z) < p(y) or p(x) > p(y) and the proof is complete. O

2. ABELIAN LENGTH CATEGORIES

2.1. Additive categories. A category A is additive if every finite family X1, Xo,..., X,
of objects has a coproduct

X19Xo8...0 X,
each set Hom4(A, B) is an abelian group, and the composition maps
Hom 4 (A, B) x Homy4(B,C) — Homu (A4, C)
are bilinear.

2.2. Abelian categories. An additive category A is abelian, if every map ¢: A — B
has a kernel and a cokernel, and if the canonical factorization

Ker ¢ ¢ A ¢ > B ? Coker ¢

I

Coker ¢/ %\ Ker ¢

of ¢ induces an isomorphism ¢.

Example. The category Mod A of (right) modules over an associative ring A is an
abelian category.

2.3. Subobjects. Let A be an abelian category. We say that two monomorphisms
X1 — X and Xs — X are equivalent, if there exists an isomorphism X; — X5 making
the following diagram commutative.

X1 4>X2

N
X

An equivalence class of monomorphisms into X is called a subobject of X. Given subob-
jects X1 — X and X9 — X, we write X; C Xy if there is a morphism X; — X5 making
the above diagram commutative. An object X # 0 is simple if X' C X implies X' =0
or X' = X.

2.4. Length categories. Let A be an abelian category. An object X has finite length
if it has a finite composition series

0=XoCX;C...CX,,1CX, =X

(i.e. each X;/X; ;1 is simple). In this case the length of a composition series is an
invariant of X by the Jordan-Holder Theorem; it is called the length of X and is denoted
by ¢(X). Note that X has finite length if and only if X is both artinian (i.e. satisfies the
descending chain condition on subobjects) and noetherian (i.e. satisfies the ascending
chain condition on subobjects).

Definition. An abelian category is called a length category if all objects have finite
length and if the isomorphism classes of objects form a set.
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An object X # 0 is called indecomposable if X = X1 @ X5 implies X1 =0 or Xo = 0.
A finite length object admits a finite direct sum decomposition into indecomposable
objects having local endomorphism rings. Moreover, such a decomposition is unique up
to an isomorphism by the Krull-Remak-Schmidt Theorem.

We denote by ind A the set of isomorphism classes of indecomposable objects of A.

Example. (1) Let A be a right artinian ring. Then the category of finitely generated
A-modules form a length category which we denote by mod A.

(2) Let k be a field and @ be any quiver. Then the finite dimensional k-linear repre-
sentations of ) form a length category.

3. THE GABRIEL-ROITER MEASURE

3.1. The definition. Let A be an abelian length category. The isomorphism classes of
objects of A are partially ordered as follows:

X <Y <= there exists a monomorphism X — Y.

We consider the length function ¢: ind A — N and the induced map ¢*: ind A — Ch(N)
is by definition the Gabriel-Roiter measure of A. We will not work with this definition
but take instead the properties (C1) — (C5) of A\*. Thus we think of the Gabriel-Roiter
measure as a map p: ind A — P into a partially ordered set P, specifying only the
relation pu(X) < u(Y) for pairs X,Y € ind A.

Next we establish further properties (C6) — (C8) of the Gabriel-Roiter measure which
depend on the fact that A is a length category.

3.2. Gabriel-Roiter filtrations. A sequence X; < Xo < ... < X, = X in ind A is
called a Gabriel-Roiter filtration of X if X; is minimal and maxx/<x, p(X') = p(X;—1)
for all 1 < ¢ < n. Clearly, each X admits such a filtration and the values p(X;) are
uniquely determined by X. Note that X is a simple object. Moreover, the value p(X1)
is minimal among all values p(Y).

Proposition. Let X,Y € ind A.
(C6) X € ind A is simple if and only if n(X) < uw(Y) for allY € ind A.
(C7) Suppose that u(X) < p(Y'). Then there are Y <Y" <Y in ind A such that

pY") = max p(U) < p(X) <p(Y")  and L(Y') <UX).

Proof. For (C6), one uses that each indecomposable object has a simple subobject. To
prove (C7), fix a Gabriel-Roiter filtration ¥; < Y2 < ... <Y, =Y of Y. We have
(Y1) < pu(X) because Y; is simple and find therefore some ¢ such that p(Y;) < p(X) <
1(Yiq1). Now put Y/ =Y; and Y =Y, 4. O

3.3. The main property.

Proposition (Gabriel). Let X,Y7,...,Y, € ind A.
(C8) Suppose that X C @!_,Y;. Then u(X) < max u(Y;) and X is a direct summand
if (X)) = max u(Y5).
Proof. The proof uses only the properties (C1) — (C3) of pu. Fix a monomorphism

¢: X =Y =&;Y;. We proceed by induction on n = ¢(X) 4+ ¢(Y). First observe that
(X)) is minimal if and only if X is simple. Thus the case £(X) = 1 or n < 2 is clear. Now
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suppose n > 2. We can assume that for each i the ith component ¢;: X — Y; of ¢ is an
epimorphism. Otherwise choose for each ¢ a decomposition Y, = &;Y;; of the image of
¢; into indecomposables. Then we use (C1) and have p(X) < max p(Yj;) < max pu(Y;)
because £(X) + ¢(Y') < n and Y;; < Y; for all j. Now suppose that each ¢; is an
epimorphism. Thus ¢(X) > £(Y;) for all i. Let X’ C X be a proper indecomposable
subobject. Then p(X’) < max u(Y;) because £(X') + £(Y) < n, and X' is a direct
summand if u(X’) = maxpu(Y;). We can exclude the case that u(X’) = max u(Y;)
because then X’ is a proper direct summand of X, which is impossible. Now we apply
(C3) and obtain pu(X) < max p(Y;). Finally, suppose that pu(X) = max u(Y;) = p(Y)
for some k. We claim that we can choose k such that ¢y is an epimorphism. Otherwise,
replace all Y; with p(X) = p(Y;) by the image Y/ = &,Y; of ¢; as before. We obtain
u(X) < maxp(Yi;) < p(Yy) since Yi; < Y for all j, using (C1) and (C2). This
is a contradiction. Thus ¢, is an epimorphism and in fact an isomorphism because
(X)) = £(Yy) by (C2). In particular, X is a direct summand of @;Y;. This completes
the proof. O

Corollary. Let X,Y € ind A and suppose that X CY with u(X) = maxy'y p(Y'). If
X CUCY in A, then X is a direct summand of U.

Proof. Let U = @;U; be a decomposition into indecomposables. Now apply (C8). We
obtain p(X) < max p(U;) < p(Y) and our assumption on X C Y implies that X is a
direct summand of U. g

3.4. Gabriel-Roiter inclusions.

Proposition (Ringel). Let X,Y € ind A and suppose that X C Y with u(X) =
maxy/ <y u(Y'). Then Y/X is an indecomposable object.

Proof. Let Z = Y/X and denote by 7: Y — Z the canonical map. Now assume that
Z=27'®Z" and Z" # 0. Then we have X C 7~ 1(Z') C Y and therefore the inclusion
X — 7 1(Z") splits by Corollary 3.3. Thus the inclusion Z’ — Z factors through 7 via
amap Z' — Y. This map is a split monomorphism and therefore Z’ = 0. U

Corollary. Let Y be an indecomposable object in A which is not simple. Then there
exists a short exact sequence 0 — X — Y — Z — 0 in A such that X and Z are
indecomposable.

Proof. Take X C Y with u(X) = maxy' -y u(Y’). O

4. FINITENESS RESULTS

4.1. Covariant finiteness. A subcategory C of A is called covariantly finite if every
object X € A admits a left C-approximation, that is, a map X — Y with Y € C such
that the induced map Hom4(Y,C) — Hom4(X, C) is surjective for all C' € C. We have
also the dual notion: a subcategory C is contravariantly finite if every object in A admits
a right C-approximation.

Lemma. Let C be a subcategory of A which is closed under taking subobjects. Then C
is a covariantly finite subcategory of A.

Proof. Fix X € A. Let X’ C X be minimal among the kernels of all maps X — Y with
Y € C. Then the canonical map X — X/X' is a left C-approximation. O
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Remark. The proof shows that the inclusion functor C — A admits a left adjoint
F: A — C which takes X € A to X/X’'. Note that the adjunction map X — FX is a
left C-approximation.

Let M be any set of values pu(X). Then we define the subcategory
AM) = {;X; € A| p(X;) € M for all i}.

Proposition. Let M be a set of values (X)) which is closed under predecessors, that is,
w(X) < p(Y) € M implies u(X) € M. Then A(M) is a covariantly finite subcategory
of A.

Proof. The subcategory A(M) is closed under taking subobjects by (C8). O
4.2. Immediate successors.

Lemma. Let X,Y € ind A and suppose that X <Y with u(X) = maxyrcy u(Y’). If
X — X is a left almost split map in A, then'Y is a factor object of X.

Proof. The monomorphism X — Y factors through X — X via a map ¢: X — Y. Let
U be the image of ¢. Applying Corollary 3.3, we find that U =Y. 0

Proposition. Suppose that each object in ind A admits a left almost split map. Let
X €ind A such that {Y € ind A | w(Y') < u(X)} is finite. Then there exists a minimal
element in

{n¥) Y €eind A and p(X) < p(Y)}

provided the set is not empty.

Proof. We fix for each Y € ind A a left almost split map ¥ — Y. Let n = £(Y)
be the maximal value such that pu(Y) < wu(X). Now let u(Y) > u(X). We apply
(C7) and find Y/ < Y” <Y in ind A such that u(Y’) < p(X) < p(Y"”) < p(Y) and
w(Y') = maxy<yr u(U). The preceding lemma implies £(Y"”) < n, and (C5) implies
that the number of values p(Y") is finite. Thus there exists a minimal element among
those u(Y”). O

Remark. The assumption on X that {Y € ind A | p(Y) < wu(X)} is finite can be
removed provided we have a bound n € N such that ¢(Y) < ¢(X) implies the existence
of a left almost split map Y — Y with £(Y) < n. (Such a bound exists for instance
when A = mod A for an artin algebra A.)

4.3. A finiteness criterion.

Proposition. Let A be a length category with left almost split maps and only finitely
many isomorphism classes of simple objects. Suppose that C is an additive subcategory
such that

(1) C is covariantly finite in A, and
(2) there exists n € N such that £(X) < n for all indecomposable X € C.
Then there are only finitely many isomorphism classes of indecomposable objects in C.

Proof. We claim that we can construct all indecomposable objects X € C in at most
2™ steps from the finitely many simple objects in A as follows. Choose a non-zero map
S — X from a simple object S and factor this map through the left C-approximation
S — §’. Take an indecomposable direct summand X, of S’ such that the component
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S — Xg — X is non-zero. Stop if Xy — X is an isomorphism. Otherwise take a left
almost split map Xg — Y and a left C-approximation Yy — Zy. The map Xg — X
factors through the composition Xy — Yy — Zp and we choose an indecomposable direct
summand X of Zy such that the component Xy — Yy — X7 — X is non-zero. Again,
we stop if X1 — X is an isomorphism. Otherwise, we continue as before and obtain in
step 7 a sequence of non-invertible maps

Xo—-X1—-Xo—...> X,

such that the compsition is non-zero. The Harada-Sai Lemma implies that r < 2"
because ¢(X;) < n for all i by our assumption. Thus X is isomorphic to X; for some
1 < 2™, and we obtain X in at most 2" steps, having in each step only finitely many
choices by taking an indecomposable direct summand. We conclude that C has only a
finite number of indecomposable objects. O

4.4. The initial segment.

Theorem (Ringel). Let A be a length category such that ind A is infinite. Suppose
also that A has only finitely many isomorphism classes of simple objects and that every
indecomposable object admits a left almost split map. Then there exist infinitely many
values p(X1) < w(Xe) < u(Xs) < ... of the Gabriel-Roiter measure of A having the
following properties.

(1) If (X)) # u(X;) for all i, then u(X;) < uw(X) for all i.

(2) The set {X € ind A | u(X) = pu(X;)} is finite for all i.

Proof. We construct the values p(X;) by induction as follows. Take for X; any simple
object. Observe that p(X7) is minimal among all u(X) by (C6) and that only finitely
many X € ind A satisfy u(X) = u(X;) because A has only finitely many simple objects.
Now suppose that u(X7) < ... < u(X,) have been constructed, satisfying the conditions
(1) and (2) for all 1 < i < mn. We can apply Proposition 4.2 and find an immediate
successor p(Xy,41) of u(X,). It remains to show that the set {X € ind A | u(X) =
#(Xn41)} is finite. To this end consider M = {u(X1),...,u(Xn+1)}. We know from
Proposition 4.1 that A(M) is a covariantly finite subcategory. Clearly, £(X) is bounded
by max{¢(X;) | 1 < i < n+ 1} for all indecomposable X € A(M). We conclude
from Proposition 4.3 that the number of indecomposables in A(M) is finite. Thus
{X €eind A | u(X) = p(Xpn+1)} is finite and the proof is complete.

Corollary (Brauer-Thrall I). Let A be a length category satisfying the above conditions.
Then for every n € N there exists an indecomposable object X € A with {(X) > n.

Proof. Use that for fixed n € N, there are only finitely many values p(X) with £(X) < n,
by (C5). O

4.5. The terminal segment.

Theorem (Ringel). Let A be a length category such that ind A is infinite. Suppose
also that A has a cogenerator (i.e. an object Q) such that each object in A admits a
monomorphism into a direct sum of copies of Q) and that every indecomposable ob-
ject admits a right almost split map. Then there exist infinitely many values pu(X') >
w(X?) > u(X3) > ... of the Gabriel-Roiter measure of A having the following properties.

(1) If w(X) # u(X?) for all i, then p(X?) > u(X) for all i.
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(2) The set {X €ind A | u(X) = u(X9} is finite for all i.
The proof is based on the following lemma.

Lemma. Let A be a length category such that every indecomposable object admits a
right almost split map. Let X € A and denote by Ax the subcategory formed by all
objects in A having no indecomposable direct summand which is isomorphic to a direct
summand of X. Then Ax is a contravariantly finite subcategory of A.

Proof. See Proposition 3.13 in [1]. O

Proof of the theorem. We construct the values ;(X*) by induction as follows. Take for
X! any indecomposable direct summand X of @ such that p(X) is maximal. Observe
that p(X!) is maximal among all y(X) with X € ind A by (C8) and that only finitely
many X € ind A satisfy u(X) = u(X?!) because Q has only finitely many indecomposable
direct summands. Now suppose that u(X!) > ... > u(X™) have been constructed,
satisfying the conditions (1) and (2) for all 1 < i < n. Denote by P the direct sum of
all X € ind A with p(X) > u(X™) and let P/ — P @& @ be a right Ap-approximation.
Now take for X"*! any indecomposable direct summand X of P’ such that u(X) is
maximal. Observe that any indecomposable object X € Ap is cogenerated by P & @
and therefore by P’. Thus (C8) implies that ;(X) is bounded by u(X"™*1). Moreover, if
w(X) = u(X™1), then X is isomorphic to a direct summand of P’. Thus {X € ind A |
w(X) = u(X™1)} is finite and the proof is complete. O
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