

11 papers published in APS journals since 1893 with >1000 citations in APS journals (~5 times as many references in all science journals)

Publication	# cites	Av. age	Title	Author(s)
PR 140, A1133 (1965)	3227	26.7	Self-Consistent Equations Including Exchange and Correlation Effects	W. Kohn, L. J. Sham
PR 136, B864 (1964)	2460	28.7	Inhomogeneous Electron Gas	P. Hohenberg, W. Kohn
PRB 23, 5048 (1981)	2079	14.4	Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems	J. P. Perdew, A. Zunger
PRL 45, 566 (1980)	1781	15.4	Ground State of the Electron Gas by a Stochastic Method	D. M. Ceperley, B. J. Alder
PR 108, 1175 (1957)	1364	20.2	Theory of Superconductivity	J. Bardeen, L. N. Cooper, J. R. Schrieff
PRL 19, 1264 (1967)	1306	15.5	A Model of Leptons	S. Weinberg
PRB 12, 3060 (1975)	1259	18.4	Linear Methods in Band Theory	O. K. Anderson
PR 124, 1866 (1961)	1178	28.0	Effects of Configuration Interaction of Intensities and Phase Shifts	U. Fano
RMP 57, 287 (1985)	1055	9.2	Disordered Electronic Systems	P. A. Lee, T. V. Ramakrishnan
RMP 54, 437 (1982)	1045	10.8	Electronic Properties of Two-Dimensional Systems	T. Ando, A. B. Fowler, F. Stern
PRB 13, 5188 (1976)	1023	20.8	Special Points for Brillouin-Zone Integrations	H. J. Monkhorst, J. D. Pack
PR, Physical Review; PRB, Physical Review B; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.				

Transition-metals oxides as oxidation catalysts 7 !

Catalytic activity of Ru(0001) is due to RuO₂(110) domains (1-2 nm thin films), that form in the reactive environment.

Also: A. Böttcher, et al., Surf. Sci. 466, L811 (2000) ; L. Zang and H. Kisch, Angew. Chem. 112, 4075 (2000) H. Over, Y.D. Kim, A.P. Seitsonen, S. Wendt, A. Morgante, E. Lundgren, M. Schmid, P. Varga, and G. Ertl, Science 287 (2000)

The "old" understanding of $(4\times4)O/Ag$: The structure resembles that of bulk Ag_2O .

DFT calculations questioned this interpretation: *A. Michaelides, K. Reuter, and M.S., J. Vac. Sci. Technol. A 23 (2005).* Several structures have the same or even lower energy!

New STM data by J. Schnadt, F. Besenbacher, et al.

The Ag-oxide "Nano-Lego"

The "seen" p(4x4)-O/Ag(111) structure does NOT resemble Ag₂O, and it may not be very relevant. There are many structures of nearly the same energy. At realistic conditions all these structures will be present (law of mass action; kinetics).

Many (all?) low-energy oxide overlayers on Ag(111) are comprised of Ag_6O_x building blocks: **A** "Nano-Lego"

J. Schnadt, A. Michaelides, J. Knudsen, R. T. Vang, K. Reuter, E. Lægsgaard, M. Scheffler, and F. Besenbacher, submitted to PRL.

On the p (4x4) structure M. Schmid, A. Stierle, et al., recently arrived at exactly the same " Ag_6 " model.

Towards an exact treatment of exchange and correlation in materials

Examples:

- 1. Surface structure, adsorption energies, reaction energy barriers for H_2 at Si (001)
- 2. CO adsorption at transition metal surfaces:

LDA and GGA xc functionals dramatically fail to predict the correct adsorption site. For low coverage the theory gives the hollow site, but experimentally CO adsorbs on top. E.g.: For CO/Cu (111) the LDA error is ≥ 0.4 eV, and the GGA error is ≥ 0.15 eV.

How to correct the xc error of DFT-LDA

- 1. Do super-cell calculations using DFT-LDA
- 2. Do cluster calculations with DFT-LDA and with xc-better = B3LYP, HF-MP2, or QMC using the same geometry as in 1.
- 3. Evaluate the correction of the DFT-LDA result:

 $\Delta E_{\text{corr.}} = E_{\text{cluster}}(\text{xc-better}) - E_{\text{cluster}}(\text{LDA})$

How does $\Delta E_{\text{corr.}}$ change with cluster size? We need the correction for the limit **cluster size** $\rightarrow \infty$

