Advanced Workshop on Recent Developments in Inorganic Materials ICTP Trieste, 16-20 January 2006

Nanoanalysis of Defects in Perovskites

Manfred Rühle

MPI für Metallforschung, Heisenbergstr. 3, 70569 Stuttgart, Germany

Microscopy of Materials: Domain Structure in Ferroelectric BaTiO₃

Materials Science

Processing: Sintering Thin film growth Solid State Diffusion Bonding

<u>Properties:</u> mechanical properties electrical and magnetic properties electronic properties

Microstructure:

characterisation on different length scales to atomic level Nanoanalysis

Theory:

- modelling on different length scales
- ab initio
- atomistic with phenomenological potentials
- FEM technique
- continuum modeling

Microstructure: (Mikrostruktur, Gefüge)

Microstructure describes all deviations from perfect material in thermodynamic equilibrium:

- point defects (vacancies, interstitials)
- line defects (dislocations)
- planar defects (stacking faults, domain boundaries, 2-dimensional defects internal interfaces)
- large particles

3-dimensional defects

0-dimensional defects

1-dimensional defects

Microstructure at all Length Scales

Microstructural Features that Influence Properties

feature						
grains	 size distribution shape, aspect ratio distribution of differently shaped grains 	grain bounda and phase b (GB)	aries (GB) oundaries • shape • GB-plane • facetting	GB chemistry	 segregation type of segregant distribution amorphous film 	
second phases texture	 nature frequence distribution size, location grain shape grain orientation frequencey and distribution (clustering?) 	"special" boundaries	• cyrstallography • type, structure		 structure of segregated GB phase 	
mm → µm		µm → nm		nm	→ Å	
length scale						

Social History of Materials Scientists (late 20th century)

Classicalists	Solid State Ph or C	Heat + Beat
Constructionalists	Atom by Atom	Spray + P(r)ay
Neo-Constructionalists	Soft Chemistry	Mix + Fix
Post-Constructionalists	Self-Assembly	Match + Catch
Re-Constructionalists	Biomimetics	Take + Fake

Steven Mann (Bristol)

Outline

Introduction Microscopy on all length scales Perovskites: Strontium titanate (STO) Defects: Dislocations and grain boundaries Interfaces between Pd/STO Summary and Conclusions

Acknowledgements

Microstructure:	O. Kienzle, F. Ernst, S. Hutt, K. v. Benthem,		
	B. Rahmati, W. Sigle, Z. Zhang		
Theory:	M. Finnis (Belfast), C. Elsässer, R. Janisch		
Mech. Properties:	S. Taeri, D. Brunner		
Specimen Preparation:	U. Salzberger, A. Strecker, M. Sycha		

Financial Support:

German Science Foundation (DFG) trough Grad. Kolleg State of Baden Württemberg EC-NSF Projects: NANOAM and INCEMS

Microscopy of Materials: Domain Structure in Ferroelectric BaTiO₃

Robert Hooke (1665) Principle of a Microscope

Observations in a Microscope can be Unpleasant

Limits of Resolution of an Imaging System (Wave Optics)

- Source of light, radiation
- lenses for probe formation (condensor lenses)

specimen

image forming lenses

objective lenses

projector lenses

detection system

lenses: convex

concave

Important Lens Aberrations

correction of aberration: system (combination) of lenses (convex and concave)

Fundamentals for TEM

electron	m, e
acc. electrons	ν, λ
lenses for electrons	inhomogeneous magn. fields (spherical aberrations)
interactions of electrons with solids	elastic scattering inelastic scattering
detection systems	film, electron plate, CCD camera
theoretical description	Bethe, Cowley, Hirsch, Howie

Length Scales in Microstructural Studies

analytical

Wavelength, Wavevector and Resolution in Electron Microscopy

U [kV]	λ [pm]	exp. resolution $(\theta = 10^{\circ})$ [pm]	real resolution [pm]
100	3.7	~21 (0.2Å)	300 (3.0Å)
200	2.51	~14 (0.14Å)	250 (2.5Å)
400	1.644	~9	170 (1.7Å)
1250	0.736	~4	90 (0.9Å)

lenses: rotationally symmetrical non-homogeneous magnetic fields problem: spherical aberration, chromatic aberration

One Picture is more than 1000 words

A Movie is more than 1000 pictures

Assumption:

Picture is interpretable

Movie is interpretable

TEM Techniques

Transmission Electron Microscopy

The Need for 3D Analysis: Tomography

Fig. 5.1. A single projection image is plainly insufficient to infer the structure of an object. Drawing by John O'Brien; © 1991 The New Yorker Magazine.

By looking only in projection we can be fooled !

The Instrument

STUTTGART ARM

Advanced TEM Techniques

convergent illumination: HAADF, AEM

CTEM: Conventional TEM, HRTEM: High-Resolution TEM, AEM: Analytical Electron Microscopy

≤ 0.1 nm

HAADF: High-angle annular dark field

Advanced TEM Techniques

Only projection of a 3D object is investigated!

High-Resolution Electron Microscopy of Defects in a Thin Specimen ρ t~5 - 10 nm tomography (at least 2 projections for 3D information)

geometrical constraints limit applicability of HRTEM

Quantitative High-Resolution Transmission Electron Microscopy

Analytical Transmission Electron Microscopy with High Spatial Resolution

Elastic and Inelastic Scattering Process

ELNES (Electron-Energy-Loss Near Edge Structure)

Quantitative Evaluation:

- comparison to calculated ELNES spectra (DFT calculations)
- "finger printing"

 (comparison of experimental image to ELNES structure of known materials)
- Interface component of ELNES
 - Local spectrum with fine probe (smallest diameter)
 - spatial difference technique

Result:

Information on Bonding across Interfaces

ELNES

Information on the Surroundings of an Atom (in a crystal)

Electron Energy-Loss Near Edge Structure

reflects mainly the short range order of the material

calculation from theory in **real space** via multiple elastic scattering (intershell and intrashell) of the excited electron within a cluster of atoms

contains information about environment of an atom: coordination, bond length and chemical state

Very important for Nanoanalysis!

Models of Grain Boundaries (CSL)

Coincidence Site Lattice (CSL) Model

First principle Calculations for Σ 5 Boundary in STO

STO: Some Fundamentals

STO some fundamentals

STO: Some Fundamentals

Max-Planck-Institut für Metallforschung Stuttgart

B. Rahmati (2004)

Studies at GBs in Bicrystals of STO

Fabrication of well defined bicrystals with symmetrical g.b.

Σ 3 {111} (110) GB in SrTiO₃

Zhang et al, Science 302 (2003) 846

Studies at GBs in Bicrystals of STO

M. Leonhardt, J. Jamnik, J. Maier, Electrochem. and Solid State Lett. 2 [7], (1999), 333

Studies at GBs in Bicrystals

SrTiO₃ Σ=5 (310) [001]

experiment

simulation

difference

CSL-Model 1.57 Å expanded + relaxed

Interfacial Electronic Structure

acquisition of 100 spectra within 25 nm across the GB plane

Analysis:

 $\Re(J_{cv})$: Interband transition strength

Interfacial Electronic Structure and Hamaker constant of GB

VEELS Studies

3 D Representation of Interband Transition Strengh

Σ5

Interfacial Electronic Structure

Hamaker Constant of GB

Modelling Hamaker Constant from Atomistic Results

\rightarrow Transition to continuum model with different zones

Calculation of Retarded Hamaker Coefficient

Grain Boundary Energies for Different Misorientations

Small-Angle Grain Boundary

Max-Planck-Institut für Metallforschung Stuttgart

R. A. De Souza et al

Small-Angle Grain Boundary in STO

Composition Close to Dislocations

Small-Angle Grain Boundary

Z. Zhang et al

Conductivity of Small-Angle Grain Boundary

region

Small-Angle Grain Boundaries

UHV diffusion bonding at 1700K (W. Kurtz)

Max-Planck-Institut für Metallforschung Stuttgart

W. Sigle, Z. Zhang Phys. Rev. **B 66** (2002) 214112

Max-Planck-Institut für Metallforschung Stuttgart W. Sigle, Z. Zhang Phys. Rev. **B 66** (2002) 094108

a<100> edge core

Atomistic Model of Dislocation

W. Sigle, Z. Zhang

a<100> Screw Dislocation

a<100> screw core

Chemistry with (nearly) Atomistic Resolution

• In the dislocation core higher Ti/O ratio than in the bulk (oxygen deficiency)

$$\begin{array}{c|c} & & & \\ \hline & & \\$$

Edge Dislocation

Possible Burgers Vectors in SrTiO₃

Max-Planck-Institut für Metallforschung Stuttgart D. Brunner, W. Sigle, S. Taeri, JACS, Z. Metallkunde

lattice mismatch

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd
La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg

electronegativity

Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn
Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd
La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg

Difference to SrTiO₃:

blue:	big	> 5%
red:	small	≤ 5%
green:	good matching	≤ 1%

Structural Studies for Pd/Al₂O₃ Interface

Introduction: Possible positioning of Pd on top of SrTiO₃

Tomography of Pd/SrTiO₃ Interface

Quantitative HRTEM Analysis of Pd/SrTiO₃

• High quality HRTEM images of Pd/SrTiO₃ interface have been obtained

- Pd atoms sit on top of O ions
- No distortion of Pd or SrTiO₃ adjacent to interface could be determined

*TiO*₂ Termination Pd/Ti

Atom positions					
1 Pd ML	d ₁₂ , Å	s, Å			
Pd/O	2.14	-0.05			
Pd/Ti	2.43	-0.05			
2 Pd ML					
Pd/O	2.15	-0.05			

2.53 -0.05

3 Pd ML 2.16 Pd/O -0.06 Pd/Ti 2.48 -0.05

Cohesion Energy, eV					
Pd ML	Pd/O	Pd/Ti			
1	-2.97	2.84			
2	-3.57	-3.44			

SrO Termination

. .

	Atom positions				
		Pd-O	Pd-Sr	s,	
	1 Pd ML	Å	Å	Å	
2	Pd/O,Sr	2.07	2.83	0.17	
	Pd/	2.92	3.09	0.23	
	2 DA MI			•	

2 Pd ML			
Pd/O,Sr	2.16	2.76	0.22
Pd/	3.00	3.18	0.22

. . .

Cohesion Energy, eV

Pd ML Pd/O,Sr Pd/

1	-2.90	-2.58
2	-3.54	-3.44

• TiO₂ termination is energetically favoured

- Pd prefer to position on top of the O atoms
- The projected bonding distance at the interface differ from both bulk parameters (increased)

Max-Planck-Institut für Metallforschung Stuttgart

T. Ochs and C. Elsässer, 2002

ELNES Spectra by Spatial Difference Technique

The Pd/SrTiO₃ interface - *Ab-initio* calculations -

Max-Planck-Institut für Metallforschung Stuttgart

Advances TEM Techniques allow the characterisation of defects to the atomic level

- Q-HRTEM \Rightarrow Structure
- Q-AEM \Rightarrow Composition
- Q-HRTEM \Rightarrow Bonding

Information can be obtained with high precision for special boundaries and interfaces

Correlation to specific properties for STO: Conductivity and diffusivity

Challenge: General Boundary