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Representation of signals in a combined domain

Examples of mixed signal descriptions (in a combined domain):

music tone time - frequency
optics ray position - direction
radar pulse time delay - Doppler shift
mechanics particle position - momentum

Mixed signal descriptions have been with us for a long, long time!

Paris, B.N. 776, Gregorian manuscript from Albi, before 1079

Winter College ICTP, Trieste, Italy, January 2006 2/120



Representation of signals in a combined domain

Examples of mixed signal descriptions (in a combined domain):

music tone time - frequency
optics ray position - direction
radar pulse time delay - Doppler shift
mechanics particle position - momentum

Mixed signal descriptions have been with us for a long, long time!

Paris, B.N. 776, Gregorian manuscript from Albi, before 1079

Winter College ICTP, Trieste, Italy, January 2006 3/120



Some basic references

• Franz Hlawatsch and G. Faye Boudreaux-Bartels,
“Linear and quadratic time-frequency signal representations,”
IEEE Signal Processing Magazine, vol. 9, nr. 2, pp. 21–67
(1992).

• Leon Cohen,
“Time-frequency distributions – A review,”
Proc. IEEE, vol. 77, nr. 7, pp. 941–981 (1989).

• Boualem Boashash,
“Introduction to the concepts of TFSAP,”
Part I of Boualem Boashash, ed., Time Frequency Signal
Analysis and Processing: A Comprehensive reference, ISBN
0-08-044335-4 (Oxford, Elsevier, 2003).

Winter College ICTP, Trieste, Italy, January 2006 4/120



Linear, shift-invariant system – convolution

selective property of δ(t) ϕ(t) =

∫
δ(t − τ ) ϕ(τ ) dτ

impulse response δ(t) → h(t)
shift invariance δ(t − τ ) → h(t − τ )
linearity δ(t − τ ) ϕi(τ ) dτ → h(t − τ ) ϕi(τ ) dτ

linearity

∫
δ(t − τ ) ϕi(τ ) dτ →

∫
h(t − τ ) ϕi(τ ) dτ

selective property ϕi(t) →
∫

h(t − τ ) ϕi(τ ) dτ = ϕo(t)

convolution integral

ϕo(t) =

∫
h(t − τ ) ϕi(τ ) dτ =

∫
h(τ ) ϕi(t − τ ) dτ = h(t) ∗ ϕi(t)
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Auto- and cross-correlation function

Cross-correlation Γϕψ(τ ) =

∫
ϕ(t + τ ) ψ∗(t) dt = ϕ(τ ) ∗ ψ∗(−τ )

Auto-correlation Γϕϕ(τ ) =

∫
ϕ(t + τ ) ϕ∗(t) dt

Compare with the convolution

∫
ϕ(τ − t) ψ∗(t) dt = ϕ(τ ) ∗ ψ∗(τ ) .

In particular we have Γϕϕ(0) =

∫
|ϕ(t)|2 dt = energy.

For the cross-correlation we have the relation Γϕψ(τ ) = Γ∗
ψϕ(−τ ),

which for the auto-correlation reduces to conjugate (or Hermitian)
symmetry:

Γϕϕ(τ ) = Γ∗
ϕϕ(−τ ) .

Winter College ICTP, Trieste, Italy, January 2006 6/120



Fourier transform – amplitude and power spectrum

The Fourier transform of ϕ(t) reads

ϕ(t) ◦—•
∫

ϕ(t) e−iωt dt = ϕ̄(ω) .

For the convolution and the correlation we have

ϕo(t) = h(t) ∗ ϕi(t) =

∫
h(t − τ ) ϕi(τ ) dτ ◦—• h̄(ω) ϕ̄i(ω) = ϕ̄o(ω)

Γϕψ(τ ) = ϕ(τ ) ∗ ψ∗(−τ ) =

∫
ϕ(t + τ ) ψ∗(t) dt ◦—• ϕ̄(ω) ψ̄∗(ω) = Γ̄ϕψ(ω)

Γϕϕ(τ ) = ϕ(τ ) ∗ ϕ∗(−τ ) =

∫
ϕ(t + τ ) ϕ∗(t) dt ◦—• ϕ̄(ω) ϕ̄∗(ω) = Γ̄ϕϕ(ω)

While ϕ̄(ω) is known as the amplitude spectrum (or frequency
spectrum, or simply: spectrum), Γ̄ϕϕ(ω) is known as the power
spectrum.
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Outline of the presentation

1. Linear signal dependence

• Windowed (short-time) Fourier transform

• Gabor expansion

• Wavelet transform

2. Quadratic (bilinear) signal dependence

• Wigner distribution

• Application to partially coherent light

3. Relatives of the Wigner distribution

• Ambiguity function

• Cohen class – kernel design

• Fractional Fourier transform
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Part 1. Linear signal dependence

This part deals with the windowed Fourier transform and its sampled

version (also known as the Gabor transform) and the inverse of

the latter: Gabor’s signal expansion. The relation to filter banks

and sub-band coding is observed, as well as the relation to the

wavelet transform. Several sampling strategies in the combined

(time-frequency) domain are considered.

• M.J. Bastiaans, “Gabor’s expansion and the Zak transform for continuous-
time and discrete-time signals: critical sampling and rational oversampling,”
EUT Report, 95-E-295, ISBN 90-6144-295-8; TUE, Eindhoven, 1995, pp. 1–
62.

• M.J. Bastiaans, “Gabor’s signal expansion based on a non-orthogonal
sampling geometry,” in Optical Information Processing: A Tribute to Adolf
Lohmann, ISBN 0-8194-4498-7, ed. H.J. Caulfield; SPIE - The International
Society for Optical Engineering, Bellingham, WA, 2002, pp. 57-82.

• A.J. van Leest, “Non-separable Gabor schemes: their design and implemen-
tation,” PhD thesis, Technische Universiteit Eindhoven, Eindhoven, Nether-
lands, 2001.
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Outline of part 1

• Windowed Fourier transform
• Gabor’s signal expansion
• Determining the Gabor coefficients – Gabor transform
• Transform pair – Bi-orthogonality condition
• Fourier transform and Zak transform
• Product forms
• Interpretation of the Gabor coefficients
• Detour to wavelets and the wavelet transform
• Oversampling

– rational oversampling
– integer oversampling

• Optical setup to generate the Gabor coefficients
• Non-orthogonal sampling/tiling geometry

– Sub-lattices
– Shearing
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Windowed Fourier transform

• Choose a window function w(t).

• Multiply the signal ϕ(t) with the shifted and complex conjugated

version w∗(t − τ ) of the window function, to get the product

ϕ(t) w∗(t − τ ).

• Take the Fourier transform of the product ϕ(t) w∗(t − τ ):

s(τ, ω) =

∫
ϕ(t) w∗(t − τ ) e−iωt dt .

The windowed Fourier transform s(τ, ω) is a function of two

variables, τ and ω, and describes the signal in a time-frequency

domain.
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Inverse operation

s(τ, ω) =

∫
ϕ(t) w∗(t − τ ) e−iωt dt

Inverse transformation is possible in many ways, for instance

ϕ(t) w∗(0) =
1

2π

∫
s(t, ω) eiωt dω

or, much nicer,

ϕ(t)

∫
|w(t)|2dt =

1

2π

∫∫
s(τ, ω) w(t − τ ) eiωt dτdω .

The function s(τ, ω) acts as a distribution function – a local
frequency spectrum – and shows how the signal ϕ(t) can be syn-
thesized from the (τ, ω)-parameterized set of shifted and modulated
versions of w(t).
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Some remarks about the windowed FT

s(τ, ω) =

∫
ϕ(t) w∗(t − τ ) e−iωt dt

• The windowed FT s(τ, ω) is a function of two variables τ and ω,

derived from a function ϕ(t) of one variable t.

• Not every function of two variables is a proper windowed Fourier

transform.

• A windowed FT has many internal constraints, but which?

• Reconstruction of ϕ(t) from s(τ, ω) is possible in many ways, and

should be possible if we have only partial knowledge of s(τ, ω),

but how?
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Gabor’s signal expansion

In 1946 Gabor introduced the expansion of a time signal ϕ(t) into a
discrete set of shifted and modulated versions of a Gaussian-shaped

elementary signal g(t) = 2
1
4e−π(t/σt)

2
[with FT = 2

1
4σte

−π(ω/σω)2],

ϕ(t) =
∑

mk

amk gmk(t) =
∑

mk

amk g(t − mT ) eikΩt,

in which the time shift T and the frequency shift Ω satisfy the
relationship ΩT = 2π, and also σt/T = σω/Ω (proportionality
condition).

The product of the width of a function and the width of its Fourier
transform has a lower bound equal to 2π – Heisenberg’s inequality –
and this lower bound is only reached for a Gaussian-shaped function.

Information theory – logon – degrees of freedom
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Gabor’s rectangular sampling/tiling geometry
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A rectangular tiling of the time-frequency plane with time-shifted
and frequency-shifted (i.e. modulated) Gaussian functions.

∫ ∞

−∞
g(t + 1

2t′) g∗(t − 1
2t′) e−iωt′ dt′ = 2 σt e−2π[(t/σt)

2 + (ω/σω)2]
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Gabor’s expansion coefficients

ϕ(t) =
∑

mk

amk gmk(t) =
∑

mk

amk g(t − mT ) eikΩt

The shifted and modulated elementary signals are located on the
Gabor lattice (τ = mT, ω = kΩ) in the time-frequency domain.

Question: How can the expansion coefficients amk be determined?
Note that the set of shifted and modulated elementary signals is
not orthogonal, and hence

amk 6= 1

T

∫
ϕ(t) g∗

mk(t) dt =
1

T

∫
ϕ(t) g∗(t − mT ) e−ikΩt dt .

By the way: Gabor’s signal expansion need not be limited to a
Gaussian-shaped elementary signal, not to the special case ΩT = 2π,
and not to the rectangular sampling geometry (τ = mT, ω = kΩ).

Winter College ICTP, Trieste, Italy, January 2006 16/120



Comparison of two signal descriptions

Reconstruction from the windowed Fourier transform: continuous

ϕ(t)

∫
|w(t)|2 dt =

1

2π

∫∫
s(τ, ω) w(t − τ ) eiωt dτdω

s(τ, ω) =

∫
ϕ(t) w∗(t − τ ) e−iωt dt

Gabor’s signal expansion: discrete

ϕ(t) =
∑

mk

amk g(t − mT ) eikΩt

amk = ? =

∫
ϕ(t) w∗(t − mT ) e−ikΩt dt
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Transform pair – the Gabor transform

Can, for a given elementary signal (or synthesis window) g(t), an

analysis window w(t) be found, such that Gabor’s signal expansion,

ϕ(t) =
∑

mk

amk gmk(t) =
∑

mk

amk g(t − mT ) eikΩt,

and the sampling values of the windowed FT at the Gabor lattice,

amk =

∫
ϕ(t) w∗

mk(t) dt =

∫
ϕ(t) w∗(t − mT ) e−ikΩt dt = s(mT, kΩ) ,

form a transform pair?

Yes!
∑

mk

gmk(t1) w∗
mk(t2) = δ(t1 − t2) Bi-orthogonality condition
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Synthesis and corresponding analysis windows

-2 -1 0 1 2 3 4 5 6 7 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t/σt(a)
-2 -1 0 1 2 3 4 5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t/σt(b)
-2 -1 0 1 2 3 4 5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t/σt(c)
-2 -1 0 1 2 3 4 5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t/σt(d)

A Gaussian synthesis window g(t) = 21/4 exp[−π(t/σt)
2] (dashed line)

and its corresponding optimum analysis window (T/q) w(t) (solid

line), for different values of rational oversampling 2π/ΩT = p/q,

while maintaining the proportionality condition σt/T = σω/Ω =√
2π/ΩT : (a) no oversampling 2π/ΩT = 1, (b) 2π/ΩT = 7/6,

(c) 2π/ΩT = 3/2, and (d) 2π/ΩT = 3
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Fourier transform of Gabor’s expansion coefficients

amk =

∫
ϕ(t) w∗

mk(t) dt =

∫
ϕ(t) w∗(t − mT ) e−ikΩt dt

Take the Fourier transform ā(ξ, η) of the two-dimensional array amk:

ā(ξ, η) =
∑

mk

amk e−i2π(mη − kξ).

This yields the product relation (if ΩT = 2π)

ā(ξ, η) = T

(∑
n

ϕ(ξT + nT ) e−i2πηn

) (∑
n

w(ξT + nT ) e−i2πηn

)∗
.
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Zak transform and Gabor’s expansion coefficients

The Fourier transform, together with the Zak transform

ϕ̃τ (t, ω) =
∑
n

ϕ(t + nτ ) e−inτω,

is able to bring the two-dimensional array of expansion coefficients

into product form (if ΩT = 2π):

amk =

∫
ϕ(t) w∗

mk(t) dt ā(ξ, η) = T ϕ̃T

(
ξT, η

2π

T

)
w̃∗

T

(
ξT, η

2π

T

)
.

Compare this property with the property of the Fourier transform,

which is able to bring a convolution into product form.
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Zak transform and Gabor’s signal expansion

The Zak transform can also bring Gabor’s signal expansion and the

bi-orthogonality condition into product form (if ΩT = 2π):

ϕ(t) =
∑

mk

amk gmk(t) ϕ̃T

(
ξT, η

2π

T

)
= ā(ξ, η) g̃T

(
ξT, η

2π

T

)

amk =

∫
ϕ(t) w∗

mk(t) dt ā(ξ, η) = T ϕ̃T

(
ξT, η

2π

T

)
w̃∗

T

(
ξT, η

2π

T

)

∑

mk

gmk(t1) w∗
mk(t2) = δ(t1 − t2) T g̃T

(
ξT, η

2π

T

)
w̃∗

T

(
ξT, η

2π

T

)
= 1

and the analysis window w(t) that corresponds to the synthesis

window g(t) can be found from the latter equation.
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All questions answered!

• For any synthesis window g(t), an analysis window w(t) can be
found, for instance by using the Zak transform:

T w̃∗
T

(
ξT, η

2π

T

)
g̃T

(
ξT, η

2π

T

)
= 1 .

• Gabor’s expansion coefficients follow as the sampling values of
the windowed Fourier transform at the Gabor lattice:

amk = s(mT, kΩ) =

∫
ϕ(t) w∗(t − mT ) e−ikΩt dt .

• Knowledge of the values of the windowed Fourier transform
s(τ, ω) at the Gabor lattice suffices to reconstruct the signal
using Gabor’s signal expansion:

ϕ(t) =
∑

mk

amk g(t − mT ) eikΩt .
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Fast algorithms

The Fourier transform, together with the Zak transform

ϕ̃T

(
ξT, η

2π

T

)
=

∑
m

ϕ(t + mT ) e−imωT ,

is able to bring the Gabor coefficients (or Gabor transform)

amk = s(mT, kΩ) =

∫
ϕ(t) w∗(t − mT ) e−ikΩt dt

into product form:

ā(ξ, η) = T ϕ̃T

(
ξT, η

2π

T

)
w̃∗

T

(
ξT, η

2π

T

)
.

The Zak transform is, in essence, a Fourier transform. Hence, if we
translate everything to discrete-time signals, fast algorithms can be
used like the FFT, resulting in a fast Zak transform and a fast Gabor
transform. Compare this with the fast convolution, well-known in
digital signal processing.
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Interpretation of the Gabor coefficients

The array of Gabor coefficients amk (or Gabor transform) can be
interpreted as

• the sampled Fourier transform of the windowed signal
ϕ(t) w∗(t − mT ) [= Fourier series expansion of ϕ(t) w∗(t − mT )]:

amk = s(mT, kΩ) =

∫
ϕ(t) w∗(t − mT ) e−ikΩt dt .

• the inner product of ϕ(t) and the elements wmk(t) of an (m, k)-
parameterized set of basis functions wmk(t) = w(t − mT ) eikΩt:

amk =

∫
ϕ(t) w∗

mk(t) dt .

• the sampled output signals of a k-parameterized filter bank with
impulse responses w′

k(t) = w∗(−t) eikΩt and input signal ϕ(t):

amk = e−imkΩT
∫

ϕ(t) w′
k(mT − t) dt .
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Interpretation of Gabor’s signal expansion

Gabor’s signal expansion ϕ(t) =
∑

mk

amk g(t − mT ) eikΩt

can be interpreted as

• a superposition of the elements gmk(t) of an (m, k)-parameterized
set of basis functions gmk(t) = g(t − mT ) eikΩt with weights amk:

ϕ(t) =
∑
m

∑

k

amk gmk(t) .

• a superposition of the outputs of a k-parameterized filter
bank with impulse responses g′

k(t) = g(t) eikΩt and the k-
parameterized input sequences amk:

ϕ(t) =
∑

k

(∑
m

amk g′
k(t − mT )

)
.
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Detour to wavelets

Detour to wavelets and the wavelet transform:

Just a different tiling of the time-frequency plane, resulting in
a time-scale representation (wavelet tiling) rather than a time-
frequency representation (Gabor tiling) of the signal.

Wavelet tiling Gabor tiling
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Sampling theorem

The well-known sampling theorem for a band-limited signal reads

ϕ(t) =
∑
m

ϕ(mT ) sinc

(
t

T
− m

)
,

where the sinc-function is, in fact, the impulse response of an ideal
low-pass filter with cut-off frequency π/T .

If ϕh(t) denotes the high-frequency part of the band-limited signal
ϕ(t), then ϕh(t) can be represented as

ϕh(t) =
∑
m

cm· h(t − mT ) ,

in which h(t) is the impulse response of an ideal band-pass filter.
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Towards the wavelet transform

ϕh(t) =
∑
m

cm· h(t − mT )

If we continue splitting the low-frequency part of the signal in a high-
frequency and a low-frequency part, we eventually get the expression

ϕ(t) =
∞∑

k=0

(∑
m

cmk h

(
t

2k
− mT

))
.

Compare this expression with Gabor’s signal expansion

ϕ(t) =
∞∑

k=−∞

(∑
m

amk g(t − mT ) eikΩt

)
.

Time-scale vs. time-frequency signal representation.

Wavelet transform – subband-coding – multirate filter banks
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Wavelet and Gabor tiling

Wavelet tiling

Constant-Q filter bank

multirate

Gabor tiling

Constant-bandwidth filter bank

constant rate
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Wavelet detour ends; the Gabor tour continues

• Oversampling ΩT < 2π

– Rational oversampling 2π/ΩT = p/q (p > q ≥ 1)

– Integer oversampling 2π/ΩT = p (p > 1)

• Optical setup to generate the Gabor coefficients

• Non-orthogonal sampling/tiling geometry

– Sub-lattices

– Shearing
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Product forms in the case of rational oversampling

In the case of rational oversampling, 2π/ΩT = p/q, Gabor’s signal

expansion, the Gabor transform, and the bi-orthogonality condition

can be represented as matrix-matrix and matrix-vector multiplica-

tions,

ϕ(t) =
∑

mk

amk gmk(t) φ(ξ, η) =
1

p
G(ξ, η) a(ξ, η)

amk =

∫
ϕ(t) w∗

mk(t) dt a(ξ, η) =
pT

q
W ∗(ξ, η) φ(ξ, η)

δ(t1 − t2) =
∑

mk

gmk(t1) w∗
mk(t2) Iq =

T

q
G(ξ, η) W ∗(ξ, η)

where φ is a q-dimensional column vector, a is a p-dimensional

column vector, G and W are q×p-dimensional matrices, and Iq is the

q-dimensional identity matrix. Moreover: 0 ≤ ξ < 1 and 0 ≤ η < 1/p.
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Zak transforms and corresponding window functions

The optimal analysis window follows from the inverse G†:

W ∗
opt(ξ, η) = (q/T ) G†(ξ, η) = (q/T ) G∗(ξ, η) [G(ξ, η) G∗(ξ, η)]−1.
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The special case of integer oversampling

In the special case of integer oversampling, 2π/ΩT = p/q with q = 1,
φ is a scalar, a is a p-dimensional column vector, and G and W are
p-dimensional row vectors, and the Gabor transform

a(ξ, η) = pT W ∗(ξ, η) φ(ξ, η)

takes the normal product form again:

ā(ξ, η) = pT ϕ̃pT

(
ξpT, η

2π

T

)
w̃∗

T

(
ξpT, η

2π

T

)
.

Note that one period of the periodic Fourier transform
ā(ξ, η) contains p horizontal periods (in the ξ-direction) of the
(periodic) Zak transform ϕ̃pT (ξpT, η2π/T ), and p vertical quasi-
periods (in the η-direction) of the (quasi-periodic) Zak transform
w̃∗

T (ξpT, η2π/T ).

This relationship is the basis for a coherent-optical realization.

Winter College ICTP, Trieste, Italy, January 2006 34/120



Optical generation of the Gabor coefficients
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Non-orthogonal sampling/tiling geometry

It is well known that circles are better packed on a hexagonal lattice

then on a rectangular one.
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A rectangular and a hexagonal packing of circles, with filling factor

π/4 = 0.7854 and π/2
√

3 = 0.9069, respectively.
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Non-orthogonal sampling geometry
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(a) A rectangular lattice with lattice vectors [T, 0]t and [0, Ω]t, and

thus R = 0 and D = 1; and (b) a hexagonal lattice with lattice

vectors [T, Ω]t and [0, 2Ω]t, and thus R = 1 and D = 2.
[

T 0
RΩ DΩ

]
=

[
T 0
0 Ω

] [
1 0
R D

]
λmk =

∑
n

δk−mR−nD
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Gabor’s signal expansion on a non-orthogonal lattice

Gabor’s expansion (on a non-orthogonal lattice) can be expressed

as

ϕ(t) =
∑

mk

λmk amk gmk(t) =
∑

mk

as
mk gmk(t) ,

with the Gabor transform in the usual form [but with a different

analysis window w(t), though!],

as
mk = λmk amk = λmk

∫
ϕ(t) w∗

mk(t) dt ,

and the bi-orthogonality condition reading
∑

mk

λmk gmk(t1) w∗
mk(t2) = δ(t1 − t2) .
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The (non-orthogonal) bi-orthogonality condition

With λmk =
∑
n

δk−mR−nD, the bi-orthogonality condition

∑

mk

λmk gmk(t1) w∗
mk(t2) = δ(t1 − t2) ,

in the case of rational oversampling, 2π/T = p/q, expressed in terms

of the Zak transforms of the window functions, reads

T

Dq

p−1∑

r=0

g̃T

(
[ξ + s1]

pT

q
,

[
η +

r

p

]
2π

T

)

× w̃∗
T

([
ξ + s2 − n

D

]
pT

q
,

[
η +

r

p
− nR

D

]
2π

T

)
= δnδs1−s2 ,

with s1, s2 = 0, 1, . . . , q − 1, n = 0, 1, . . . , D − 1, 0 ≤ ξ < 1, 0 ≤ η < 1/p.
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The hexagonal bi-orthogonality condition

For the integer (p/2-times) oversampled hexagonal case [R = 1,

D = 2, n = 0, 1, q = 1, p even, 0 ≤ ξ < 1 and 0 ≤ η < 1/p], we have

the following bi-orthogonal condition

T

2

p−1∑

r=0

g̃T

(
ξpT,

[
η +

r

p

]
2π

T

)
w̃∗

T

([
ξ − n

2

]
pT,

[
η +

r

p
− nR

2

]
2π

T

)
= δn :

D = 2 equations (n = 0, 1, . . . D−1) for p variables (r = 0, 1, . . . , p−1)

for every ξ and η (0 ≤ ξ < 1 and 0 ≤ η < 1/p), from which the Zak

transform w̃T (t, ω) and hence the window function w(t) can easily

be determined.

The optical setup to generate the Gabor coefficients can still be

used, but now with a hexagonal sampling in the output plane!
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Non-orthogonal sampling geometry 2

-
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(a) A rectangular lattice with lattice vectors [T, 0]t and [0, Ω]t; and
(b) a hexagonal lattice with lattice vectors [T, Ω]t and [0, 2Ω]t

The hexagonal lattice can be considered as a combination of two
rectangular lattices, which can be treated in the normal way! In a
filter bank realization, we then switch back and forth between one
bank and the other.

The hexagonal lattice can also be considered as arising from a
rectangular lattice by shearing.

Winter College ICTP, Trieste, Italy, January 2006 41/120



Non-orthogonal to rectangular sampling via shearing

ϕ(t) =
∑

mk

λmk amk g(t − mT ) ejkΩt

If we eliminate the array λmk =
∑

n δk−mR−nD, we can directly write

ϕ(t) =
∑
m

∑
n

am,mR+nD g(t − mT ) ej(mR + nD)Ωt,

which can be represented in the rectangular form

ϕ′(t) =
∑
m

∑
n

a′
mn g′

mn(t) ,

with the ‘primed’ variables being sheared versions

f ′(t) = f(t) e−jRΩt2/2T and a′
mn = am,mR+nD ejRm2ΩT/2.
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Outline of the presentation

1. Linear signal dependence

• Windowed (short-time) Fourier transform

• Gabor expansion

• Wavelet transform

2. Quadratic (bilinear) signal dependence

• Wigner distribution

• Application to partially coherent light

3. Relatives of the Wigner distribution

• Ambiguity function

• Cohen class – kernel design

• Fractional Fourier transform
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Part 2. Bilinear signal dependence

This part deals with the Wigner distribution and its application to

(partially coherent) light. It is shown that the Wigner distribution

puts many phenomena of Fourier optics, geometrical optics, matrix

optics, radiometry, etc., in one uniform perspective. Among other

things, we will consider the propagation of light through first-order

optical systems and find transport equations for the Wigner distri-

bution for (weakly) inhomogeneous media.

• M.J. Bastiaans, “Application of the Wigner distribution function to partially
coherent light beams,” in Optics and Optoelectronics, Theory, Devices and
Applications, Proc. ICOL’98, the International Conference on Optics and
Optoelectronics, Dehradun, India, 9–12 December 1998, ISBN 81-7319-
285-5, ed. O.P. Nijhawan; A.K. Gupta; A.K. Musla; Kehar Singh; Narosa
Publishing House, New Delhi, India, 1998, pp. 101–115.
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Wigner distribution

In 1932 Wigner introduced the distribution function

W (t, ω) =

∫
ϕ(t + 1

2t′) ϕ∗(t − 1
2t′) e−iωt′ dt′.

The Wigner distribution is a kind of windowed Fourier transform

W (t, ω) = ei2ωt
∫

ϕ(1
2t′) w∗(1

2t′ − 2t) e−iωt′ dt′ = 2 s(2t, 2ω) ei2ωt,

where the window function w(t) equals the time-reversed signal
ϕ(−t).
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Properties of the Wigner distribution 1

W (t, ω) =

∫
ϕ(t + 1

2t′) ϕ∗(t − 1
2t′) e−iωt′ dt′

• Real, quadratic signal representation, very well suited for energy

considerations.

• Signal intensity = integral over all frequencies:

|ϕ(t)|2 =
1

2π

∫
W (t, ω) dω .

• Spectral intensity = integral over all time moments:
∣∣∣∣
∫

ϕ(t) e−iωt dt

∣∣∣∣
2

=

∫
W (t, ω) dt .
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Properties of the Wigner distribution 2

W (t, ω) =

∫
ϕ(t + 1

2t′) ϕ∗(t − 1
2t′) e−iωt′ dt′

• Time-shift and frequency-shift covariant:

ϕ(t) → W (t, ω)

ϕ(t − to) ejωot → W (t − to, ω − ωo)

• Not necessarily positive; however (Moyal’s formula):

1

2π

∫∫
W1(t, ω) W2(t, ω) dtdω =

∣∣∣∣
∫

ϕ1(t) ϕ∗
2(t) dt

∣∣∣∣
2

≥ 0

• Many other, nice properties!
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Properties of the Wigner distribution 3

W (t, ω) =

∫
ϕ(t + 1

2t′) ϕ∗(t − 1
2t′) e−iωt′ dt′

• Due to its quadratic signal dependence, the Wigner distribution
is especially suited for non-stationary noise, if defined as

W (t, ω) =

∫
E{ϕ(t + 1

2t′) ϕ∗(t − 1
2t′)} e−iωt′ dt′.

• Interpretation problems arise for multicomponent deterministic
signals:

ϕ(t) = ϕ1(t) + ϕ2(t)

W (t, ω) = W1(t, ω) + W2(t, ω) + cross-terms.

A solution may be found in averaging, for instance (Cohen):

1

2π

∫∫
W (t′, ω′) K(t − t′, ω − ω′) dt′dω′.
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Wigner distribution of a multicomponent signal

Wigner distribution of two chirp signals; note the oscillating cross-
term in between the two auto-terms.
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Properties of the Wigner distribution 4

W (t, ω) =

∫
ϕ(t + 1

2t′) ϕ∗(t − 1
2t′) e−iωt′ dt′

• The Wigner distribution is well adapted to signals with a
quadratic phase dependence (i.e., chirp signals)

ϕ(t) = ei12αt2;

the Wigner distribution then takes the form

W (t, ω) = 2π δ(ω − αt) .

• Optics, where many signals and systems are described by
quadratic-phase functions, is a perfect area of application of
the Wigner distribution, in particular if light is considered on
a stochastic basis (partially coherent light, cf. spatially non-
stationary noise).

We will apply the Wigner distribution to partially coherent light.
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Outline of part 2

• Description of partially coherent light:
- Mutual coherence function Γ̃(r1, r2, τ )
- Positional power spectrum Γ(r1, r2, ω)
- Directional power spectrum Γ̄(q1, q2, ω)

• Wigner distribution:
- Definition of the Wigner distribution W (r, q)
- Properties of the Wigner distribution
- Examples of Wigner distributions

• Modal expansions: Inequalities for the Wigner distribution
• Propagation of the Wigner distribution

- Ray-spread function K(ro, qo, ri, qi)
- Transport equations for the Wigner distribution

• Miscellaneous topics
- Second-order moments of the Wigner distribution
- Invariants for the second-order moments
- Second-order moments of a (twisted) Gaussian light beam
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Description of partially coherent light

Temporally stationary stochastic process ϕ̃(r,t) r = (x, y)t

Mutual coherence function

E{ϕ̃ (r1, t1) ϕ̃∗ (r2, t2)} = Γ̃ (r1, r2, t1 − t2)

where E{·} denotes ensemble averaging

Mutual power spectrum (or cross-spectral density)

Γ (r1, r2, ω) =

∫
Γ̃ (r1, r2, τ ) eiωτ dτ
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Basic property: nonnegative definite Hermitian

Γ (r1, r2, ω) =

∫
Γ̃ (r1, r2, τ ) eiωτ dτ

Γ (r1, r2, ω) = Γ∗ (r2, r1, ω)
∫ ∫

g (r1, ω) Γ (r1, r2, ω) g∗ (r2, ω) dr1dr2 ≥ 0

Positional power spectrum Γ (r1, r2, ω)

Directional power spectrum Γ̄ (q1, q2, ω)

Γ̄ (q1, q2, ω) =

∫ ∫
Γ (r1, r2, ω) e−i(qt

1r1 − qt
2r2) dr1dr2

We will omit the temporal-frequency variable ω.

Winter College ICTP, Trieste, Italy, January 2006 53/120



Wigner distribution

The Wigner distribution W (r, q) is defined as

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ = W ∗(r, q) .

With r considered as a parameter, the integral represents a Fourier

transformation (with conjugate variables r′ and q) of the positional

power spectrum Γ(r + 1
2r′, r − 1

2r′).

We also have (in terms of the directional power spectrum)

W (r, q) =

∫
Γ̄

(
q + 1

2q′, q − 1
2q′) eirtq′

d
q′

2π
.
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Completely coherent light

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ = W ∗(r, q)

In the case of completely coherent light, the positional power

spectrum has the form of a product

Γ (r1, r2) = ϕ(r1) ϕ∗(r2) .

Wigner distribution

w(r, q) =

∫
ϕ

(
r + 1

2r′) ϕ∗ (
r − 1

2r′) e−iqtr′
dr′

Similar expressions in terms of the directional power spectrum.
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Point source and plane wave (harmonic signal)

A point source, ϕ(r) = δ(r − r◦), i.e., an impulse at the position r◦,
has an impulse as Wigner distribution:

w(r, q) = δ(r − r◦) ;

note that it does not depend on the frequency variable q.

A plane wave, ϕ(r) = eiqt
◦r, i.e., a harmonic signal with (spatial)

frequency q◦, has an impulse as Wigner distribution:

w(r, q) = δ

(
q − q◦

2π

)
;

note that it does not depend on the space variable r.

Note that these two signals are dual to each other and that their
Wigner distributions are related by a rotation through 90◦.
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Quadratic-phase signal – spherical wave

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ = W ∗(r, q)

Spherical wave ϕ(r) = e
1
2irtHr chirp signal

The curvature of the spherical wave is described by the real

symmetric 2 × 2 matrix H.

The Wigner distribution takes the form w(r, q) = δ

(
q − Hr

2π

)
.

At any point r, only one spatial-frequency q manifests itself: q = Hr.
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Properties of the Wigner distribution 1

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ = W ∗(r, q)

• The positional and directional power spectra of a partially
coherent light beam can be reconstructed from W (r, q) by an
inverse Fourier transformation.

• W (r, q) is real, but not necessarily nonnegative.
• If the light beam is limited to a certain space (or spatial-

frequency) interval, W (r, q) is limited to the same interval.
• A space (or spatial-frequency) shift of the light beam yields the

same shift for W (r, q):

Γ(r1 − r◦, r2 − r◦) → W (r − r◦, q)

Γ̄(q1 − q◦, q2 − q◦) → W (r, q − q◦) .
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Properties of the Wigner distribution 2

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ = W ∗(r, q)

• The integral over the spatial-frequency variable is proportional
to the positional intensity of the light beam∫

W (r, q) d
q

2π
= Γ(r, r) .

• The integral over the space variable is proportional to the direc-
tional (cf. radiant) intensity of the light beam

∫
W (r, q) dr = Γ̄(q, q) .

• The total energy follows as∫ ∫
W (r, q) drd

q

2π
=

∫
Γ(r, r) dr =

∫
Γ̄(q, q) d

q

2π
.
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Properties of the Wigner distribution 3

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ = W ∗(r, q)

• The radiant emittance of the light beam is proportional to the
integral

jz(r) =

∫ √
k2 − qtq

k
W (r, q) d

q

2π
;

when we combine this integral with the integral

jr(r) =

∫
q

k
W (r, q) d

q

2π
,

we can construct the vector j =
[
jt
r, jz

]t
, which is proportional

to the geometrical vector flux.
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Normalized second-order moments

The real, positive definite symmetric 4 × 4 matrix M

M =

∫ ∫ [
rrt rqt

qrt qqt

]
W (r, q) drd

q

2π

/∫ ∫
W (r, q) drd

q

2π

yields such quantities as the effective width dx in the x-direction

mxx =

∫ ∫
x2 W (r, q) drd

q

2π∫ ∫
W (r, q) drd

q

2π

=

∫
x2 Γ(r, r) dr

∫
Γ(r, r) dr

= d2
x

and the effective width du in the u-direction

muu =

∫ ∫
u2 W (r, q) drd

q

2π∫ ∫
W (r, q) drd

q

2π

=

∫
u2 Γ̄(q, q) d

q

2π∫
Γ̄(q, q) d

q

2π

= d2
u .

Winter College ICTP, Trieste, Italy, January 2006 61/120



Moyal’s relationship

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ = W ∗(r, q)

∫ ∫
W1(r, q) W2(r, q) drd

q

2π

=

∫ ∫
Γ1(r1, r2) Γ∗

2(r1, r2) dr1dr2

=

∫ ∫
Γ̄1(q1, q2) Γ̄∗

2(q1, q2) d
q1

2π
d

q2

2π

It can be shown that these integrals are nonnegative; hence,

averaging of one Wigner distribution with another one yields a

nonnegative result.

Winter College ICTP, Trieste, Italy, January 2006 62/120



Spatially incoherent light

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ = W ∗(r, q)

In the case of spatially incoherent light, the positional power
spectrum [with intensity p(r) ≥ 0 ] reads

Γ
(
r + 1

2r′, r − 1
2r′) = p(r) δ(r′)

and the Wigner distribution takes the form W (r, q) = p(r) .

The Wigner distribution depends only on the space variable r and
not on the spatial-frequency (i.e., direction) variable q.
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Spatially stationary light

W (r, q) =

∫
Γ̄

(
q + 1

2q′, q − 1
2q′) eirtq′

d
q′

2π
= W ∗(r, q)

In the case of spatially stationary light, we have:

positional power spectrum Γ
(
r + 1

2r′, r − 1
2r′

)
= s(r′)

directional power spectrum [intensity s̄(q) =

∫
s(r′) e−iqtr′

dr′ ≥ 0 ]

Γ̄
(
q + 1

2q′, q − 1
2q′) = s̄(q) δ

(
q′

2π

)

and the Wigner distribution takes the form W (r, q) = s̄(q) .

Note the similarity between the spatial-frequency behaviour of
spatially stationary light and the space behaviour of spatially
incoherent light (Van Cittert-Zernike).
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Quasi-homogeneous light

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ = W ∗(r, q)

Quasi-homogeneous light is in fact spatially stationary light with a

slowly varying intensity

Γ
(
r + 1

2r′, r − 1
2r′) ' p(r) s(r′) .

The Wigner distribution takes the form W (r, q) ' p(r) s̄(q) .

Note that for quasi-homogenous light W (r, q) ≥ 0 .

Spatially incoherent for s̄(q) = 1.

Spatially stationary for p(r) = 1.

Winter College ICTP, Trieste, Italy, January 2006 65/120



Partially coherent Gaussian light 1

The positional power spectrum of the most general partially

coherent Gaussian light can be written in the form

Γ(r1, r2) =
1

π

√
det G1 exp

(
−1

4

[
r1 + r2
r1 − r2

]t [
G1 −iH

−iHt G2

] [
r1 + r2
r1 − r2

])
,

with H a real 2 × 2 matrix, and G1 and G2 (as well as G2 − G1) real,

positive definite symmetric 2 × 2 matrices.

Note: 10 degrees of freedom
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Partially coherent Gaussian light 2

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ = W ∗(r, q)

Γ(r1, r2) =
1

π

√
det G1 exp

(
−1

4

[
r1 + r2
r1 − r2

]t [
G1 −iH

−iHt G2

] [
r1 + r2
r1 − r2

])

The Wigner distribution of Gaussian light takes the form

W (r, q) = 4

√
det G1

det G2
exp

(
−

[
r
q

]t
[
G1 + HG−1

2 Ht −HG−1
2

−G−1
2 Ht G−1

2

] [
r
q

])

and is Gaussian both in r and q.
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Partially coherent Gaussian light 3

Γ(r1, r2) =
1

π

√
det G1 exp

(
−1

4

[
r1 + r2
r1 − r2

]t [
G1 −iH

−iHt G2

] [
r1 + r2
r1 − r2

])

In a more common way, the positional power spectrum of Gaussian
light can be expressed in the form

Γ(r1, r2) =
1

π

√
det G1 e−1

4 (r1 − r2)
t G0 (r1 − r2) e

−1
2rt

1i
(
H − Ht

)
r2

× e
−1

2rt
1

[
G1 − i12

(
H + Ht

)]
r1

e
−1

2rt
2

[
G1 + i12

(
H + Ht

)]
r2

.

G0 = G2 − G1 is a real, positive definite symmetric 2 × 2 matrix.

Note that the asymmetry of the matrix H is a measure for the twist.
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Zero-twist Gaussian Schell-model light: H = Ht

Γ (r1, r2) =
1

π

√
det G1 exp

(
−1

4

[
r1 + r2
r1 − r2

]t [
G1 −iH

−iH G2

] [
r1 + r2
r1 − r2

])

=
1

π

√
det G1 e−1

4 (r1 − r2)
t G0 (r1 − r2)

× e−1
2rt

1 [G1 − iH] r1 e−1
2rt

2 [G1 + iH] r2

The zero-twist Schell-model case applies, for instance, in

• the completely coherent case (G1 = G2; G0 = G2 − G1 = 0);

• the partially coherent one-dimensional case;

• the partially coherent rotationally symmetric case.

Note: 9 degrees of freedom
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Symplectic Gaussian light: H = Ht and G1 = σ2G2

With H = Ht and G1 = σG = σ2G2 (0 < σ ≤ 1), we get

Γ (r1, r2) =
σ

π

√
det G exp

(
−1

4

[
r1 + r2
r1 − r2

]t [
σG −iH

−iH G/σ

] [
r1 + r2
r1 − r2

])

W (r, q) = 4 σ2 exp

(
−σ

[
r
q

]t [
G + HG−1H −HG−1

−G−1H G−1

] [
r
q

])
.

The symplectic case applies, again, in

• the completely coherent case (σ = 1; G1 = G2 = G);
• the partially coherent one-dimensional case;
• the partially coherent rotationally symmetric case.

Note: 7 degrees of freedom
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Modal expansions of the positional power spectrum

Γ (r1, r2) =
1

ρ

∞∑

m=0

µm ϕm

(
r1

ρ

)
ϕ∗

m

(
r2

ρ

)
= Γ∗ (r2, r1)

A similar expansion holds for the directional power spectrum.

Integral equation:

∫
Γ(r1, r2) ϕm

(
r2

ρ

)
dr2 = µm ϕm

(
r1

ρ

)

Eigenfunctions orthonormal:

∫
ϕm(ξ) ϕ∗

n(ξ) dξ = δm−n

Eigenvalues nonnegative: µ0 ≥ µ1 ≥ . . . ≥ µm ≥ . . . ≥ 0
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Modal expansions of the Wigner distribution

Γ (r1, r2) =
1

ρ

∞∑

m=0

µm ϕm

(
r1

ρ

)
ϕ∗

m

(
r2

ρ

)
= Γ∗ (r2, r1)

W (r, q) =

∫
Γ

(
r + 1

2r′, r − 1
2r′) e−iqtr′

dr′ =
∞∑

m=0

µm wm

(
r

ρ
, ρq

)
,

with wm(ξ, η) =

∫
ϕm

(
ξ + 1

2ξ′) ϕ∗
m

(
ξ − 1

2ξ′) e−iηtξ′
dξ′.

Orthonormality relation for the Wigner distributions fm(ξ, η):

∫ ∫
wm(ξ, η) wn(ξ, η) dξd

η

2π
=

∣∣∣∣
∫

ϕm(ξ) ϕ∗
n(ξ) dξ

∣∣∣∣
2

= δm−n
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Inequalities for the Wigner distribution

• 2 dx du ≥ 1 , 2 dy dv ≥ 1 , (d2
x + d2

y)
(
d2

u + d2
v

) ≥ 1

• 0 ≤
∫ ∫

W1(r, q) W2(r, q) drd
q

2π

•
∫ ∫

W1(r, q) W2(r, q) drd
q

2π

≤
√∫ ∫

W 2
1 (r, q) drd

q

2π

√∫ ∫
W 2

2 (r, q) drd
q

2π

•
∫ ∫

W 2(r, q) drd
q

2π
≤

(∫ ∫
W (r, q) drd

q

2π

)2
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Linear optical systems

Input-output relationships for completely coherent light:

ϕo(ro) =

∫
hrr(ro, ri) ϕi(ri) dri point-spread function

ϕ̄o(qo) =

∫
hqr(qo, ri) ϕi(ri) dri hybrid spread function

ϕo(ro) =

∫
hrq(ro, qi) ϕ̄i(qi) d

qi

2π
hybrid spread function

ϕ̄o(qo) =

∫
hqq(qo, qi) ϕ̄i(qi) d

qi

2π
wave-spread function

Input-output relationship in terms of positional power spectra:

Γo(r1, r2) =

∫ ∫
hrr(r1, ρ1) Γi(ρ1, ρ2) h∗

rr(r2, ρ2) dρ1dρ2
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Ray-spread function of a linear optical system

Input-output relationship in terms of Wigner distributions:

Wo(ro, qo) =

∫ ∫
K(ro, qo, ri, qi) W (ri, qi) drid

qi

2π

The function K(r, q, ri, qi) is the response of the optical system in
the space-frequency domain to the input signal

Wi(r, q) = δ(r − ri) δ

(
q − qi

2π

)
(' single ray!) .

Hence, the function K(ro, qo, ri, qi) might be called the ray-spread
function of the optical system.
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Thin lens

Point-spread function of a thin lens:

hrr(ro, ri) = e−1
2irt

oCro δ(ro − ri) ,

with C = Ct a real symmetric 2 × 2 matrix.

Ray-spread function:

K(ro, qo, ri, qi) = δ(ri − ro) δ

(
qi − Cro − qo

2π

)

Input-output relationship:

Wo(r, q) = Wi(r, Cr + q)
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Free space (in the Fresnel approximation)

Wave-spread function of free space:

hqq(qo, qi) = e
1
2iqt

oBqo δ

(
qo − qi

2π

)
,

with B = Bt a real symmetric 2 × 2 matrix.

Ray-spread function:

K(ro, qo, ri, qi) = δ(ri − ro − Bqo) δ

(
qi − qo

2π

)

Input-output relationship:

Wo(r, q) = Wi(r + Bq, q)
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Luneburg’s first-order optical system

Ray-spread function of a first-order optical system:

K(ro, qo, ri, qi) = δ(ri − Aro − Bqo) δ

(
qi − Cro − Dqo

2π

)
,

with A, B, C, and D real 2×2 matrices.

Input-output relationship:

Wo(r, q) = Wi(Ar + Bq, Cr + Dq)

The ABCD-matrix is known as the ray transformation matrix:

[
ri
qi

]
=

[
A B
C D

] [
ro
qo

]
.
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Symplecticity of the ray transformation matrix

Symplecticity of the ray transformation matrix T =

[
A B
C D

]

With the matrix J = i

[
0 −I
I 0

]
= J−1 = J† = −Jt , symplecticity can

be expressed as T −1 = JT tJ ,

[
A B
C D

]−1

=

[
Dt −Bt

−Ct At

]
, and hence

ABt = BAt, BtD = DtB , DCt = CDt, CtA = AtC ,

and ADt − BCt = I = AtD − CtB .

In the one-dimensional case symplecticity reduces to AD − BC = 1.
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One-dimensional examples ABCD matrix

Lens: Wo(x, u) = Wi

(
x, u +

k

f
x

) [
1 0

k/f 1

]

Free space: Wo(x, u) = Wi

(
x − z

k
u, u

) [
1 −z/k
0 1

]

Magnifier: Wo(x, u) = Wi

(
mx,

u

m

) [
m 0
0 m−1

]

Fourier transformer: Wo(x, u) = Wi

(
βu, −x

β

) [
0 β

−β−1 0

]

Fractional Fourier transformer:

[
m cos α β sin α

−β−1 sin α m−1 cos α

]
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Spherical wave in a first-order optical system

wi(r, q) = δ

(
q − Hir

2π

)
, with Hi the input curvature

wo(r, q) = δ

(
(Cr + Dq) − Hi(Ar + Bq)

2π

)

=
1

det(D − HiB)
δ

(
q + (D − HiB)−1(C − HiA)r

2π

)

=
1

det(D − HiB)
δ

(
q − Hor

2π

)
, with Ho the output curvature

Bilinear relationship: Hi = (C + DHo)(A + BHo)
−1
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Transport equations 1

Free space in the Fresnel approximation is governed by the partial
differential equation

−i
∂ϕ

∂z
=

(
k +

1

2k

∂2

∂r2

)
ϕ ;

partially coherent light satisfies the partial differential equation

−i
∂Γ

∂z
=

[(
k +

1

2k

∂2

∂r2
1

)
−

(
k +

1

2k

∂2

∂r2
2

)]
Γ .

The corresponding transport equation reads

qt

k

∂W

∂r
+

∂W

∂z
= 0, with the solution W (r, q; z) = W

(
r − q

k
z, q; 0

)
.
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Transport equations 2

Free space is governed by the partial differential equation

−i
∂Γ

∂z
=




√
k2 +

∂2

∂r2
1

−
√

k2 +
∂2

∂r2
2


 Γ .

In the Liouville (or geometric-optical) approximation, the transport

equation reads

qt

k

∂W

∂r
+

√
k2 − qtq

k

∂W

∂z
= 0 ,

with the solution

W (r, q; z) = W

(
r − q√

k2 − qtq
z, q; 0

)
.
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Transport equations 3

For a weakly inhomogeneous medium we have

qt

k

∂W

∂r
+

√
k2 − qtq

k

∂W

∂z
+

(
∂k

∂r

)t ∂W

∂q
= 0 .

Along the path r = r(s), z = z(s), q = q(s), defined by

dr

ds
=

q

k
,

dz

ds
=

√
k2 − qtq

k
,

dq

ds
=

∂k

∂r
,

the transport equation reads
dW

ds
= 0, and the Wigner distribution

has a constant value.
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Transport equations 4

For a rotationally symmetric medium (a fibre, for instance) we have

u

k

∂W

∂x
+

v

k

∂W

∂y
+

√
k2 − (u2 + v2)

k

∂W

∂z
+

(
∂k

∂x

)t ∂W

∂u
+

(
∂k

∂y

)t ∂W

∂v
= 0 ,

with k = k
(√

x2 + y2
)
. After the transformation of variables

x = ρ cos θ , y = ρ sin θ , h = vx − uy , k2 = u2 + v2 + w2,

h and w are invariant along a ray, and the transport equation reads

√
k2 − w2 − h2

ρ2

∂W

∂ρ
+

h

ρ2

∂W

∂θ
+ w

∂W

∂z
= 0 .

Winter College ICTP, Trieste, Italy, January 2006 85/120



Matrix of normalized second-order moments

The real, positive definite symmetric moment matrix

M =

∫ ∫ [
rrt rqt

qrt qqt

]
W (r, q) drd

q

2π

/∫ ∫
W (r, q) drd

q

2π

propagates through a first-order optical system with the symplectic

ray transformation matrix

T =

[
A B
C D

]
, and thus

[
ri
qi

]
=

[
A B
C D

] [
ro
qo

]
= T

[
ro
qo

]
,

according to the propagation law

Mi = TMoT t.
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Similarity transformation

[
ri
qi

]
= T

[
ro
qo

]

Propagation law: Mi = TMoT t, with T −1 = JT tJ

Similarity transformation: MiJ = T (MoJ)T −1

With MJ = SΛS−1, we have the relationships:

Λi = Λo. The eigenvalues of MJ remain invariant.

Si = TSo. The eigenvectors propagate like the rays do.
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Properties of M and MJ 1

• If λ is an eigenvalue of MJ, then −λ is an eigenvalue, too;
this implies that the characteristic polynomial det(MJ − λI) is a
polynomial of λ2.

• The eigenvalues of MJ are real.
• If M is proportional to a symplectic matrix, then it can be

expressed in the form

M = m

[
G−1 G−1H

HG−1 G + HG−1H

]
,

with m a positive scalar, G and H real symmetric 2×2 matrices,
and G positive definite.

• If M is proportional to a symplectic matrix with a (positive)
proportionality factor m (m4 = det M), then the two positive
eigenvalues are equal to +m and the two negative eigenvalues
equal to −m.
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Properties of M and MJ 2

• Symplecticity is preserved – with the same proportionality factor

m – in (symplectic) first-order optical systems.

• If M is proportional to a symplectic matrix,

M = m

[
G−1 G−1H

HG−1 G + HG−1H

]
,

then the propagation law can be written in the bilinear form

Hi ± iGi = [C + D(Ho ± iGo)][A + B(Ho ± iGo)]
−1,

which resembles the bilinear relationship that we already found

for a spherical wave (G = 0: Hi = [C + DHo][A + BHo]
−1) .
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Invariants – one-dimensional case

Moment matrix M =

[
mxx mxu
mxu muu

]

0 = det(MJ − λI) = λ2 − (mxxmuu − m2
xu) = λ2 − det M

The two eigenvalues of MJ take the form λ± = ±√
det M , and we

conclude that det M = mxxmuu − m2
xu is an invariant under propa-

gation through ABCD-systems.
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Invariants – two-dimensional case

Moment matrix M =




mxx mxy mxu mxv
mxy myy myu myv
mxu myu muu muv
mxv myv muv mvv




0 = det(MJ − λI)

= λ4 − [(mxxmuu − m2
xu) + (myymvv − m2

yv)

+2(mxymuv − mxvmyu)]λ2 + det M

The factor in front of λ2 is the sum of four 2 × 2 minors of M ,
∣∣∣∣
mxx mxu
mxu muu

∣∣∣∣ +

∣∣∣∣
myy myv
myv mvv

∣∣∣∣ +

∣∣∣∣
mxy mxv
myu muv

∣∣∣∣ +

∣∣∣∣
mxy myu
mxv muv

∣∣∣∣ ,

and, like det M , remains invariant under propagation.
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Second-order moments of Gaussian light

W (r, q) = 4

√
det G1

det G2
exp

(
−

[
r
q

]t
[
G1 + HG−1

2 Ht −HG−1
2

−G−1
2 Ht G−1

2

] [
r
q

])

The matrix of second-order moments takes the form

M =

[
R P
P t Q

]
=

1

2

[
G−1

1 G−1
1 H

HtG−1
1 G2 + HtG−1

1 H

]
,

and the matrices G1, G2, and H follow directly from the submatrices

P , Q, and R of the moment matrix M :

G1 = 1
2R−1 = Gt

1 , G2 = 2 (Q − P tR−1P ) = Gt
2 , H = R−1P .
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Expression for the twist of Gaussian light

M =

[
R P
P t Q

]
=

1

2

[
G−1

1 G−1
1 H

HtG−1
1 G2 + HtG−1

1 H

]

The twist (the asymmetry of the matrix H) can be expressed in
terms of the moment matrices R and P :

X = PR−RP t = R(H−Ht)R = 1
4G−1

1 (H−Ht)G−1
1 = 1

4(H−Ht) det G−1
1 .

The twist Xo in the output plane of an ABCD system reads

4 Xo = (D − HB)t G−1
1 (H − Ht) G−1

1 (D − HB)

+ (D − HB)t G−1
1 G2 B − Bt G2 G−1

1 (D − HB) ,

where G1, G2, and H represent input-plane matrices.
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Special cases with respect to the twist

4 X = G−1
1 (H − Ht)G−1

1 = (H − Ht) det G−1
1

4 Xo = (D − HB)t G−1
1 (H − Ht) G−1

1 (D − HB)

+ (D − HB)t G−1
1 G2 B − Bt G2 G−1

1 (D − HB)

• propagation between conjugate planes: B = 0
Xo = Xi det D

• signal adaptation: Hi = DB−1 = Ht
i and Ho = −B−1A = Ht

o
Xo = Xi = 0

• G1 = σ2 G2
4 Xo = (D − HB)t G−1

1 (H − Ht) G−1
1 (D − HB) + Bt (H − Ht) B/σ2

• symplecticity: G1 = σ2 G2 and H = Ht

Xo = Xi = 0
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Outline of the presentation

1. Linear signal dependence

• Windowed (short-time) Fourier transform

• Gabor expansion

• Wavelet transform

2. Quadratic (bilinear) signal dependence

• Wigner distribution

• Application to partially coherent light

3. Relatives of the Wigner distribution

• Ambiguity function

• Cohen class – kernel design

• Fractional Fourier transform
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Part 3. Relatives of the Wigner distribution

This part deal with weighted versions of the Wigner distribution,
together forming the so-called Cohen class of bilinear signal repre-
sentations, and with functions that result from elementary opera-
tions on the Wigner distribution, like projecting this two-dimensional
function in different directions. We will study such things as the
Radon transform (well-known from computer tomography), the
fractional Fourier transform, non-iterative methods to reconstruct
the phase of the signal by only measuring two intensity profiles, etc.,
which subjects have direct applications in optics.

• M.J. Bastiaans, T. Alieva, L. Stankovic, “On rotated time-frequency kernels,”
IEEE Signal Process. Lett., vol. 9, nr. 11, 2002, pp. 378-381.

• T. Alieva, M.J. Bastiaans, L. Stankovic, “Signal reconstruction from two
close fractional Fourier power spectra,” IEEE Trans. Signal Process., vol. 51,
nr. 1, 2003, pp. 112–123.

• L. Stankovic, T. Alieva, M.J. Bastiaans, “Time-frequency signal analysis
based on the windowed fractional Fourier transform,” Signal Process., vol. 83,
nr. 11, 2003, pp. 2459–2468.
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Outline of part 3

• Wigner distribution and ambiguity function

• Cohen class

– Wigner, pseudo Wigner, Page, Rihaczek, and Levin

– Spectrogram

– Kernel design; some other kernels

• Fractional Fourier transform

– Fractional FT and rotation in phase space

– Optimal kernel alignment using fractional FT moments

– Signal reconstruction from fractional FT intensity

• Modified pseudo Wigner distribution

– Pure time / pure frequency / mixed time-frequency averaging

– Cohen class kernel for the modified pseudo WD
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Wigner distribution and ambiguity function 1

Γ(t + 1
2τ, t − 1

2τ ) ∼ ϕ(t + 1
2τ ) ϕ∗(t − 1

2τ )

Wigner distribution W (t, f) A(τ, ν) ambiguity function

Γ̄(f + 1
2ν, f − 1

2ν) ∼ ϕ̄(f + 1
2ν) ϕ̄∗(f − 1

2ν)

Γ̄(f1, f2) =

∫ ∫
Γ(t1, t2) e−i2π(f1tt − f2t2) dt1dt2

Γ̄(f + 1
2ν, f − 1

2ν) =

∫ ∫
Γ(t + 1

2τ, t − 1
2τ ) e−i2π(fτ + νt) dtdτ

W (t, f) =

∫
Γ(t+ 1

2τ, t− 1
2τ ) e−i2πfτ dτ =

∫
Γ̄(f + 1

2ν, f − 1
2ν) ei2πνt dν

A(τ, ν) =

∫
Γ(t + 1

2τ, t − 1
2τ ) e−i2πνt dt =

∫
Γ̄(f + 1

2ν, f − 1
2ν) ei2πfτ df
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Wigner distribution and ambiguity function 2

The ambiguity function is popular in radar signal processing.

t: time f : frequency τ : time lag ν: Doppler shift

The Wigner distribution W (t, f) and the ambiguity function A(τ, ν)
form a Fourier / inverse Fourier transform pair:

W (t, f) =

∫ ∫
A(τ, ν) ei2π(νt − fτ ) dτdν

A(τ, ν) =

∫ ∫
W (t, f) ei2π(fτ − νt) dtdf

Note that we have the important property: convolution in Wigner
space corresponds to multiplication in ambiguity space.
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Wigner, pseudo Wigner, Page, Rihaczek, and Levin

Wigner distribution Wϕ(t, f) =

∫ ∞

−∞
ϕ(t + 1

2τ ) ϕ∗(t − 1
2τ ) e−i2πfτ dτ

Pseudo Wigner distribution, with an additional window w:

Pϕ(t, f ; w) =

∫ ∞

−∞
ϕ(t + 1

2τ ) w(1
2τ ) w∗(−1

2τ ) ϕ∗(t − 1
2τ ) e−i2πfτ dτ

Page:
d

dt

∣∣∣∣
∫ t

−∞
ϕ(t′)e−i2πft′dt′

∣∣∣∣
2

= 2Re

{∫ ∞

0
ϕ(t)ϕ∗(t − τ )e−i2πfτdτ

}

Rihaczek: ϕ(t) ϕ̄∗(f) e−i2πft =

∫
ϕ(t) ϕ∗(t − τ ) e−i2πfτdτ

Levin: Re
{

ϕ(t) ϕ̄∗(f) e−i2πft
}

= Re

{∫
ϕ(t) ϕ∗(t − τ ) e−i2πfτdτ

}
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Wigner distribution and spectrogram

Spectrogram:
∣∣Sϕ(t, f)

∣∣2 =

∣∣∣∣
∫

ϕ(t◦) w∗(t◦ − t) e−i2πft◦ dt◦
∣∣∣∣
2

∣∣Sϕ(t, f)
∣∣2 =

∫ ∫
ϕ(t1) ϕ∗(t2) w∗(t1 − t) w(t2 − t) e−i2πf(t1 − t2) dt1dt2

=

∫ ∫ [∫
Wϕ(1

2(t1 + t2), f◦) ei2πf◦(t1 − t2) df◦
]

× w∗(t1 − t) w(t2 − t) e−i2πf(t1 − t2) dt1dt2

=

∫ ∫
Wϕ(t◦, f◦)

×
[∫

w(t◦ − t + 1
2t′) w∗(t◦ − t − 1

2t′) e−i2π(f◦ − f)t′ dt′
]∗

dt◦df◦

=

∫ ∫
Wϕ(t◦, f◦) W ∗

w(t◦ − t, f◦ − f) dt◦df◦ = W ∗
w(−t, −ω) ∗ Wϕ(t, ω)

Pure frequency description for w = 1; time description for w = δ(t) .
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Spectrogram of a sinusoidal FM signal

Spectrogram of a sinusoidal FM signal, with – from left to right –

a broad, medium and narrow analysis window w(t).
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Cohen class 1

Wigner distribution: good localization, but suffers from cross-terms.
Spectrogram:less cross-terms problems,but suffers from smoothing.

Cohen class: convolution of Wϕ(t, f) with a kernel K(t, f)

Cϕ(t, f) =

∫ ∫
K(t − t◦, f − f◦) Wϕ(t◦, f◦) dt◦df◦ = K(t, f) ∗ Wϕ(t, f)

Convolution keeps the time and frequency shift covariance:

ϕ(t − t◦) ei2πf◦t → Wϕ(t − t◦, f − f◦) .

In ambiguity space we have the product C̄ϕ(τ, ν) = K̄(τ, ν) Aϕ(τ, ν) .

Kernel design (looking for kernels that lead to a good localization
together with suppression of the cross-terms) can best be done in
ambiguity space.
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Cohen class 2

Depending on the actual form of the kernel K(t, f), properties of
the Wigner distribution Wϕ(t, f) may also hold for Cϕ(t, f).

Cϕ(t, f) = C∗
ϕ(t, f) K̄(τ, ν) = K̄∗(−τ, −ν) real

∫
Cϕ(t, f) df = |ϕ(t)|2 K̄(0, ν) = 1 time marginal

∫
Cϕ(t, f) dt = |ϕ̄(f)|2 K̄(τ, 0) = 1 frequency marginal

∫ ∫
fCϕ(t, f)dtdf

∫ ∫
Cϕ(t, f)dtdf

=
1

2π

d arg ϕ(t)

dt
K̄(0, ν) = constant

∂K̄

∂τ

∣∣∣∣∣
τ=0

= 0

instantaneous frequency
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Cohen class 3

Some well-known Cohen-class kernels K̄(τ, ν)

• Wigner / Pseudo Wigner 1 / w(1
2τ ) w∗(−1

2τ )

• Page/Rihaczek/Levin e−iπν|τ | / e−iπντ / cos(πντ )

• Born-Jordan
sin(πντ )

πντ

• Zhao-Atlas-Marks (cone) g(τ )|τ | sin(πντ )

πντ

• Choi-Williams (exponential) e−(2πτν)2/σ

• generalized exponential e−(ν/νo)
2N(τ/τo)

2M
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Cohen-class time-frequency distributions of a chirp

Wigner, spectrogram, Page, Levin, w-Levin, Choi-Williams;
Born-Jordan, Zhao-Atlas-Mark (2×), DI, LI, separable
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Fractional Fourier transform

∫
Wϕ(t, f) df = |ϕ(t)|2 projections

∫
Wϕ(t, f) dt = |ϕ̄(f)|2

projection angle α:

∫ ∫
Wϕ(t, f) δ(t cos α + f sin α − u) dtdf = |ϕ̄α(u)|2

=

∫
Aϕ(r sin α, −r cos α) e−i2πur dr

fractional Fourier transform:

ϕ̄α(u) =





exp(iα/2)√
i sin α

∫ ∞

−∞
exp

[
iπ

(u2 + t2) cos α − 2 ut

sin α

]
ϕ(t) dt (α 6= 0)

ϕ(u) (α = 0)

We remark the relation with the Radon transform (computer-aided
tomography).
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Fractional Fourier transform and rotation in phase space

ϕ(t) → Wϕ(t, f) Wigner distribution

ϕ̄α(t) → Wϕ̄α(t, f) = Wϕ(t cos α − f sin α, t sin α + f cos α) rotation

ϕ(t) → Aϕ(τ, ν) Ambiguity function

ϕ̄α(t) → Aϕ̄α(τ, ν) = Aϕ(τ cos α − ν sin α, τ sin α + ν cos α) rotation

Cϕ(t, f) = K(t, f) ∗ Wϕ(t, f) Cohen class

rotated kernel: Cϕ(t, f) = K(t cos α+f sin α, −t sin α+f cos α)∗Wϕ(t, f)

We can also write: Cϕ̄α(t, f) = K(t, f) ∗ Wϕ̄α(t, f)
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Optimum kernel alignment using fractional FT moments

First-order moment of ϕ̄α(t): mα =

∫
t |ϕ̄α(t)|2 dt

Second-order moment of ϕ̄α(t): wα =

∫
t2 |ϕ̄α(t)|2 dt

Second-order central moment of ϕ̄α(t): pα = wα − m2
α

pα = p0 cos2 α + pπ/2 sin2 α + [wπ/4 − m0mπ/2 − 1
2(w0 + wπ/2)] sin 2α

Extremum widths for tan 2αe =
2(wπ/4 − m0mπ/2) − (w0 + wπ/2)

p0 − pπ/2

Kernels can be aligned for optimum performance by rotating them
to αe; the angle αe follows from measuring only three fractional FTs.
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Optimum kernel alignment 2

Extremum widths for tan 2αe =
2(wπ/4 − m0mπ/2) − (w0 + wπ/2)

p0 − pπ/2

Pseudo WD, Generalized exponential distribution (M = 1, N = 3)
without alignment, and with alignment (αe = 41◦) of the kernel

exp[−(3t)8]{exp[j(192πt2 −8 cos(4πt)/π)]+exp[j(64πt2+8 cos(4πt)/π)]}
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Optimum kernel alignment 3

Extremum widths for tan 2αe =
2(wπ/4 − m0mπ/2) − (w0 + wπ/2)

p0 − pπ/2

Pseudo WD, Zhao-Atlas-Marks (cone kernel) distribution [g(τ ) =
cos4(πτ )] without, and with alignment (αe = 41◦) of the kernel

exp[−(3t)8]{exp[j(192πt2 −8 cos(4πt)/π)]+exp[j(64πt2+8 cos(4πt)/π)]}
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Signal reconstruction from fractional FT intensity 1

1

2π

d arg ϕ(t)

dt
=

∫∫
fWϕ(t, f)dtdf

∫∫
Wϕ(t, f)dtdf

=
1

2πi

1

|ϕ(t)|2
∫

∂Aϕ(τ, ν)

∂τ

∣∣∣∣
τ=0

ei2πtνdν

With
∂Aϕ(τ, ν)

∂τ

∣∣∣∣
τ=0

= −1

ν

∫
∂|ϕ̄α(u)|2

∂α

∣∣∣∣∣
α=0

e−i2πνudu , we get

1

2π

d arg ϕ(t)

dt
=

−1

2 |ϕ̄0(t)|2
∫

∂|ϕ̄α(u)|2
∂α

∣∣∣∣∣
α=0

sgn(t − u) du

and we conclude that the instantaneous frequency, and hence
the phase of ϕ(t), can be reconstructed from the derivative of
the fractional Fourier transform intensity distribution |ϕ̄α(t)|2 with
respect to the fractional angle α.
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Signal reconstruction from fractional FT intensity 2
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Signal reconstruction from fractional FT intensity 3
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Modified pseudo Wigner distribution 1

Wϕ(t, f) =

∫
ϕ(t + 1

2τ ) ϕ∗(t − 1
2τ ) e−i2πfτ dτ Wigner distribution

Pseudo Wigner distribution, with an additional window w:

Pϕ(t, f ; w) =

∫
ϕ(t + 1

2τ ) w(1
2τ ) w∗(−1

2τ ) ϕ∗(t − 1
2τ ) e−i2πfτ dτ

In terms of the windowed Fourier transform

Sϕ(t, f ; w) =

∫
ϕ(t + t◦) w∗(t◦) e−i2πft◦ dt◦

we can also write Pϕ(t, f ; w) =

∫
Sϕ(t, f + 1

2θ; w) S∗
ϕ(t, f − 1

2θ; w) dθ .
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Modified pseudo Wigner distribution 2

Pϕ(t, f ; w) =

∫
Sϕ(t, f + 1

2θ; w) S∗
ϕ(t, f − 1

2θ; w) dθ

Frequency-modified version, with an additional window z(θ):

Pϕ(t, f ; w, z) =

∫
Sϕ(t, f + 1

2θ; w) z(θ) S∗
ϕ(t, f − 1

2θ; w) dθ

Pseudo Wigner distribution for z(θ) = 1; spectrogram for z(θ) = δ(θ)

Time-frequency-modified version, with a rotation angle α:

Pϕ
α(t, f ; w, z) =

∫
Sϕ(t + 1

2θ sin α, f + 1
2θ cos α; w) z(θ) e−i2πfθ sin α

× S∗
ϕ(t − 1

2θ sin α, f − 1
2θ cos α; w) dθ

Pure frequency modifying for α = 0; pure time modifying for α = 1
2π
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Modified pseudo Wigner distribution 3

Also: P α
ϕ (t, f ; w, z) =

∫
Sϕ̄α(u, v + 1

2θ; w) z(θ) S∗
ϕ̄α

(u, v − 1
2θ; w) dθ

with Sϕ̄α(u, v; w) =

∫
ϕ̄α(u + u◦) w∗(u◦) e−i2πvu◦ du◦

= eiπ(uv − tf)
∫

ϕ(t + t◦) w̄∗
−α(t◦) e−i2πft◦ dt◦

= eiπ(uv − tf) Sϕ(t, f ; w̄−α)

[
t
f

]
=

[
cos α − sin α
sin α cos α

] [
u
v

]

The windowed Fourier transform Sϕ̄α(u, v; w) of the fractional
Fourier transform ϕ̄α(u) of a signal ϕ(t) corresponds to the
windowed Fourier transform Sϕ(t, f ; w̄−α) of the signal itself, with
the window w̄−α(t) being the fractional FT of the initial one w(t).
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Modified pseudo Wigner distribution 4

Cohen kernels for the modified pseudo Wigner distribution

Cϕ(t, f) = K(t, f) ∗ Wϕ(t, f) Cohen class in Wigner space

P α
ϕ (t, f ; w, z) : K(t, f) = Ww(−t, −f) z̄(−t cos α + f sin α)

C̄ϕ(τ, ν) = K̄(τ, ν) Aϕ(τ, ν) Cohen class in ambiguity space

P α
ϕ (t, f ; w, z) : K̄(t, f) =

∫
Aw(−τ + θ sin α, −ν + θ cos α) z(θ) dθ

Find the optimum fractional angle αe from fractional FT moments:

tan 2αe =
2(wπ/4 − m0mπ/2) − (w0 + wπ/2)

p0 − pπ/2
.
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Optimum modified pseudo Wigner distribution 1

a) Pseudo WD, b) Frequency-modified, c) Rotated WD (WD of

the fractional FT), d) Modified in the optimum fractional domain
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Optimum modified pseudo Wigner distribution 2

a) Pseudo WD, b) Frequency-modified, c) Rotated WD (WD of

the fractional FT), d) Modified in the optimum fractional domain
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