

The Abdus Salam International Centre for Theoretical Physics

International Ator Energy Agency

SMR.1738 - 4

WINTER COLLEGE on QUANTUM AND CLASSICAL ASPECTS of INFORMATION OPTICS

30 January - 10 February 2006

Optical Integral Transforms for

Information Processing

Lecture 1: From geometric to wave optics

Tatiana ALIEVA Facultad de Ciencias Físicas Universidad Complutense de Madrid Ciudad Universitaria s/n Madrid 28040 Spain

Optical Integral Transforms for Information Processing

Lecture 1: From geometric to wave optics

Tatiana Alieva

talieva@fis.ucm.es

Universidad Complutense de Madrid

Winter College on Quantum and Classical Aspects of Information Optics 30 January - 10 February 2006, Miramare - Trieste, Italy

Outlines

- Optics and information
- Fourier transform key for information processing
- Wave optics: Helmholtz equation and spatial frequency spectrum
- Paraxial approximation in wave and geometric optics
- Fresnel and Fraunhofer diffraction
- Phase transformation of thin lens
- Composite system: canonical integral transform and related ray transformation matrix

Optics and information

- acquisition: optical microscopy, optical tomography, speckle imaging, spectroscopy, metrology, optical velocimetry, optical particle manipulation
- processing: image enhancement, feature extraction, texture analysis, classification
- transmission: optical fibres
- archiving: magneto-optical and optical disks, development of holographic memories

Different approaches for optical information processing

- Coherent light
- Incoherent light
- Analogue optical processing
- Digital optical processing

Different approaches for optical information processing

- Coherent light
- Incoherent light
- Analogue optical processing
- Digital optical processing

Optical information processing

Optical system transforms the signal in order to

- improve its quality
- perform various operations on it: differentiation, integration, rotation, etc...
- extract its characteristics
- Iocalize a specific pattern
- encrypt/decrypt the information

What we need for optical information processing

Multiplication operation

- Light propagation through (or reflection from)
 - transparency (with mirror)
 - hologram
 - spatial light modulator

Addition operation

Superposition principle

Signal description

- Coherent (deterministic) monochromatic signals \implies complex field amplitude f(x,y)
 - □ In the coordinate (position) domain f(x,y)
 - In the spatial frequency domain F(u,v)
- Fourier transform

$$F(u,v) = FT\left\{f(x,y)\right\} = \iint f(x,y) \exp\left[-i2\pi(xu+yv)\right] dxdy$$

 Partially coherent (stochastic) signals Mutual intensity distribution, Wigner distribution function

Spatial frequencies

- Low frequencies rough image structure
- High frequencies fine structure (object edges)

Fourier transform properties

- Linearity $FT\left\{\sum_{k} b_k f_k(x, y)\right\} = \sum_{k} b_k F_k(u, v)$ • Inverse FT
 - $f(x,y) = FT^{-1}\left\{F(u,v)\right\} = \iint F(u,v) \exp[i2\pi(xu+yv)] dudv$
- Shift theorem $\iint f(x-a, y-b) \exp\left[-i2\pi(xu+yv)\right] dxdy = \exp\left[-i2\pi(au+bv)\right] F(u,v)$
- Scaling theorem

$$\iint f(x/a, y/b) \exp\left[-i2\pi(xu+yv)\right] dxdy = |a||b|F(au, bv)$$

Derivation and FT

$$\frac{\partial^{k+l} f(x, y)}{\partial x^k \partial^l y} = (i2\pi)^{k+l} \iint u^k v^l F(u, v) \exp\left[i2\pi (xu + yv)\right] du dv$$

A. D. Poularikas, ed., *The Transforms and Applications Handbook*, CRC Press, Alabama, (1996)

Fourier transform and convolution

Convolution of two signals (filtering operation)

$$g(x,y) = f(x,y) * h(x,y) = \iint f(\xi,\eta) h(x-\xi,y-\eta) d\xi d\eta$$

FT of convolution

$$G(u,v) = FT\left\{g(x,y)\right\} = F(u,v)H(u,v)$$

$$g(x,y) = FT^{-1}\left\{G(u,v)\right\} = FT^{-1}\left\{F(u,v)H(u,v)\right\}$$

R. N. Bracewell, ed., *The Fourier Transform and Its Applications,* McGraw-Hill, New 13 York, chapter 3 (1978)

Correlation

• Convolution of f(x,y) and $h^*(-x,-y)$ is called correlation $c(x,y) = f(x,y) \otimes h(x,y) = f(x,y) * h^*(-x,-y)$

$$c(x,y) = \iint f(\xi,\eta) h^* (\xi - x,\eta - y) d\xi d\eta$$

Using FT

$$c(x,y) = FT^{-1}\left\{F(u,v)H^*(u,v)\right\}$$

• Autocorrelation
$$c_a(x, y) = FT^{-1} \left\{ \left| F(u, v) \right|^2 \right\}$$

has a maximum in the coordinate origin

Correlation is a measure of similarity between two signals

Correlation: example

Image

Amplitude of autocorrelation

- Inequality of Schwarz permits to discriminate two signals of equal energy $|c_a(0)| \ge |c(0)|$
- Localization of the cross correlation
 peak indicates the position of the image at the scene

Horse and other objects

Amplitude of cross correlation with the image of the horse

Fourier transform

Fourier transform is a key for information processing

Optical computing and information processing (integral transformations, derivation, filtering, recognition, ...)

Convolution, Correlation, Wavelet, Hilbert and many other transforms...

Diffraction by screen

Consider the diffraction of coherent monochromatic plane wave by the screen characterized by transmittance function $T(x_0,y_0)$

 $\Psi_{i}(x_{0}, y_{0}) = \Psi_{0}(x_{0}, y_{0})T(x_{0}, y_{0})$

Helmholtz equation

In order to calculate the complex field amplitude at the observation (output) plane $\Psi_o(x,y)$ the Helmholtz equation

$$\nabla^2 \Psi(x, y, z) + k^2 \Psi(x, y, z) = 0$$

which describes the monochromatic wave propagation in free space, has to be resolved with boundary conditions $\Psi(x_0,y_0,0) = \Psi_i(x_0,y_0)$ (*k*=2 π/λ and λ is the wavelength).

Approximations:

- Monochromatic, linearly polarized waves
- linear, isotropic, homogeneous, no dispersive medium

Angular spectrum

- Methods to resolve the Helmholtz equation:
 - Green function
 - Angular spectrum decomposition
- Angular spectrum

$$F\left(k_{x},k_{y},z\right) = \frac{1}{4\pi^{2}}\int_{-\infty}^{\infty} \int \Psi\left(x,y,z\right) \exp\left(-i\left[k_{x}x+k_{y}y\right]\right) dxdy$$

where

 k_x , k_y , $k_z = (k^2 - k_x^2 - k_y^2)^{1/2}$ are the wave vector components,

$$f_x = k_x/2\pi$$
, $f_y = k_y/2\pi$ are spatial frequencies

Equation for angular spectrum

Introducing

$$\Psi(x, y, z) = \int_{-\infty}^{\infty} F(k_x, k_y, z) exp(i[k_x x + k_y y]) dk_x dk_y$$

n Helmoltz equation
$$\frac{d^2 F}{dz^2} + (k^2 - k_x^2 - k_y^2) F = 0$$

$$F(k_x, k_y, z) = F(k_x, k_y, 0) exp(iz[k^2 - k_x^2 - k_y^2]^{1/2})$$

 $k^2 > k_x^2 + k_y^2$ the propagation affects only the phase of the angular spectrum (phase only filter)

 $k^2 < k_x^2 + k_y^2$ evanescent waves

Paraxial approximation

• If the wave vector components k_{x_i} and k_y of the angular spectrum of the complex field amplitude $\Psi_i(x_i, y_i)$ satisfy the condition

$$k_{x}^{2}$$
 , $k_{y}^{2} << k^{2}$

then

$$\left[k^{2} - k_{x}^{2} - k_{y}^{2}\right]^{1/2} \approx k - \frac{k_{x}^{2}}{2k} - \frac{k_{y}^{2}}{2k}$$

Fresnel diffraction

Using very important formula for Gaussian optics

$$\int_{-\infty}^{\infty} exp(\alpha x^{2} + \beta x) dx = \sqrt{\frac{\pi}{-\alpha}} exp\left(-\frac{\beta^{2}}{4\alpha}\right), \qquad Re(\alpha) \le 0$$

the complex field amplitude at plane *z* can be represented as a convolution integral (similar to the wavelet) :

$$\Psi_{o}(\mathbf{r}_{o}) = \frac{\exp(ikz)}{i\lambda z} \int_{-\infty}^{\infty} \Psi_{i}(\mathbf{r}_{i}) \exp\left(\frac{ik}{2z}(\mathbf{r}_{0}-\mathbf{r}_{i})^{2}\right) d\mathbf{r}_{i}$$
$$\Psi_{o}(\mathbf{r}_{o}) = \frac{\exp(ikz)}{i\lambda z} \left\{\Psi_{i}(\mathbf{r}_{o}) * \exp\left(\frac{ik}{2z}\mathbf{r}_{o}^{2}\right)\right\}$$

I. S. Gradshteyn and I.M. Ryzhik, *Table of Integrals, Series, and Products,* Academic Press, NY, (1994).

 Paraxial rays are described by position r=(x,y) and direction q=(q_xn, q_yn) vectors, n – refractive index (further: n=1)

 Rectilinear ray propagation in isotropic homogeneous medium

Ray propagation in free space

From one dimensional to two dimensional case

Ray transformation matrix and Fresnel integral

Another form for the Fresnel integral

$$\Psi_{o}(\mathbf{r}_{o}) = \frac{\exp(ikz)}{i\lambda z} \int_{-\infty}^{\infty} \Psi_{i}(\mathbf{r}_{i}) \exp\left(\frac{i\pi}{\lambda z} \left[\mathbf{l} \cdot \mathbf{r}_{i}^{2} + \mathbf{l} \cdot \mathbf{r}_{o}^{2} - 2\mathbf{r}_{i}\mathbf{r}_{o}\right]\right) d\mathbf{r}_{i}$$

Fraunhofer diffraction

• If $z >> k(x_i^2 + y_i^2)_{max}/2$, where x_{imax} , y_{imax} are the maximum horizontal and vertical sizes of diffracted object

then
$$\exp\left(\frac{ik}{2z}\mathbf{r}_i^2\right) \approx 1$$

$$\Psi_{o}(\mathbf{r}_{o}) = \frac{\exp(ikz)}{i\lambda z} \exp\left(\frac{ik}{2z}\mathbf{r}_{o}^{2}\right) \int_{-\infty}^{\infty} \Psi_{i}(\mathbf{r}_{i}) \exp\left(-\frac{ik}{z}\mathbf{r}_{i}\mathbf{r}_{o}\right) d\mathbf{r}_{i}$$
$$= \frac{\exp(ikz)}{i\lambda z} \exp\left(\frac{ik}{2z}\mathbf{r}_{o}^{2}\right) FT\left[\Psi_{i}(\mathbf{r}_{i})\right] \left(\frac{k}{z}\mathbf{r}_{o}\right)$$

 At large distances the complex field amplitude of diffractive field is proportional to the scaled Fourier transform of the input one

Limitations of Fraunhofer system for FT observation

 The distance between the input and output planes is too large

 $z >> \pi a^2 / \lambda$

where *a* is the size of the object and λ is the wavelength

- Scaling of the FT depends on the distance
- Additional quadratic phase factor
- Solution: use lenses!

Phase transform by thin lens

Transmittance function of the spherical convergent thin lens $(P=\exp(izn2\pi/\lambda), n$ is the refractive index of lens material)

$$T(x, y) = P \exp\left[-i\pi\left(x^2 + y^2\right)/\lambda f\right]$$

 Action of thin lens: signal multiplication by chirp function (only phase of the signal is changed)

Ray transformation by thin spherical lens

 X_o

=

- Position vector doesn't change
- Direction changes
- Transformation matrix

$$\begin{pmatrix} \mathbf{r}_o \\ \mathbf{q}_o \end{pmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -f^{-1}\mathbf{I} & \mathbf{I} \end{bmatrix} \begin{pmatrix} \mathbf{r}_i \\ \mathbf{q}_i \end{pmatrix} \mathbf{k}$$

Integral transformation

$$\Psi_o(\mathbf{r}_o) = P \exp\left(-i\pi \mathbf{r}_o^2 / f\right) \int_{-\infty}^{\infty} \Psi_i(\mathbf{r}_i) \,\delta(\mathbf{r}_i - \mathbf{r}_o) d\mathbf{r}_i$$

 θ_o

 $x_i = x_o$

Cylindrical lenses

 Transmittance function of cylindrical lens

$$T(x, y) = P \exp\left[-i\pi x^2 / \lambda f\right]$$

Matrix representation

$$\begin{bmatrix} x_{o} \\ y_{o} \\ \theta_{xo} \\ \theta_{yo} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -f^{-1} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_{i} \\ y_{i} \\ \theta_{xi} \\ \theta_{yi} \end{pmatrix}$$

Integral transformation

$$\Psi_o(\mathbf{r}_o) = P \exp\left(-i\pi x_o^2 / f\right) \int_{-\infty}^{\infty} \Psi_i(\mathbf{r}_i) \,\delta(\mathbf{r}_i - \mathbf{r}_o) d\mathbf{r}_i$$

Cylindrical lens: general form

Transmittance function of a cylindrical lens rotated at angle φ with respect to the chosen coordinate system

$$T(x, y) = P \exp\left[-i\pi(x\cos\varphi + y\sin\varphi)^2 / \lambda\right]$$

- Transformation matrix
- Sub matrix G

$$\mathbf{G} = \frac{1}{2f} \begin{bmatrix} 1 + \cos 2\varphi & \sin 2\varphi \\ \sin 2\varphi & 1 - \cos 2\varphi \end{bmatrix}$$

$$\begin{pmatrix} \mathbf{r}_o \\ \mathbf{q}_o \end{pmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{G} & \mathbf{I} \end{bmatrix} \begin{pmatrix} \mathbf{r}_i \\ \mathbf{q}_i \end{pmatrix}$$

Composition of cylindrical lens

- Two cylindrical lenses with the same focal distance rotated at angle $\pi/2$ \longrightarrow spherical lens
- Two cylindrical lenses rotated at angle $\pi/4$

Generalized lens

• Lens matrix for the set of *m* attached cylindrical lenses of power $p_m = 1/f_m$ rotated at angle φ_m

- $\mathbf{G} = \mathbf{G}^{\mathrm{T}}$
- Simple notation of generalized lens

$$\mathbf{G} = \begin{bmatrix} g_{xx} & g_{xy} \\ g_{xy} & g_{yy} \end{bmatrix}$$

G. Nemes and A. E. Siegman, J. Opt. Soc. Am. A 11, 2257 (1994)

Composite system

Complex amplitude evolution during propagation
 Input image
 Output intensity

Composite system (analytical description)

Using the important formula

$$\Psi_{o}(\mathbf{r}_{o}) = \frac{\exp(ik(z_{1}+z_{2}))}{i\lambda z_{1}z_{2}\xi}P_{-\infty}^{\infty}\Psi_{i}(\mathbf{r}_{i})\exp\left(\frac{ik\mathbf{r}_{i}^{2}}{2}\left[\frac{1}{z_{1}}-\frac{1}{\xi z_{1}^{2}}\right]\right)$$
$$\times \exp\left(\frac{ik\mathbf{r}_{o}^{2}}{2}\left[\frac{1}{z_{2}}-\frac{1}{\xi z_{2}^{2}}\right]-\frac{ik\mathbf{r}_{o}\mathbf{r}_{i}}{2\xi z_{1}z_{2}}\right)d\mathbf{r}_{i}$$

Ray transformation in composite system

 Matrix of the composite system is a product of matrices corresponding to its parts in inverse order

.

$$\Psi(\mathbf{r}_{i}) \begin{vmatrix} \mathbf{FS} & \mathbf{I} & \mathbf{FS} \\ z_{1} & z_{2} & \Psi(\mathbf{r}_{o}) \\ input & output \end{vmatrix} \mathbf{M} = \mathbf{M}_{n} \times \mathbf{M}_{n-1} \dots \mathbf{M}_{1}$$
$$\begin{pmatrix} \mathbf{M}_{i} & \mathbf{M}_{i} \\ \mathbf{M$$

Ray transformation matrix vs integral transform

$$\Psi_{o}(\mathbf{r}_{o}) = \frac{\exp(ik(z_{1}+z_{2}))}{i\lambda B} P \int_{-\infty}^{\infty} \int \Psi_{i}(\mathbf{r}_{i}) \exp\left(\frac{i\pi}{\lambda B} \left[D\mathbf{r}_{o}^{2} + A\mathbf{r}_{i}^{2} - 2\mathbf{r}_{o}\mathbf{r}_{i}\right]\right) d\mathbf{r}_{i}$$

Imaging condition

• In the case
$$\xi = \frac{1}{z_1} + \frac{1}{z_2} - \frac{1}{f} = 0$$

the ray transformation matrix can be written as

$$A = -z_2 / z_1$$

$$B = 0$$

$$C = -(z_1 + z_2) / z_2 z_1$$

$$D = -z_1 / z_2$$

 Output complex amplitude is a product of the scaled input complex amplitude and a quadratic phase factor

$$\Psi_{o}(\mathbf{r}_{o}) = \frac{\exp(ik(z_{1}+z_{2}))}{|A|} \exp\left(\frac{i\pi C \mathbf{r}_{o}^{2}}{\lambda A}\right) P \int_{-\infty}^{\infty} \int \Psi_{i}(\mathbf{r}_{i}) \delta(\mathbf{r}_{i}-\mathbf{r}_{o}/A) d\mathbf{r}_{i}$$

Optical Fourier transform

Fourier transform (1D or 2D) : application of cylindrical or spherical lenses

Г

 \sim

$$\Psi_o(\mathbf{r}_o) = P \int \Psi_i(\mathbf{r}_i) \exp\left(-i2\pi \frac{\mathbf{r}_i \mathbf{r}_o}{\lambda f}\right) d\mathbf{r}_i$$

4-f Van der Lugt optical processor

Correlation or convolution operations
 Fourier plane mask

A. Van der Lugt, *IEEE Trans. Inf. Theory* IT-10, 139 (1964); A. Van der Lugt, *Optical Signal Processing*, John Wiley, NY (1992)

Summary: basic operations for coherent optical processing

- Superposition principle → sum of optical fields
- Light propagation through (or reflection from) screen \rightarrow multiplication
- Diffraction of Fresnel \rightarrow convolution with chirp
- Diffraction in the far field \rightarrow Fourier transform
- System with thin lens
 - simplifies the observation of the Fourier transform
 - performs canonical transform
- Fourier transform + signal multiplication = convolution, correlation operations
- Cylindrical lenses \rightarrow new operations: rotation, twisting, ...