

The Abdus Salam International Centre for Theoretical Physics

International Ator Energy Agency

SMR.1738 - 8

WINTER COLLEGE

on

QUANTUM AND CLASSICAL ASPECTS

of

INFORMATION OPTICS

30 January - 10 February 2006

The Origins of Light's angular Momentum

Miles PADGETT

University of Glasgow Dept. of Physics & Astronomy G12 8QQ Glasgow United Kingdom

The Origins of Light's angular Momentum

Miles Padgett

How does optical angular momentum arise?

Allen *et al.* Phys. Rev. A 1992 Allen *et al.* Prog. in Optics 1999

Angular momentum

Light beams with angular momentum (spin)

Circular polarisation

Gives spin angular momentum

Light beams with angular momentum (orbital)

Plane phasefronts

Helical phasefronts

Gives Orbital angular momentum

No restriction on polarisation

Linear-momentum of light

- Energy and momentum flow within a light beam given by Poynting vector
- Linear Momentum

$$p = \frac{\varepsilon_0}{2} \left(E^* \times B + E \times B^* \right)$$

 $\bullet p \alpha \mathbf{D} \mathbf{X} \mathbf{B}$

 Can evaluate a local value of momentum at every position within a light beam

wave

Angular-momentum of light

- In the "classical world" all effects can be explained by the electro-magnetic field
 - Angular momentum zdirection requires linear momentum in φ-direction
 - i.e. $L_z = r p_{\phi}$
 - Linear momentum in φdirection needs component of E or B in z-direction
- Angular momentum requires field component in direction of propagation

Calculate AM from EM field

 $p = \frac{\varepsilon_0}{2} \left(E^* \times B + E \times B^* \right) = \begin{bmatrix} i\omega \frac{\varepsilon_0}{2} \left(u^* \nabla u - u \nabla u^* \right) + \omega k \varepsilon_0 |u|^2 z + \omega \sigma \frac{\varepsilon_0}{2} \frac{\partial |u|^2}{\partial r} \Phi \\ \phi - \text{ component} \\ \text{gives OAM} \end{bmatrix} \phi - \text{ component} \\ \phi - \text{ component} \\ \phi - \text{ component} \\ \text{gives SAM} \end{cases}$

Depends upon

 $u \approx$ the local amplitude of the beam (proportional to E) Orbital terms arises from phase gradient Spin term arises from intensity gradient

Spin AM (more complicated!)

- SAM requires both circular polarisation & an intensity gradient!
 - B α Curl E

• e.g. if
$$\frac{dE_y}{dx} \neq 0 \& \sigma \neq 0$$

• $B_z \neq 0$

- Intensity gradient approach gives right answer to
 - Transfer of SAM to particles

Orbital angular momentum

- OAM arises from helical phasefronts
 - $E_z \& H_z \neq 0$
 - $p_{\phi} \neq 0$
 - L_z ≠ 0
- OAM arises from "skew rays"
- Skew rays give the right answer to
 - Transfer of OAM to particles
 - Generation of OAM
 - Frequency shift

Simmons and Guttmann (1970)

 p_{0}

X

F

Numerical calculation of AM density

- OAM arises from phase gradients
- SAM arises from circular polarisation & intensity gradient
 - Intensity gradient set by "edge" of observation
- Numerical evaluation of fields gives correct answer

LG beam, ℓ =8, σ =1

Angular momentum in terms of photons

- Spin angular momentum
 - Circular polarisation
 - σħ per photon
- Orbital angular momentum
 - Helical phasefronts
 - $\ell\hbar$ per photon

Ray-optics to model OAM

Padgett and Allen, Opt Commun 1995

Poynting vector

Poynting vector (paraxial)

$$S\alpha\left(\frac{zr}{z_r^2+z^2}\,\hat{r}+\frac{\ell}{kr}\,\hat{\phi}+\hat{z}\right)$$

- Radius of max intensity (p=0) $r(@I_{max}) = \sqrt{\frac{\ell}{2}}w(z)$
- Direction of Poynting vector at r (@Imax)
 - Straight line!
 - Skew angle $\theta = \ell / kr$

Momentum and energy flow perpendicular to phasefronts

Generation of Beams with Orbital Angular Momentum

Beijersbergen *et al.* Opt Commun.1992 Bazhenov, *et al.* JEPT Lett. 1990

Making helical phasefronts

Ray-optics to model OAM

Turnbull et al. Opt. Commun. 1996

Spiral Phase-plate

- Step height constraint
 - s = ℓλ/ (n-1)
- Local slope of plate
 - $\alpha = s/2\pi r$
- Refraction at surface
 - θ = (n-1)s/2πr
 - $p_{\phi} = \hbar \mathbf{k} (n-1) s/2\pi r$
- Angular momentum
 - $L_z = p_{\phi}r = \ell\hbar$ per photon

Ray-Optics gives the right answer

Designing helical phase hologram

Making helical phasefronts

What do these beams look like?

- Any beam with "skewed" phase-fronts carries OAM
- The "pure" OAM states have *l*-intertwined helical phasefronts
 - $u(\phi) = \exp(i\ell\phi)$
 - OAM = $\ell\hbar$ per photon
- Example OAM beams
 - Laguerre-Gaussian modes
 - High-order Bessel beams

Making circularly polarised light

Making helical phasefronts

Orthogonal states for spin and orbital angular momentum

Beijersbergen *et al.* Opt Commun. 1992 Padgett and Courtial, Opt Lett.1999 Allen, *et al.* Phys Rev E. 1999

Transformations between basis sets

- Polarisation (spin angular momentum)
 - Linear cf circular polarisation
 - Transformation using waveplates

 \leftrightarrow +/- i = /

- Mode structure (orbital angular momentum)
 - Hermite-Gaussian cf Laguerre-Gaussian modes
 - Transformation ?

Spin and orbital AM

How to change phase of orthogonal SAM states

- Change the relative phase of linear polarisation states using a waveplate
 - 180° use half-wave plate
 - 90° use quarterwave plate

Quarter-waveplate

How to change phase of orthogonal OAM states

- Change the relative phase of linear polarisation states using a cylindrical lenses
 - 180° use π -converter
 - 90° use π/2 converter

How to rotate a light beam (or at least the polarisation)

- Rotate polarisation by rotating halfwaveplate (but does not rotate image)
- Phase change

$$\Delta \psi = 2\theta \sigma$$

How to rotate an image (phase of a light beam)

- Rotate phase structure with Dove prism (but does not rotate polarisation)
- Phase change

$$\Delta \psi = 2\theta \ell$$

Spin and orbital equivalence

Spin	Vs	Orbital
Birefringence	Equiv.	Astigmatism
Optical Activity	Equiv.	Image rotation

Measuring OAM

Mair *et al.* Nature 2001. Leach *et al.* Phys. Rev. Lett. 2002

Measuring SAM of single photons

- Measuring SAM is the same as measuring polarisaion
- Quarter- waveplate converts circular to linear polarisation
- Polarising beam splitter separates states
- Polarisation measured to be in one of two states

Measuring OAM of beams

- Interfere a helical beam with a plane wave
 - gives ℓ spokes
 - or ℓ -fork dislocations
- Requires many photons in the same state

Generating LG beams

- Diffractive optical components (computer generated holograms)
- Incident Gaussian beam converted to LG mode
- Number of dislocations sets "l" of first-order diffracted beam

Measuring LG beams

- Incident beam ℓ changed by fork number
- Measurement of on-axis intensity gives *l*=2 component
- Inherent efficiency 1/number of test channels
- Make interactive by using SLM as diffractive optic

Confirming OAM of single photons

- Infinite number of discrete OAM states
- Can use hologram to CONFIRM particular ℓ-value,
- e.g. *ℓ*=1 ? yes or no
- But cannot make a general measurement of OAM

Measuring OAM of single photons

- Use "beam rotating" interferometer to sort modes by their rotational symmetry
- Employ additional stages to give further sorting
- Can (in principle) make general measurement of OAM

Odd *l*

Even *l*

Sorting odd and even *l*-values

- Change *l*-values of input mode
- Image both interferometer outputs
 - see what happens
- Can now use interferometer to sort odd and even *l*-values

