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Integration in Fourier plane

The value of the Fourier transform in the origin equals to 

the integral of the input image

It is always 0 for odd functions

Insertion of the blocking mask in the input plane permits 

to vary the integration limits.

Cylindrical lenses – integration on one coordinate

, 0,0f x y dxdy F

f

z=f z=f
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Periodic gratings
periodic filter              object replication

triplication by

cosine grating

is related to the grating position with respect to the 

optical axis. 

                                        f                                              f

f(r) d=f d=f H(u,v) d=f               d=f  F (x,y)

UCM

UCM

UCM

UCM

1
2

( , ) 1 exp (2 ) exp (2 )H u v i vb i vb

1
2

( , ) ( , ) ( , ) exp( ) ( , ) exp( )F x y f x y f x y b i f x y b i

b

b

S. H. Lee (ed), Topics in Applied Physics 48: Optical information processing, 

Springer-Verlag, NY (1991)
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Image addition and subtraction
If at the input there are two non-overlapping objects

and a=b (b is the frequency of the periodic cosine

grating)  then at the output 

1 2( , ) ( , ) ( , )f f a f a

1
1 22

( , ) ( , ) ( , ) exp( 2 ) exp( )

4other off-axis terms

F x y f x y f x y i i

Input Output: addition =0 subtraction = /2

UCM

C

UCM

UCM

UCM

C

C

UCM

UCM

UCM

C

C
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Dammann grating
Binary phase gratings that have several diffraction orders Binary phase gratings that have several diffraction orders 

of equal intensity are used to produce an array of images.of equal intensity are used to produce an array of images.

Dammann grating produces an array of 3 x 3 diffraction 

orders of equal intensity

2-D array of 3 x 3 of replicated spectra of the input image 

(Dammann grating is placed just after the image and the 

FT is performed by lens ) 

I.I. OuzieliOuzieli and D. and D. MendlovicMendlovic,, ApplAppl. Opt.. Opt. 35, 5839 (1996)35, 5839 (1996)
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Differentiation
Fourier transform property 

Differentiation of order k, l by filter 

This filter cannot be used at the FT plane origin (u,v near to 

0); Negative values are realized by phase step plate

( , ) ( 2 )l k k lH u v i u v

1, , , exp 2f x y TF F u v F u v i xu yv dudv

,
2 , exp 2

k l
k l k l

k l

f x y
i u v F u v i xu yv dudv

x y

J. K. T. Eu, C. Y. C. Liu, A. W. Lohmann, Opt. Commun. 9, 168 (1973); G. O. Reynolds, J. B.

DeVelis, et al, Tutorials in Fourier Optics, SPIE Optical Engineering Press, Washington (1989)
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Differentiation by composite gratings

Composite grating: two cosine gratings with slightly 

different frequencies

This filter has an impulse response 

with off-axis component can perform differentiation 

operation

1
0 2

( , ) lim cos( ) cos( )H u v bv bv v

1
0 2

( , ) lim ( , ) ( , ) ( , ( ))h x y x y x y b x y b

1
0( , ) lim ( , ) ( , )f x y f x y b f x y b

y
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Optical differentiation: examples

Optical differentiation by 

composite gratings

a - original pattern f(x,y)

b - df(x,y)/dy (horizontal

edge enhancement)

c - df(x,y)/dx+ df(x,y)/dy

d - d2f(x,y)/dx2+ d2f(x,y)/dy2

S. H. Lee (ed), Topics in Applied Physics 48: Optical information processing, Springer-

Verlag, NY (1991)
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Filtering in different domains

Filtering in space domain (example: cutting a part of 

image)

Filtering in Fourier domain affects the entire image: low 

(high) frequencies – big (small) size image details

Filtering in the fractional FT domain (space-frequency 

filtering)

                f               f

f(r) d=f d=f H*(v) d=f               d=f    g (u)

*( ) ( ) ( )g FT F Hu v v



13

Fractional Fourier Convolution

R

R

R

f

g

FFC

Ordinary convolution

Fractional FT convolution

What parameters , , and are useful?  It depends on the 

applications:

Pattern recognitionPattern recognition (shift variant): = - ; = /2

Filtering (Filtering (denoisingdenoising, encryption, watermarking, etc): various angles, encryption, watermarking, etc): various angles

, ( , , , ) ( ) ( )f gH R R f R gr r r

1

, ( ) ( ) ( )f gG FT FT f FT gr r r

O. Akay and G. F. Boudreaux-Bartels, IEEE Trans. Sign. Proc. 49, 979(2001); T. Alieva, M. 

J. Bastiaans, M. L. Calvo, EURASIP J. Appl. Sign. Proc. 2005, 1498 (2005).
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Amplitude filtering in FT domain

Low pass frequency 

filter H=exp(-au2)

image smoothing 

High pass 

frequency filter

edge enhancement

Original image     After Gaussian smooth filtering

Low frequency blocking of FT         Reconstruction
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Noise reduction in FT domain

Salt and pepper noise 

has only high-frequency components

is distributed over all the image 

Low pass filtering in FT domain
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Noise reduction in fractional FT domain

Chirp location in phase plane

Fractional FT of a linear 

frequency modulated signal 

x(t) = exp(i pt 2 + i2 qt)

is a delta pulse located 

at position q sin

for the  angle = /2+arctan p

x
signal

chirp noise
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Noise filtering in fractional FT domain

Filtering in fractional Fourier domains is effective in 

eliminating chirp like noise

Original image        noise corrupted   filtering in optimum filtering in FT 

image fractional FT domain

domain

= fractional convolution 

is determined by chirp location; g(r) is blocking point mask

0

, ( , , ,0) ( ) ( )f gH R R f R gr r r

M. Alper Kutay and H. M. Ozaktas, J. Opt. Soc. Am. A 15,  825 (1998)
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Hilbert transform

Hilbert transform of real function f(x) 

Inverse transform 

It can be generated by multiplying 

its frequency spectrum of f(x)

by i sgn( ) and then performing 

the inverse FT

1 ( )
( ) ( ) ( )

f x
H f x u H u dx

u x

1 ( )
( )

H u
f x du

u x

1, 0

sgn( ) 0, 0

1, 0
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Optical Hilbert transform 

Optical spatial filter consists of a –phase shifting 

plate covered half plane

               f             f

d=f d=f H(v) d=f               d=f

input Fourier plane                  output

A. Kastler, Rev. Opt. 29, 308 (1950);

S. Lowenthal and Y. Belvaux, Appl. Phys. Lett. 11, 49 (1967)



20

Hilbert transform for edge detection

Hilbert transform as a 

convolution

The Hilbert transform,

in red, of a square

wave, in blue

1
( ) ( )H x f x

x

http://en.wikipedia.org/wiki/Hilbert_transform



21

Fractional Hilbert transform

( ) ( , , ) ( )pH u K p x u f x dx

11 1
2 2

( , , ) ( ) cos[ ] ( ( )) sin[ ]K p x u x u p u x p

There are different fractional Hilbert transforms

One of them is applied for selective edge 

enhancement

It can be performed by the same optical set up as 

the Hilbert transform but with filter function

1 1
2 2

( ) cos[ ] sgn( )sin[ ]H v p i v p

A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, Opt. Lett. 21, 281 (1996);

T. Alieva and M. L. Calvo, J. Opt. Soc. Am. A 17, 2330 (2000).
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Fractional Hilbert transform for edge 

enhancement

The fractional Hilbert transform 

enhances differently the negative 

slope and positive slope edges. 

For fractional orders p [0,1] the 

negative slope edges are 

emphasized; for p [1,2] - the

positive slope edges. 

A. Lohmann, et al, Opt. Lett. 21, 281 (1996); A. Lohmann, et al, Appl. Opt. 36, 6620 

(1997); J. Davis, et al, Appl. Opt. 37, 6911 (1998)
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Selective edge detection

(a) p=1  both edges are 

emphasized,

(b) p= 1.4 the left edge 

is emphasized

J. A. Davis and M. D. Nowak Appl.

Opt. 41, 4835 (2002)

(a)

(b)
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Pattern recognition
4-f  Van der Lugt optical processor (frequency plane 

correlator) – Fourier plane mask

To detect pattern g at scene f we can use matched filter 
H*=G*, which provides the maximum output signal-to-noise 
ratio (SNR), defined as the ratio of the average output peak 
value to its standard deviation

*( ) ( ) ( ) ( )C FT F H Coru v v u

                f               f

f(r) d=f d=f H*(v) d=f               d=f    C (u) g

A. Van der Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964); A. Van der Lugt,

Optical Signal Processing, John Wiley, NY (1992)
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How to create matched filter?

Matched filter is a complex function 

Hologram

Computer generated hologram

Real time implementation – application of the Spatial 

Light Modulator (SLM)

Practical difficulties of matched filter:

Sensitive to small changes of the reference signal

Light inefficient

SLMs cannot accommodate the full complex 

frequency response needed for matched filter

*( ) ( ) exp( ( ))G G iv v v
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Phase-only filter (POF)

It does not absorb light  - higher optical efficiency
Important for low power optical correlators

Produces higher correlation peak

Better performance for noisy input

Reduction of stored data

Most SLMs cannot encode fully complex functions

POF examples: Glasses, lenses, prisms

POF simplification: Binary POF 
Symmetric input – real FT: 

1 for positive values

-1 for negative values 

J. L. Horner and P. D. Gianino, Appl. Opt. 23, 812 (1984); D. Psaltis, E. Paek, and 

S. Venkatesh, Opt. Eng. 23, 698 (1984)
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POF versus matched filters

Matched filter: Intensity 

of the autocorrelation 

peak

Phase only filter: 

Intensity of the 

autocorrelation peak

J. L. Horner and P. D. Gianino, Appl. Opt. 23, 812 (1984)
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POF and binary POF for image recognition

Input image     Correlation with matched filter made from the 

tank without  background

Correlation with POF Correlation with binary POF

D. L. Flannery and J. L. Horner, Proc. IEEE 77, 1511 (1989)
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Can we use POF in fractional FT domain?

Signal restoration from only the amplitude or from only the phase 

of its fractional FT by applying the inverse fractional FT

Reconstruction from amplitude information 20 4 2

Reconstruction from phase information 20 4 2

T. Alieva and M. L. Calvo, J. Opt. Soc. Am. A 20, 533 (2003)
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Space variant recognition in fractional FT 

domain

Fractional convolution is space variant

=0 = /4 = /2

/ 2

, ( , / 2, , ) ( ) ( )f gH R R f R gr r r

fractional

autocorrelations of 

rectangular signal of 

size

fractional correlations 

between rectangular 

signal and its shifted 

replica (shift s= )

O. Akay and G. Faye Boudreaux-Bartels, IEEE Trans. Sign. Proc. 49, 979 (2001)
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Space-variant detection of several objects
Input image               Correlation peaks            Correlation peaks

(simulations)                   (experiment)F18F18

TornadoTornado ) : x- invariant, y- variant detection

Shift tolerance condition s cot <1 (s - signal shift, -

signal width; dimensionless variables)

J. Garcia, D. Mendlovic, Z. Zalevsky, and A. Lohmann, Appl. Opt. 35, 3945 (1996);

D. Sazdon, Z. Zalevsky, E. Rivlin, and D. Mendlovic, Pattern Recog. 35, 2993 (2002)
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Problems in pattern recognition
Usually a recognition system has to be invariant to the 

input changes:

Position (for position dependent recognition - fractional or 

canonical correlations)

Rotation

Scale

Projection (perspective)

Distortion

Algorithms handling rotation, scale, tilt (one 

dimensional scale) distortions:

Linear mapping algorithms (composite filter, synthetic 

discrimination functions, the least squares technique)

Eigenvector analysis

Filters matching to only part of input information

B. V. K. Vijaya Kumar, Appl. Opt. 31, 4773 (1992)
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Scale invariant pattern recognition

Object is decomposed into orthogonal set of Mellin

radial harmonics (MRH): each harmonic exhibits scale 

invariance

Two dimensional object expressed in polar coordinates 

is decomposed as 

where R is finite size of the pattern, r0 is the smallest 

radius used in the expansion

2 1( , ) ( ) ( , )i M

M M

M M

f r f r h r

0

2 1( ) ( , )

R

i M

M

r

f f r r rdr
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Shift and scale invariant correlation based 

on Mellin radial harmonic

A single MRH of letter E is used as a matched filter

Scale invariant recognition of E Discrimination capacity of the filter

D. Mendlovic, E. Marom, and N. Konforti, Opt. Commun. 67, 172 (1988)
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Rotation invariant pattern recognition

Circular harmonic decomposition

Single component hm(r is used as a matched filter

a correlation peak maximum value 

intensity  is invariant to rotation of the object

Combination of several harmonics                limited 

invariance to in-plane rotation 

( , ) ( ) exp( ) ( , )m m

m m

f r f r im h r

2

0

1
( ) ( , ) exp( )

2
mf r f r im d

Y. N. Hsu and H. H. Arsenault, Appl. Opt. 21, 4016 (1982)
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Rotation invariant recognition: example

First-order circular harmonic component: (a) 

target with X denoting the proper center; (b) 

amplitude of the circular harmonic component 

(m = 1); (c) real part of the circular harmonic 

component; (d) imaginary part of the circular 

harmonic component. 

Thresholded output

Problem – low light efficiency: most of the target energy is 

thrown away
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Security systems
Optical systems are used for 

Pattern recognition

Encryption/decryption of information

Watermarking

Methods for encryption:

Random phase masks at different fractional FT domains

Holography

Methods for watermarking:

Introduction of invisible in image domain marks which are difficult 

to take away since they are distributed over the entire image 

(chirp like signals, holographic images out of principal plane)

Special issue on optical security, Opt. Eng. 35 (1996); P. Refregier and B. Javidi, 

Opt. Lett. 20, 767 (1995); B. Javidi and T. Nomura, Opt. Lett. 25, 28 (2000)
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Encryption in the fractional FT domain

The random masks and angles of the fractional FT domains 

are the encryption parameters

image

S. Liu and L. Yu, B. Zhu, Optics Commun. 187, 57 (2001)

1R 2R 3R

SLM1 SLM2 encrypted image

SLM – spatial light modulator:           , where

is a random function,

)],(exp[ yxi

),( yx ],0[),( yx
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Encryption - decryption operations in the 

fractional Fourier domains
Original              Encrypted              Reconstructed with Original              Encrypted              Reconstructed with Reconstructed with rightReconstructed with right

imageimage imageimage rightright masksmasks and keys     masks but wrong keyskeys     masks but wrong keys

Fractional orders of fractional FT convolution: (0.83,0.56; 

0.34,0.48; -0.78,-0.92)

Fractional orders are used as encryption keys

B. Zhu and S. Liu, Optics Commun. 195, 371 (2001)
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Wavelet transform
Wavelet transform (WT) with wavelet 

Low position resolution at low frequencies and high

position resolution at high ones.

*1
( ) ( , ) ( )

x b
WT f x a b f x dx

aa

Localization of 

signal singularities: 

find a scale a at

position b
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WT as a filter bank
Alternative formula for WT

where F(u) and (u) are the FT of analyzed function f(x) and a 

mother wavelet (x)

If the mother wavelet satisfies the admissibility condition

wavelets have a band-pass like spectrum

there exists inverse wavelet transform

*( ) ( , ) ( ) ( ) expWT f x a b a F u au ibu du

2 1
( )C d

1

2

0

( ) ( , )
da x b

f x C WT a b db
a a
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Different wavelets

Mexican hat mother wavelet and its FT (satisfies 

admissibility condition)

Morlet (Gabor) wavelet and its FT (does not satisfy 

admissibility condition)

2 2

2 2 2 2

( ) (1 )exp( / 2)

( ) 4 exp( 2 )

x x x

u u u

2

2 2

( ) exp(2 )exp( / 2)

( ) 2 exp( 2 ( ) )

x ikx x

u u k
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Fresnel diffraction as a wavelet transform 
Fresnel diffraction of f(x) at distance z

as wavelet transform with chirp mother wavelet

The chirp does not satisfy the admissibility condition, but 

the Fresnel transform is invertible 

2( )
( , ) ( ) exp

C x u
F z u f x i dx

zz

2

( , ) [ ( )]( , )

exp ( )

F z u WT f x a b

i x x

a z b u

L. Onural, Opt. Lett. 18, 846 (1993)
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Optical wavelet transform in 2D

WT of 2-D signal is four-dimensional

time multiplexingspace multiplexing

*1
( , ) ( , , , ) ( , ) ,

yx
x y x y

x yx y

y bx b
WT f x y a a b b f x y dxdy

a aa a

Y. Li, H. H. Szu, Y. Sheng, and H. J. Caulfield, Proc. IEEE 84, 720 (1996)
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Temporal multiplexing
Temporal replacing of the Temporal replacing of the 

filter in the  optical filter in the  optical 

correlatorcorrelator

FiltersFilters –– transparent rings transparent rings 

which select spatial frequencies which select spatial frequencies sqsq11<<qq<<sqsq22. It is a binary . It is a binary 

approximation of the radial Mexican hat (scale approximation of the radial Mexican hat (scale ss=3=3nn))

Original image Wavelet transform for s =3 , 32, 33

E.E. FreyszFreysz, B. , B. PoulignyPouligny, F. , F. ArgoulArgoul, and A. , and A. ArneodoArneodo,, Phys. Rev.Phys. Rev. LettLett.. 64, 745 (1990)64, 745 (1990)
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Spatial multiplexing: multichannel correlator
MultichannelMultichannel correlatorcorrelator: generation of an array of image : generation of an array of image FTsFTs

+ matched WT filter bank+ matched WT filter bank

DammannDammann grating is used to produce array of image grating is used to produce array of image FTsFTs

MultireferenceMultireference matched filter (MRMF): each daughter matched filter (MRMF): each daughter 

wavelet at different location is encoded with a different wavelet at different location is encoded with a different 

reference beamreference beam

Direct WT Inverse WT

I.I. OuzieliOuzieli and D. and D. MendlovicMendlovic,, ApplAppl. Opt.. Opt. 35, 5839 (1996)35, 5839 (1996)
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Optical inverse WT
The zero order zone at the output of the first correlator

is eliminated

The inverse WT is a weighted sum of the correlations 

between a daughter wavelet and the WTs obtained

from the same daughter wavelet

The same multireference-matched filter, but with 

normalization 1/a2 of each daughter wavelet, is used

The inverse WT is achieved in the zero diffraction order

1

2

0

( ) ( , )
da x b

f x C WT a b db
a a
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Optical WT: example

Reconstructed inverse 

WT in zero diffraction 

order

5 Mexican hat wavelets 

with magnification a=

1,2,4,8,16 are obtained 

I.I. OuzieliOuzieli and D. and D. MendlovicMendlovic,, ApplAppl. Opt.. Opt. 35, 5839 (1996)35, 5839 (1996)
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Wavelet techniques in biomedicine

noise reduction, edge enhancement of biomedical 

images

analysis of the bio-acoustical signals (heart, lung, 

blood flow sounds), electrocardiograms, 

electroencephalograms

image compression

object reconstruction in CAT and MRI, functional 

image (PET) analysis 

detection of microcalcifications in mammograms

texture analysis and image classification

image fusion 

M. Unser and A. Aldroubi, “A Review of wavelets in biomedical applications,”

Proc. IEEE 84, 626 (1996)
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Detection of microcalcifications using WT

WT image decomposition

low frequency subband
elimination

image reconstruction

Primary signs of breast cancer:
granular microcalcifications of 0.05-1mm

T. C. Wang and N. B. Karayiannis, IEEE Trans. Med. Imag. 17,  498  (1998)
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Optical image classification

healthy and diseased

samples of biopsied skeletal muscle

main features:

• regularity of muscle

membranes

• space between the 

membranes

• distribution of dark spots 

between the muscle fibers

2 isotropic Mexican-hat

* membranes’ shape, 

rough bright areas 

• separable Mexican-hat

* directional membrane 

features,

• Morlet wavelet spots

A. Stollfuss, S. Teiwes, and F. Wyrowski, Appl. Opt. 34, 1579 (1995) 
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Image fusion by WT

CAT     denser tissue;  MRI         soft tissue;

PET     flood activity with low space resolution

CAT            +        MRI

Fusion scheme:

to keep the max of  WT maxima modulus of both images 
at different levels and apply inverse WT

G. Qu, D. Zhang and P. Yan, Opt. Exp. 9, 184 (2001) 
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Conclusions

Linear canonical integral transforms are the basis for the 

generation of a long list of other integral transforms and 

bilinear distributions

They are used for: filtering, phase retrieval, beam 

characterization and manipulation, edge enhancement, 

pattern recognition, signal analysis and synthesis, 

encryption, watermarking, motion analysis, neural 

networks construction, etc. 

Areas of applications: machine vision, robotics, 

automation, security, medicine, defense
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Concluding remarks on optical information 

processing
The main information processing tools can be 
implemented optically 

Not optical but hybrid optoelectronical information
processing

Optical information processing: synthesis, analysis, 
classification, etc. of optical signals

Optical information processing is beneficial when 
Data are obtained by optical modalities

Similar treatment of huge amount of information 

Main problems: low flexibility, data input/output 

Perspectives: new generation of SLM, CCD,CMOS, new 
holographic materials
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