The Abdus Salam
International Centre for Theoretical Physics

SMR.1738 - 7

WINTER COLLEGE
on
QUANTUM AND CLASSICAL ASPECTS
of
INFORMATION OPTICS

30 January - 10 February 2006

Classical and Quantum Imaging

Peter KNIGHT
Imperial College of Science, Technology and Medicine
the Blackett Laboratory - Optics Section
Prince Consort Road
SW7 2BW London
United Kingdom

Strada Costiera | |, 34014 Trieste, ltaly - Tel. +39 040 2240 |1 |; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it



Classical and Quantum Imaging

Peter Knight
Imperial College London
ICTP Trieste
Winter College on
Quantum & Classical Aspects of Information Optics



menu

e What will I cover?
 What will the School cover?

Grateful to my friends Gigi Lugiato, Martin Plenio, Mike Raymer and Antonm
Zeilinger for figures



Quantum coherence?

Detine field modes

Apply sho quantization to
cach mode

Excitation of a normal mode
1s a photon

Fock states - no coherence

Superpositions and minimum
uncertainty

Wigner correlations

Two mode correlations and
information




FIELD QUANTIZATION

Expand field in normal modes with SHO quantization

A (+) . /ha) - .
E (Z,t)zlz 25()] b, u;(r)exp(-iw,t) (> 0)
’ f

monochromatic plane-
wave modes:

Mj([) = V—I/Z&,j eXp(ikj : K)

Polarization unit

photon annihilation and A~ A
I vector

creation operators: b i Yk

See eg R Loudon, Quantum Theory of Light, OUP (2000)

comAmlAltTator: one-photon state:
[6,,6, 1=0; 1. )=>b "|vac)

n-photon state: n )=(b,")|vac)



A (+ h . A
Single monochromatic mode: E( )i /2—@] b uo(z)exp(—iw,t)
o
Hermitian operators: A A A
Gg=(b+b")/2" p=@b-b"/i2"

t

E ) (z,1) cGecos(w,t— k,z) + psin(w,t — k,z)

g, p = quadrature operators which obey: o

Uncertainty relation:  [¢, P]1=1i

A(g) A(p) 2 1/2




Coherent states

o &ﬂ
Definition o) =exp (— 3 lof?) Z Tl n)

n=>0

Right e-state of a G i e as) i jn—ﬂ/ﬁ“”' G
Overcomplete (@B [P = exp( —|a—A)
Poisson number distribut ,, = | mla) [* = exp ( = Jaf2) 2 = exp ( = (n)a ) =

m!

(n)a = (o] a’ala) = |la|e) || = |o|3




Coherent State - 1deal laser output:

Size of field fluctuations

E ) (z,1) cgeos(w,t— k,z) + psin(w,t — k,z)

quadrature operators: g = (l; n l;T) /12 b= (l; _ l;T) Tk
p
Equal Uncertainties: L
&e | Ap)
A(q) = A(p) =1/42 o
1A (@




Field Uncertainty and Squeezing
See eg R Loudon and P L Knight, J Mod Opt 34, 709 (1987) and references therein

E ) (z,1) cGeos(w,t— k,z) + psin(w,t — k,z)

quadrature- G=(b+bH/2"  p=@b-bH/i2"

!
g noise reduced P
p noise increased & A (p)
Measured by homodyne interference s TA (q)

Major nonclassical resource in QIP g
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V()= freize
photon number probability: , { .
Poisson exp[—(q—qo) [(267) — ip, q:l
» n'e”
pn) = Kn |W>‘ ol photon number probability?
ﬁ=|0£2 , a:%‘Hpo




------------------------------------------------------------------------------------------------------------------------------------------

E ) (z,1) cGecos(wt— k,z) + psin(w,t — k,z)

p
vacuum
A
" ?;:._,':‘ q
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w(q) =exp|-q° / 2f") ]
p...(n)=0  (pair creation)

Poven (1) = [(n| )] =

(n) 1 (1 "
Ln / ZJ cosh(s) [5 tanh(s)j




Two-Mode Squeezed States

by Second-order Nonlinearity:
Optical Parametric Amplification:

pump (®,) --> signal( ®,) + idler (w,)

coherent input fields
signal (®,)

idler (w,)
-
pump ()
7
é,zl W)

photon difference number N, 1s a constant of the motion:

= (A, —1,)= (b T];2)

// s
[ND, H]=0

s

Burnham & Weinberg (1970)

Identical photon numbers in signal and idler beams:
used in metrology etc
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Intensity correlations

* Mode operators - ,T_[u
1 >
ag=—f=(a,tay), ar=—f=(a,—ay)
V2 V2 “E__Y__L Coincidence
Counter
 Intensity correlation
2, AIr(1+DIR(1)) ' 4
g7.a(7)= (Ip(t+ 7))L x(2)) + W
(2) _{:}TER:) (2) (Y — o(2) : -~ 1 =
gTIR{U}—m g7r(0)=g"(0)=1 (classical fields) a, 1 a,
Ao + “\ +
- (Iplg:) : (:Airhg:)  (ardragar) -
(2) e e (2) = — = -
DT ALY T e {aranaran) + #
AR

. (n—1 . .
SEL[U): {”I(”! )} :gff}(ﬂ):gn{z}w)

(i)’




Hanbury Brown & Twiss

Second order correlations I R [u

Can you beam-split a h
photon? R Coincidence

Early work in quantum Counter
optics by G I Taylor
Photon bunching

Photon antibunching




Diversion on mixed states and classicality

« What is a mixed state?

0000 © 0O

pure states

mixed states

Why mixed states? As soon as a quantum state 1s embedded in an
environment, the pure state becomes mixed.

M B Plenio and V Vitelli, Contemp Phys 42, 25 (2001) and refs therein




Parametric Down Conversion:

from A Migdall
Physics Today 1999

EEEEEE .
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- .

Nonlinear crvstal K, o

FIGURE 1. PARAMETRIC DOWN-CONVERSION, turning a single photon entering an optically nonlinear crystal into two photons
coming out, 1s essentially the inverse of sum-frequency generation. The energy fiw and momentum £k of the incident photon
equals the sums of the outgoing energies and momenta. The concentric circles of output light in different colors (at right),
azimuthally symmetric about the monochromatic pump-beam axis, indicate the broad spectral range of the down-converted light.
At their center, one sees some of the pump light leaking around a beam stop.




TYPE-, CW PARAMETRIC DOWNCONVERSION

SOURCE OF POLARIZATION-ENTANGLED PHOTON PAIRS
(KWIAT ET AL PRL. 75, 4337

(1995))
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Figure 2 Single-photon double-slit interference. A pair of momentum-entangled photons is created by type-| parametric
down-conversion. Photon 2 enters a double-slit assembly and photon 1 is registered by a detector D1 placed at distance 7
in the focal plane of the lens. This projects the state of photon 2 into a momentum eigenstate which cannot reveal any
positional infarmation and, hence supplies no information about slit passage. Therefore, in coincidence with a registration
of phaton 1 in the focal plane, photon 2 exhibits the interference pattern shown. On the other hand, when the detector is
placed in the imaging plane, it does reveal the path photon 2 takes through the slit assembly, which therefore does not
show the interference pattern. The observed count rate of at most two photons per second implies that the average spatial
distance between photons registered would be of the order of 100,000 km or more. Therefore, most of the time the
apparatus is empty (from refs 11 and 12). The error bars (5.d.) show the statistical errors of photon counting.

Pump

Crystal

Photon 2 a
Diouble slit I v -
2 Ceincidence

Scanning logic
alit

Zeilinger et al
Nature 433 visbiy
230 (2005)

Registered coincident pairs in 60 &

—Gi, 000 —4.,000 —2,000 2,000 4,000 B,000
Position of the scanning slit in front of detector D2 (wm)




Beam splitting a photon?
Clauser (1972), Mandel & Kimble (1977)

* Can you beam split a
photon?

* Heralded photons

* Antibunching and
violation of Cauchy
Schwartz inequality

(- . y dmme®

Figure 1 Principle of Clauser's experiment with correlated pairs of photons
(simplified). The source emits two photons. Registration of a photon on the left
detector provides the information that one and only one phioton at the right side
encounters a 50/50 beam splitter where it is either reflected or transmitted. The fact
that only one of the two detectors behind the beam splitter registers and never both
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2 photon 1nterference (from Zeilinger)
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Figure 3 Bunching (left) or antibunching (right) behaviour of photon pairs. One
photon each is incident from each input of a 50/50 beam splitter. Coincidences
between detectors in the two output beams are registered as a function of the flight
time difference of the incident photons. No coincidences are observed for zero flight
time difference (left) for the usual symmetric spatial state of the two photons. This is
because the probability amplitudes for the transmission of both photons and for the
reflection of both photons destructively interfere: the latter one picks up a minus
sign owing to the phase shift of the photons upon reflection. Interestingly, the two
incident photons can also be in an antisymmetric spatial state (which occurs if the
two-photon spin state is also antisymmetric). In this case, the two amplitudes
interfere constructively. This results in the two photons always exiting in separate
beams for zero flight time difference. The observed coincidence peak (right)
confirms this expected antibunching.




Rarity: metrology using correlated photons
(from Migdall Physics Today)

A =7 N

Delay

.-'\."( =7 nN

(Trigger) /

N = n "l.

- B
'

FIGURE 2. ABSOLUTE QUANTUM-EFFICIENCY DETERMINATION. N is the true number of correlated photon pairs produced in the

down-conversion crystal, and N, and Nj are the tallies of photons recorded individually by detectors A and B, with respective unknown

efficiencies 1, and ng The number of expected coincidence counts N being N times the pmdud of these two efficiencies, one arrives
at the EHILIEHL_’U of A, the detector to be calibrated, without h: aving to know the .:Elu.lem.},f B, the trigger detector.




Single photon source
(from Migdall PT)

M RN
__ %%‘ n

Pump beam
Crystal Detector

FIGURE 4. NEW ABSOLUTE PHOTON SOURCE exploits the
constraints of simultaneity and energy-momentum
conservation on pairs of photons produced by
down-conversion of pump-beam photons in a nonlinear
crystal to specify not only the direction and wavelength of an
output photon, but also its time of emission, simply by
recording its partner in a detector.




Non-classical features: Wigner Functions

What is a non-classical state?
you could say negative Wigner functions

'—‘?'I"l":;" o
T
A

[
W
ot "‘L‘ S

I

Fig. 2.10. Wigner function for {a) a coherent stoie with 8 = 140, bl 0 number staie
withn=2

“In 1936 came a shock ... Princeton dismissed me ... they never explained why ... I could not help feeling
angry.” He seemed to forgive them as he came back as a Professor within a couple of years




WIGNER DISTRIBUTION

Representation of state of a single mode in phase space.

E®(z,1) gcos(w,t —kyz)+ psin(w,t — k,z)

projected distributions: Pr(q), Pr(p)

Underlying Joint Distribution?
1 [ ,
W(@.p)=— " wq+x/2) y*(g=x/2)exp(ipr) dx



WIGNER DISTRIBUTION

in phase space: marginal distributions.

1 * . ! !
Wig.p)=5-] vla+q"/2)y*g-q"2) exp(-iq'p) dg

Prgy=|"wap d . Prp=|"wap) dq

W(q,p) acts like a joint probability distribution.
But it can be negative. See eg M G Raymer, Contemp Phys 38, 343 (1997)




Wigner 'unctions of [.1ght States

1 . ilagp — pa' .
Wig,p) = o fﬂ’(q P ) exp [w Lz - W]} dy'dp’

characteristic function C-}EH-]{Q, p)="Tr [,E}fJ{g, p]l]
displacement operator D(g, p) = exp [-;l-{rfp — ;}q]]

!

o . Marginal distributions

1

Pilg) =
ﬂ'{"?} m

f dp Wi(q,p) = v27hig|plq)

M Hilleryy, B F O 'Cormell, .0 Scully, and E.P Wigner, Phys. Rep. 106, 121 (19:4)



Quantum T'omography

» rotated quadratures

S

- 3l - 1
[r,w - u."e""]

A E z : - 1 s
Ty = V [{L{“‘. Ea f..r'e”:'] Totxfz =
2 ()

. ) ) ) Fglxg)
- marginal distribution for FPy(zy) Marginal distribution

Frojeciion plane \

E Wogel and H Risken, Fhys. Rev. A 40, 2547 (19577,

U Leonhardt: Meqsuring fhe guanfum shafe of light (Carbridge
Unrversity Press, Cambndge, 1997




Can you measure -ve Wigner?

* Yes by homodyne




Inverse | ransformations

Pyp(zg)¥{—oc <19 < 0c;0< 0 <} — W(q,p)

*» Radon transformation
* Transformation via sampling functions Pran = Jo [ oo Polxs) Finn(xg, 8) dag df

local ascillator
——
laser

signal wave

E. Wogel andd H Fasken, Phys. Rev. A 40, 2247 (19577
Th Richter, Phps. Ledf A211, 327 (1996),
3D Anano, C Iiachiavelo, and Wl G & Pans, Phps. Rev. A S0, 4292 (19943



WIGNER DISTRIBUTION

_ for vacuum state | O >
p W ,
V5ue(@) = €Xp /2 ] P (e
q e positive

1
W(q,p)= 7—T6Xp(—q2 -p°)

Gaussian vacuum state: the only pure
state Wigner function which 1s positive
everywhere (the Hudson-Piquet
theorem)




WIGNER DISTRIBUTION

: for one-photon state | 1 >
p
w(q) = q exp _q2 /2 ] W (g,p)
9 N negative
q
2q°+2p° —1
W(q,p)= 1 7P exp(—q° — p°)

0.1 R
0.1 - rmggat 'r 3
: e = ‘i f(}{#
-0.1 -
-0.2 -0.2 1"'1-
i

Measured for light (Lvovsky & Mlynek)
& for ions (Wineland)



Photon-flux amplitude operator :
i>(+)(r,t):i\/z Z ZSJ. u;(r) exp(-iw,t)
j

f

monochromatic plane- ur)=V"g explik; r)

wave modes:

X
Photon flux through a plane at z=O:

i0= [, dx & (6000500

[
—
—
Integrated photon number in time 7': I

N

N=|" I ad

0



Non-monochromatic Wave-

A (+) . A
O (rf)=ivc Z a, vi(L,1) Packet Modes
k

&lf operator creates one photon in the vi(r,t)
wave packet
a,' |vac)=10,0,...1,,0,0..)

N /\ /\ {\ (\_ detector

array

1

one
click



Twin photons and Ghost 1maging

Ghost (Coincidence) Imaging

object to be imaged \

=T 5 €50
P

"bucket" detector

/

i

entangled photon pair

E comcidence
circultry

photodetector array

Obvious applicability to remote sensing!



Ghost imaging using two-photon quantum entanglement

Belinsky and Klyshko, Sov. Phys JETP 78, 259 (1994)

Pittman et al, PRA 52, R3429 (1995) GHOST IMAGE EXP

GHOST
DIFFRACTION EXP

*Abouraddy et al, Phys.Rev.Lett. 87, 123602 (2001) THEORY

: POINT-LIKE DETECTOR, FIXED
Photon-pair created by POSITION

PDC in the very-low ( BUCKET DETECTOR)
gain regime

Coincidence
counts as f( x,,

PIXEL ARRAY
OF
DETECTORS

Imaging information is extracted from the coincidence counts as a
function of the position of the reference photon 2




signal-idler intensity correlation function
[Gatti, et al, PRL 90, 133603 (2003)]

POINT-LIKE DETECTOR,
FIXED POSITION

Correlation function of
intensities

(I, (%) (F,))

ARRAY
OF
DETECTORS

IMAGING INFORMATION IS CONTAINED IN THE INTENSITY FLUCTUATION
CORRELATION FUNCTION

Imaging

no information, - ;
information

background




Gatti et al, PRL 93, 093602 (2004), Phys. Rev. A 70, 013802 (2004),

Is entanglement of the two beams necessary for ghost imaging? NO!

A spatially incoherent thermal-like beam divided at a beam splitter generates two spatially

correlated beams that can be used for ghost imaging exactly in the same way as the entangled
beams, except with limited visibility.

Beam in a thermal-like
state

50:50 BS
< 5N < > (N2)
/ D/ SHOT -

NOISE LEVEL
vacuum




HBT TECHNIQUE

Far field
OBJECT

Thermal light Auto-correlation

GHOST IMAGING TECHNIQUE

OBJECT

E Far field
Thermal light

Cross- correlation

In this case, one obtains the Fourier transform of the object even in the
presence of phase modulation. Hence this 1s truly coherent imaging with

incoherent light.




Key papers on ghost imaging:

-Abouraddy, Saleh, Sergienko, Teich, Phys. Rev. Lett. 87, 123602 (2001)

-Bennink, Bentley, Boyd, Phys. Rev. Lett. 89, 113601 (2002)

-Gatti, Brambilla, Lugiato, Phys. Rev. Lett. 90, 133603 (2003)

-Gatti, Brambilla, Lugiato, quant-ph/0307187 (2003) — Phys. Rev. Lett. 93,
093602 (2004); Phys. Rev. A 70, 013802 (2004)

-Bennink, Bentley, Boyd, Howell, Phys. Rev. Lett. 92, 033601 (2004)

- Cheng, Han, Phys. Rev. Lett. 92, 093903 (2004)

- Valencia, Scarcelli, D'Angelo, Shih, Phys. Rev. Lett. 94, 063601 (2005)

- Wang, Cao, Phys. Rev. A 70, 041801R (2004)

- Cai, Zhu, Opt. Lett. 29, 2716 (2004)

- Ferri, Magatti, Gatti, Bache, Brambilla, Lugiato, Phys. Rev. Lett. 94,
183602 (2005)

- Zheng, Zhai, Chen, Wu, Opt. Lett. 30, 2354 (2005)




Continous variables

e Use nonclassical resourc?

* squeezing




Imperial College London

A Characteristic function (Fourier transform of Wigner function)
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aq _\

Imperial College London

General CV states too general: Restrict to Gaussian states

A state is called Gaussian, iff its
characteristic function (or its Wigner
function) is a Gaussian

y(x, p) cexp (—xz)exp(— P’ )

[ Gaussian states are completely
determined by their first and second
moments

O Are the states that can be made
experimentally with current technology

coherent states

squeezed states
(one and two modes)

thermal states




non-classical features

What is a non-classical state?
— State without a positive well-defined P function

e j P(a)a)ald’a

* Or you could say negative Wigner functions
« But discreteness of photons in principle observable (JCM and Haroche...)



Entanglement

If a system of two (or more) particles 1s not represented by a
weighted sum of product states, the particles are said to be

entangled: p# D 0P (1)) ®p, (i)

Peres criterion [ A. Peres, Phys.Rev.Lett. 77, 1413 (1996) |
If the partial transposition of its density matrix has a negative
eigenvalue, the state 1s said to be entangled.

For example, 1

(o) +/o))

Two important ingredients: Random & deterministic



Beam splitter as an entangler

 Two Fock state inputs always

result in an entangled output. N

N\

 Well known result Beam splitter

D) 2 = (2))0)+]0))2)
* Two single-mode squeezed mput fields & Sf,‘;e";:j Ctate
Two-mode squeezed output
Single-mode squeezed state: SC(7)| 21U AN /
Two-mode squeezed state: SB(7)[nl[nl N

Beam splitter

Two single-mode squeezed state:
a,|0U|0U+a,|0U|2U+a, |2U|0U+.. ...



Non-classicality vs. Entangled output
Kim, Son, Buzek & Knight, quant-ph/0106136

Straightforward to prove that two classical input
fields do not result in an entangled output.

' Vacuum Thermal
. State
o N —_— N\
Squeezed Beam Splitter Squeezed Beam Splitter

vacuum
thermal

Output fields are entangled iff
the squeezed thermal state
becomes non-classical.

Output fields are entangled iff
a reduced output field becomes
non-classical.



Imperial College London

Quantum Continuous Variable Systems

O Harmonic oscillators, light modes or cold atom gases.

2 canonical variables with commutation relations

(0,,0,,.,0, ,,0,)=(X,,P...., X ,P)




Further reading: textbooks

* M O Scully and M S Zubairy, Quantum Optics,
CUP (1997)

+ C C Gerry and P L Knight, Introductory
Quantum Optics, CUP (2005)

* L Mandel and E Wolf, Optical Coherence and
Quantum Optics, CUP (1995)



