

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR.1738 - 9

WINTER COLLEGE on QUANTUM AND CLASSICAL ASPECTS of INFORMATION OPTICS

30 January - 10 February 2006

Spin cf. Orbital Angular Momentum

Miles PADGETT University of Glasgow Dept. of Physics & Astronomy G12 8QQ Glasgow United Kingdom

Spin cf. Orbital Angular Momentum

Miles Padgett

Transfer of AM to micro-objects

He *et al.* Phys Rev. Lett. 1995 Simpson *et al.* Opt. Lett. 1997 O'Neil *et al.* Phys. Rev. Lett. 2002

Angular momentum interactions with particles

- Object larger than beam
 - Spin AM = Orbital AM (for absorption)

- Beam larger than object
 - Spin AM ≠ Orbital AM

On-axis Spin and Orbital transfer

SAM &or OAM

Particle spins on beam axis

OAM / SAM transfer to particle held in optical tweezers

OAM (ħ) +/-SAM (ħ)

Particle spins and stops

Off-axis Spin and Orbital transfer

OAM / SAM transfer to particle held in optical tweezers

SAM Particle spins on its own axis OAM Particle orbits the beam axis

Ray-optics to model OAM

Courtial and Padgett Opt. Commun. 2000

Transfer of angular momentum

- Angular momentum arises from skew rays
 - $\theta = \ell / kr$
- The skew angle sets the azimuthal component to the momentum density
 - $p_{\phi} = \hbar k \theta = \ell \hbar / r$

•
$$L = p_{\phi} r = \ell \hbar$$

•
$$L_{max} = \hbar k r (R/f)$$

Ray-Optics gives the right answer

Transfer of orbital AM (e.g. from Bessel beam)

- Local intensity (Bessel Beam)
 - I α 1/r
- Angular momentum arises from skew rays
 - $\theta = \ell / kr$
 - i.e. θ α 1/r
- Circumference of ring
 - **αr**
- (orbital) rotation rate
 - Ω α 1/r³

Ray-Optics gives the right answer

Rotational frequency shifts

Garetz and Arnold Opt. Commun. 1979 Courtial *et al.* Phys. Rev. Lett. 1998

The linear Doppler shift

 Light source moves towards or away from detector giving Doppler shift

• $\Delta \omega = \omega_0 \times v/c$

 Re-express in terms of linear momentum per photon,p

• $\Delta \omega = v \times p/\hbar$

The annular Doppler shift

 Light source rotates with respect to detector giving Doppler shift

• $\Delta \omega = \Omega \times (\ell + \sigma)$

 Also called rotational frequency shift

Annular Doppler shift for circularly polarised light

 Additional rotation of polarisation (at W) shifts frequency

 $\Delta \omega = \Omega$

= $\sigma \Omega$ (σ =±1)

c.f. time speeds up if you rotate a clock!

Annular Doppler for helically phased circ. polarised light -1

- Such a beam contains both SAM and OAM
- Example 1
 - ℓ = 3, σ =+1
- Four fold rot. Symmetry
- Rotate beam at Ω $\Delta \omega = (\ell + \sigma) \Omega$
 - $= J\Omega$ $= 4\Omega$

Rot. Doppler for helically phased, circ. polarised light -2

- The SAM and OAM add or subtract
- Example 2
 - $\ell = -3, \sigma = +1$
- Two fold rot. Symmetry
- Rotate beam at Ω $\Delta \omega = (\ell + \sigma) \Omega$
 - $= J\Omega$ $= 2 \Omega$

I.

Ray-optics to model OAM

Padgett, J Opt A 2004

Rotationally induced frequency shifts

- Waveplate reverses p_{ϕ}
- Exerts force
 - $F = 2\hbar ksin\theta$
- Skew angle of ray
 - $\theta = \ell / kr$
- Work done (per photon)
 - W = Fv = 2 $\ell \hbar \Omega$
- Frequency shift
 - $\Delta \omega = 2\ell \Omega$

Ray-Optics/Photon Pressure gives the right answer

Non-linear optics

Courtial *et al.* Phys. Rev. A 1997 Mair *et al.* Nature 2001

OAM conserved in SHG

p =

 $\ell =$

 $\ell =$

- OAM conserved in the light beam
- c.f. SAM in which OAM is not conserved
- But, down conversion is more complicated!

$$\ell = 1,$$

$$p = 0$$

$$\ell = 2,$$

$$p = 0$$

$$\ell = 2,$$

$$p = 0$$

$$\ell = 2,$$

$$p = 1$$

$$\ell = 2,$$

$$p = 2$$

$$\ell = 2,$$

$$p = 2$$

$$\ell = 2,$$

$$p = 2$$

$$\ell = 4,$$

$$p = 2,$$

$$\ell = 4,$$

$$\ell$$

OAM in three-wave interactions

 Fixed phase relationship between three fields

• $\psi_1 + \psi_2 + \psi_3 = \pm \pi/2$

 Azimuthal phase terms are linked to each other, giving

$$\ell_1 + \ell_2 = \ell_3$$

п

The (angular) uncertainty principle

Franke-Arnold *et al.* NJP 2004 EPSRC 2004-2006

Uncertainty relationships

- Heisenberg's Uncertainty principle
 - $\Delta x \Delta p \ge \hbar/2$
- For Gaussian distribution
 - $\Delta x \Delta p = \hbar/2$ (Gaussian gives minimum uncertainty state product)
- What about angular momentum?

Uncertainty in Angular Momentum

- Angular position repeats modulo 2π ,
 - FT of repeating position gives discrete angular momentum values
 - $\Delta \phi \Delta L \ge \hbar/2$?
- For no restriction on ϕ , $\Delta \phi$ still finite, but L can be measured exactly
 - With no restriction, $\Delta \phi = \pi/\sqrt{3}$, but $\Delta L = 0$, i.e. $\Delta \phi \Delta L = 0$
- What are the minimum uncertainty states?

Angular position Angular momentum

 A "cake-slice" aperture placed in a light beam restricts the angular position (≈ of the photon)

Doing the experiment

- **SLM** used to measure ℓ
- Same SLM used to impose aperture
- Transmission through aperture gives ℓ components

The uncertainty relationship for angular momentum

- For small "slices" we find an uncertainty relationship
 - ΔL∆φ ≥ħ/2
 - i.e. ∆ℓ∆φ ≥1/2
- For no aperture
 - ΔL=0
- More complicated for large "slices".....

The minimum uncertainty states

- More complicated for large "slices".....
 - $\Delta \ell \Delta \phi \ge 1/2(1-2\pi(\mathsf{P}_{edge})?)$
- Minimum uncertainty position state
 - Gaussian symmetrically truncated by - π to + π ?
- Results inconclusive?

The OAM communicator

Gibson *et al.* Opt Express **12**, 5448 (2004)

Measuring OAM gives secure(ish) communication

- Use OAM (i.e. *l*-index) to encode data on a light beam
 - Each photon can take ANY value of *l* hence increases data capacity
- $\Delta \ell \Delta \phi \ge 1/2$ gives security
 - Can't measure *l* from only part of beam
 - e.g. Can't measure l from scattered light
 - e.g. Can't measure l from side lobe

Free-space comms

A new approach to Free-Space Optics

proof of concept fund

Concept: Uses the orbital angular momentum of light to define additional bits, create parallel channels or transmit "hidden" information.

Status: Technology demonstrator operational within laboratory. Uses 9 channels (nominally 1 for tracking and beam alignment/confirmation, the other 8 for information transfer) displayed as a 3x3 grid on a CCD camera.

Potential Advantages:

Twisted light

- New multiplexing opportunities (~4 -16 parallel channels)
- Data transmission immune to eavesdropping (fundamental physics: data simply cannot be read from atmospheric scattering or side lobe emission
- Enlarged transmission alphabet, i.e. increased bandwidth (x4-16 higher information)

Patent pending

supported by 🚀 Scottish Enterprise

Iransmitter

20

U Serveriro

University of Glasgow Graham Gibson, Miles Padgett, Johannes Courtial, Eric Yao

University of Strathclyde Stephen Barnett, Sonja Franke-Arnold, Érika Andersson, Roberta Zambrini

> Commercialisation contact Don Whiteford, tel 0141 330 2728. d.whiteford@enterprise.gla.ac.uk

codes information on a light beam using Orbital Angular Momentum

UNIVERSITY GLANGOW

Receiver Routes individual photons according to their twis Entanglement of angular position and angular momentum

EPSRC 2004-2006

Measuring angle and angular momentum

The (angular) momentum paradox

Brevik Phys Rep 1972 Loudon Phys Rev. A 2003 Padgett *et al.* J. Mod Opt 2003 Mansuripur Opt. Exp 2005 EPSRC 2005-2008

The momentum of light in a dielectric

What is the momentum of light (a photon) inside a dielectric (refractive index n)?

 $p = n\hbar k$ (Minkowski) {equiv. $p = \mathbf{D} \times \mathbf{B}$ }

 $p = \hbar k/n \text{ (Abraham) } \{\text{equiv. } p = \mathbf{E} \times \mathbf{H}/c^2\}$

What is the angular momentum of light (a photon) inside a dielectric (refractive index n)?

• $L = (l + \sigma) \hbar$ (Minkowski)

• $L = (l + \sigma) \hbar/n^2$ (Abraham)

Minkowski

- A short, single-photon pulse traverses a block
- During transit of block, momentum of photon is increased
- Block moves towards source

Abraham

- A short, single-photon pulse traverses a block
- During transit of block, momentum of photon is decreased
- Block moves away from source

↔ d ħk/n M $p_{block} = (1-1/n)\hbar k$ block moves $\Delta z = (n-1)\hbar k d/cM$

Einstein Box -> Abraham

- Alternative argument based only on displacement of the centre of mass-energy
- Delay of photon energy equated to energy displacement of block
- Agrees with Abraham formulation

 $\Delta z Mc^2 = (n-1)d \hbar \omega$ $\Delta z = (n-1)\hbar k d/cM$

Diffraction -> Minkowski

- Diffraction arises from Uncertainty Principle
- Shrinking pattern implies Minkowski formulation

Angular momentum

- Angular momentum arises from φ comp. of p
- At interface, φ comp. reduced by 1/n (Snell's Law)
- True for both Abraham and Minkowski
- Implications re AM
 - Minkowski L = $\ell\hbar$
 - Abraham L = $\ell \hbar / n^2$

Minkowski Abraham

Minkowski equiv for AM

- Single photon pulse carrying angular momentum
- During transit of block, angular momentum is unchanged
- Block does not rotate

 $\Omega_{block} = 0$

Abraham equiv for AM

- Single photon pulse carrying angular momentum
- During transit of block, angular momentum is changed
- Block does rotate

 $\Omega_{block} = (1-1/n^2)\ell\hbar/I$

$$\Delta \phi_{block}$$
= (n-1/n) $\ell \hbar$ d/cI

Einstein Box for Angular Momentum

- Equate the lateral delay of the photon energy to the mass energy displacement of the disc element
- Sub. in for skew angle

 (θ = ℓ/ kr) and integrate over disc
 - $\Delta \phi_{block} = (n-1/n) \ell \hbar d/cI$

(I = moment of inertia)

- The Abraham result!
- Also true for spin AM?
 - $\Delta \phi_{block} = (n-1/n)(\ell + \sigma)\hbar d/cI$

 $\Delta \phi_{block}$ r Mc² = $\delta \hbar \omega = \hbar \omega (n-1/n) d\theta$

The Mechanical rotation (Faraday) Effects

Jones *et al.* J. Proc. Roy Soc. A 1976 Nienhuis *et al.* Phys Rev A 1992 SUPA 2005-2006

Magnetic Faraday effect

- Rotation of plane polarised light
 - $\Delta \theta = \mathsf{BLV}$
 - V Verdet constant
- OR treat as phase delay of circularly polarised light

• $\Delta \phi = \sigma BLV$

Are SAM and OAM equivalent?

Rotations of Polarisation and Image

- SAM -> Polarisation rotation
- OAM-> Image rotation
- Look through a Faraday isolator (Δθ≈45°), is the "world" rotated NO
 - SAM and OAM are not equivalent in the Magnetic Faraday effect

Mechanical Faraday effect

- Photon drag, gives Polarisation rotation
 - $\Delta \theta = \Omega(n-1/n)L/c$
- Phase delay equiv.
 - $\Delta \phi = \sigma \Omega(n-1/n) L/c$
- Does photon drag give image rotation?

• $\Delta \theta = \Omega(n-1/n)L/c$

Photon drag

- Transverse photon drag
 - u_x=(1-1/n²)v
- For transit time Ln/c, gives displacement
 - ∆x=L(1-1/n²)nv/c
- In cylindrical frame
 - $\Delta \theta r = L(1-1/n^2) nr \Omega/c$
 - Δθ=L(n-1/n)Ω/c
- OAM equiv. SAM?

