The Abdus Salam
International Centre for Theoretical Physics

WINTER COLLEGE

on
QUANTUM AND CLASSICAL ASPECTS
of
INFORMATION OPTICS

30 January - 10 February 2006

Spin cf. Orbital Angular Momentum

Miles PADGETT
University of Glasgow
Dept. of Physics \& Astronomy
G12 8QQ Glasgow
United Kingdom

Trieste Feb 2006

Spin cf. Orbital Angular Momentum

Miles Padgett

GLASGOW

Transfer of AM to micro-objects

He et al. Phys Rev. Lett. 1995 Simpson et al. Opt. Lett. 1997 O’Neil et al. Phys. Rev. Lett. 2002

Angular momentum interactions with particles

- Object larger than beam
- Spin AM = Orbital AM (for absorption)
- Beam larger than object
- Spin AM \neq Orbital AM

On-axis Spin and Orbital transfer

SAM \&or OAM

Particle spins on beam axis

OAM / SAM transfer to particle held in optical tweezers

Particle spins and stops

Off-axis Spin and Orbital transfer

Particle spins on its own axis

Particle orbits the beam axis

OAM / SAM transfer to particle held in optical tweezers

SAM

Particle spins on its own axis

OAM
Particle orbits the beam axis

Ray-optics to model OAM

Courtial and Padgett Opt. Commun. 2000

Transfer of angular momentum

- Angular momentum arises from skew rays
- $\theta=\ell / \mathrm{kr}$
- The skew angle sets the azimuthal component to the momentum density
- $p_{\phi}=\hbar \mathrm{k} \theta=\ell \hbar / \mathrm{r}$
- $\mathrm{L}=p_{\phi} \mathrm{r}=\ell \hbar$
- Lmax = $\mathrm{k} \mathrm{kr}(\mathrm{R} / \mathrm{f})$

Ray-Optics gives the right answer

Transfer of orbital AM (e.g. from Bessel beam)

- Local intensity (Bessel Beam)
- I $\alpha 1 / r$
- Angular momentum arises from skew rays
- $\theta=\ell / \mathrm{kr}$
- i.e. $\theta \propto 1 / r$
- Circumference of ring
- αr
- (orbital) rotation rate
- $\Omega \propto 1 / r^{3}$

Ray-Optics gives the right answer

Rotational frequency shifts

Garetz and Arnold Opt. Commun. 1979 Courtial et al. Phys. Rev. Lett. 1998

The linear Doppler shift

- Light source moves towards or away from detector giving Doppler shift
- $\Delta \omega=\omega_{0} \times \mathrm{v} / \mathrm{c}$
- Re-express in terms of linear momentum per photon,p
- $\Delta \omega=v \times p / \hbar$

The annular Doppler shift

- Light source rotates with respect to detector giving Doppler shift
- $\Delta \omega=\Omega \times(\ell+\sigma)$
- Also called rotational frequency shift

Annular Doppler shift for circularly polarised light

- Additional rotation of polarisation (at W) shifts frequency

$$
\begin{aligned}
\Delta \omega & =\Omega \\
& =\sigma \Omega \quad(\sigma= \pm 1)
\end{aligned}
$$

- c.f. time speeds up if you rotate a clock!

Annular Doppler for helically phased circ. polarised light -1

- Such a beam contains both SAM and OAM
- Example 1

$$
\ell=3, \sigma=+1
$$

- Four fold rot. Symmetry
- Rotate beam at Ω

$$
\begin{aligned}
\Delta \omega & =(\ell+\sigma) \Omega \\
& =J \Omega \\
& =4 \Omega
\end{aligned}
$$

Rot. Doppler for helically phased, circ. polarised light -2

- The SAM and OAM add or subtract
- Example 2

$$
\ell=-3, \sigma=+1
$$

- Two fold rot. Symmetry
- Rotate beam at Ω

$$
\begin{aligned}
\Delta \omega & =(\ell+\sigma) \Omega \\
& =J \Omega \\
& =2 \Omega
\end{aligned}
$$

Ray-optics to model OAM

Padgett, J Opt A 2004

Rotationally induced frequency shifts

- Waveplate reverses p_{ϕ}
- Exerts force
- $F=2 \hbar k \sin \theta$
- Skew angle of ray
- $\theta=\ell / \mathrm{kr}$
- Work done (per photon)
- $\mathrm{W}=\mathrm{Fv}=2 \ell \mathrm{~h}$
- Frequency shift
- $\Delta \omega=2 \ell \Omega$

Ray-Optics/Photon Pressure gives the right answer

Non-linear optics

Courtial et al. Phys. Rev. A 1997
Mair et al. Nature 2001

OAM conserved in SHG

- OAM conserved in the light beam
- c.f. SAM in which OAM is not conserved
- But, down

OAM in three-wave interactions

- Fixed phase relationship between three fields

$$
\text { - } \psi_{1}+\psi_{2}+\psi_{3}= \pm \pi / 2
$$

- Azimuthal phase terms are linked to each other, giving
- $\ell_{1}+\ell_{2}=\ell_{3}$

The (angular) uncertainty principle

Franke-Arnold et al. NJP 2004 EPSRC 2004-2006

Uncertainty relationships

- Heisenberg's Uncertainty principle
- $\Delta x \Delta p \geq \hbar / 2$
- For Gaussian distribution
- $\Delta x \Delta p=\hbar / 2$ (Gaussian gives minimum uncertainty state product)
- What about angular momentum?

Uncertainty in Angular Momentum

Angular Position

Angular Momentum

- Angular position repeats modulo 2π,
- FT of repeating position gives discrete angular momentum values
- $\Delta \phi \Delta L \geq \hbar / 2$?
- For no restriction on $\phi, \Delta \phi$ still finite, but L can be measured exactly
- With no restriction, $\Delta \phi=\pi / \sqrt{ } 3$, but $\Delta \mathrm{L}=0$, i.e. $\Delta \phi \Delta \mathrm{L}=0$
- What are the minimum uncertainty states?

Angular position Angular momentum

- A "cake-slice" aperture placed in a light beam restricts the angular position (\approx of the photon)

Doing the experiment

- SLM used to measure ℓ
- Same SLM used to impose aperture
- Transmission through aperture gives ℓ components

The uncertainty relationship for angular momentum

- For small "slices" we find an uncertainty relationship
- $\Delta \mathrm{L} \Delta \phi \geq \hbar / 2$
- i.e. $\Delta \ell \Delta \phi \geq 1 / 2$
- For no aperture
- $\Delta \mathrm{L}=0$
- More complicated for large "slices".....

The minimum uncertainty states

- More complicated for large "slices"....
- $\Delta \ell \Delta \phi \geq 1 / 2\left(1-2 \pi\left(\mathrm{P}_{\text {edge }}\right)\right.$?
- Minimum uncertainty position state
- Gaussian symmetrically truncated by $-\pi$ to $+\pi$?
- Results inconclusive?

The OAM communicator

Gibson et al.
Opt Express 12, 5448 (2004)

NewScientist

Twisted Light
ust fast, furious and perfect
for talking to aliens

Animal Minds
The amazing truth Respect for fish Betty, the engineer crow
Smart sheep or woolly robots? The friendly hyena ogs that speak Human

Measuring OAM gives secure(ish) communication

- Use OAM (i.e. ℓ-index) to encode data on a light beam
- Each photon can take ANY value of ℓ hence increases data capacity
- $\Delta \ell \Delta \phi \geq 1 / 2$ gives security
- Can't measure ℓ from only part of beam
- e.g. Can't measure ℓ from scattered light
- e.g. Can't measure ℓ from side lobe

Free-space comms

```
supported by Scottish Enterprise
        proof of concept fund
```


A new approach to Free-Space Optics

Concept: Uses the orbital angular momentum of light to define additional bits create parallel channels or transmit "hidden" information.

Status: Technology demonstrator operational within laboratory. Uses 9 channels (nominally 1 for tracking and beam alignment/confirmation, the other 8 for information transfer) displayed as a 3×3 grid on a CCD camera.

Potential Advantages:

- New multiplexing opportunities ($\sim 4-16$ parallel channels)
- Data transmission immune to eavesdropping (fundamental physics: data simply cannot be read from atmospheric scattering or side lobe emission
- Enlarged transmission alphabet, i.e. increased bandwidth (x4-16 higher information)

Entanglement of angular position and angular momentum

EPSRC 2004-2006

Measuring angle and angular momentum

The (angular) momentum paradox

Brevik Phys Rep 1972
Loudon Phys Rev. A 2003
Padgett et al. J. Mod Opt 2003
Mansuripur Opt. Exp 2005
EPSRC 2005-2008

The momentum of light in a dielectric

- What is the momentum of light (a photon) inside a dielectric (refractive index n)?
- $p=\mathrm{n} \hbar \mathrm{k}$ (Minkowski) $\{$ equiv. $\boldsymbol{p}=\mathbf{D} \times \mathbf{B}\}$
- $p=\hbar \mathrm{k} / \mathrm{n}$ (Abraham) \{equiv. $\left.\boldsymbol{p}=\mathbf{E} \times \mathbf{H} / \mathrm{c}^{2}\right\}$
- What is the angular momentum of light (a photon) inside a dielectric (refractive index n)?
- $L=(l+\sigma) \hbar$ (Minkowski)
- $L=(l+\sigma) \hbar / \mathrm{n}^{2}$ (Abraham)

Minkowski

- A short, single-photon pulse traverses a block
- During transit of block, momentum of photon is increased
- Block moves towards source

$$
\begin{aligned}
& \text { nћk } \\
& \boldsymbol{D}_{\text {block }}=(1-\mathrm{n}) \hbar \mathrm{k} \\
& \text { block moves }
\end{aligned}
$$

$\Delta z=\left(n-n^{2}\right) \hbar k d / c M$

Abraham

- A short, single-photon pulse traverses a block
- During transit of block, momentum of photon is decreased
- Block moves away from source

$\Delta \mathrm{z}=(\mathrm{n}-1) \hbar \mathrm{k} / \mathrm{cM}$

Einstein Box -> Abraham

- Alternative argument based only on displacement of the centre of mass-energy
- Delay of photon energy equated to energy displacement of block
- Agrees with Abraham formulation

$\Delta z \mathrm{Mc}^{2}=(\mathrm{n}-1) \mathrm{d} \hbar \omega$
$\Delta \mathrm{z}=(\mathrm{n}-1) \hbar \mathrm{kd} / \mathrm{cM}$

Diffraction -> Minkowski

- Diffraction arises from Uncertainty Principle
- Shrinking pattern implies Minkowski formulation

Angular momentum

- Angular momentum arises from ϕ comp. of p
- At interface, ϕ comp. reduced by $1 / n$ (Snell's Law)
- True for both Abraham and Minkowski
- Implications re AM
- Minkowski L= $\ell \hbar$
- Abraham $L=\ell \hbar / n^{2}$

Minkowski

Abraham

Minkowski equiv for AM

- Single photon pulse carrying angular momentum
- During transit of block, angular momentum is unchanged
- Block does not rotate

Abraham equiv for AM

- Single photon pulse carrying angular momentum
- During transit of block, angular momentum is changed
- Block does rotate

$$
\Delta \phi_{\text {block }}=(n-1 / n) \ell \hbar d / c I
$$

Einstein Box for Angular Momentum

- Equate the lateral delay of the photon energy to the mass energy displacement of the disc element
- Sub. in for skew angle ($\theta=\ell / \mathrm{kr}$) and integrate over disc
- $\Delta \phi_{\text {block }}=(\mathrm{n}-1 / \mathrm{n}) \ell \hbar \mathrm{d} / \mathrm{cI}$

$$
(\mathrm{I}=\text { moment of inertia })
$$

- The Abraham result!
- Also true for spin AM?
- $\Delta \phi_{\text {block }}=(\mathrm{n}-1 / \mathrm{n})(\ell+\sigma) \hbar \mathrm{d} / \mathrm{cI}$

$$
\Delta \phi_{\text {block }} r \mathrm{Mc}^{2}=\delta \hbar \omega=\hbar \omega(\mathrm{n}-1 / \mathrm{n}) \mathrm{d} \theta
$$

The Mechanical rotation (Faraday) Effects

Jones et al. J. Proc. Roy Soc. A 1976 Nienhuis et al. Phys Rev A 1992 SUPA 2005-2006

Magnetic Faraday effect

- Rotation of plane polarised light
- $\Delta \theta=$ BLV
- V Verdet constant
- OR treat as phase delay of circularly polarised light
- $\Delta \phi=\sigma$ BLV

- Are SAM and OAM equivalent?

Rotations of Polarisation and Image

- SAM -> Polarisation rotation
- OAM-> Image rotation
- Look through a Faraday isolator $\left(\Delta \theta \approx 45^{\circ}\right)$, is the "world" rotated - NO
- SAM and OAM are not equivalent in the Magnetic Faraday effect

Mechanical Faraday effect

- Photon drag, gives Polarisation rotation
- $\Delta \theta=\Omega(\mathrm{n}-1 / \mathrm{n}) \mathrm{L} / \mathrm{c}$
- Phase delay equiv.
- $\Delta \phi=\sigma \Omega(\mathrm{n}-1 / \mathrm{n}) \mathrm{L} / \mathrm{c}$
- Does photon drag give image rotation?
- $\Delta \theta=\Omega(\mathrm{n}-1 / \mathrm{n}) \mathrm{L} / \mathrm{c}$

Photon drag

- Transverse photon drag
- $u_{x}=\left(1-1 / n^{2}\right) v$
- For transit time Ln/c, gives displacement
- $\Delta x=L\left(1-1 / n^{2}\right) n v / c$
- In cylindrical frame
- $\Delta \theta r=L\left(1-1 / n^{2}\right) n r \Omega / c$
- $\Delta \theta=\mathrm{L}(\mathrm{n}-1 / \mathrm{n}) \Omega / \mathrm{c}$

- OAM equiv. SAM?

