The Abdus Salam
International Centre forTheoretical Physics

## WINTER COLLEGE

on QUANTUM AND CLASSICAL ASPECTS
of INFORMATION OPTICS

30 January - 10 February 2006

Lecture 2: Propagation dynamics of nondiffracting beams
Lecture 3: Scalar and vector Helmholtz-Gauss beams

Julio C. GUTIÉRREZ-VEGA
Photonics and Mathematical Optics Group Physics Department, Tecnológico de Monterrey Garza-Sada 2501, Monterrey, N.L. México, 64849

WINTER COLLEGE ON QUANTUM AND CLASSICAL ASPECTSOF INFORMATION OPTICS

## Lecture 2: Propagation dynamics of nondiffracting beams Lecture 3: $\quad$ Scalar and vector Helmholtz-Gauss beams

Julio C. Gutiérrez-Vega



Photonics and
Mathematical Optics Group
Tecnológico de Monterrey, México
http://www.mty.itesm.mx/optica/pmog
http://homepages.mty.itesm.mx/jgutierr

## Outline

## 1. BASIC CONCEPTS OF NONDIFFRACTING PROPAGATION

Basic definitions
Plane wave expansion of the nondiffracting beams
2. BESSEL BEAMS
3. MATHIEU BEAMS
4. PARABOLIC BEAMS
5. SCALAR HELMHOLTZ-GAUSS BEAMS
6. VECTOR HELMHOLTZ-GAUSS BEAMS

## Concept of a nondiffracting beam (NDB)

Helmholtz equation:

$$
\left[\nabla^{2}+k^{2}\right] U(\mathbf{r})=0, \quad \text { where } \quad \mathbf{r}=(x, y, z)
$$

Nondiffracting condition:

$$
\begin{aligned}
& I(x, y, z>0)=I(x, y, z=0) \\
& U(\mathbf{r})=U_{t}(x, y) \exp \left(i k_{z} z\right) .
\end{aligned}
$$


$z=0$


$$
z>0
$$

## A little of history: Foundational papers 1987: Bessel beams

# Exact solutions for nondiffracting beams. I. The scalar 

 theoryJ. Durnin

The Institute of Optics, University of Rochester, Rochester, New York 14627
Received June 12, 1988; accepted November 24, 1986
We present exact, nonsingular solutions of the scalar-wave equation for beams that are nondiffracting. This means that the intensity pattern in a transverse plane is unaltered by propagating in free space. These beams can have extremely narrow intensity profiles with effective widths as small as several wavelengths and yet possess an infinite depth of field. We further show (by using numerical simulations based on scalar alfrraction theory) hat depth of field.
realizable finite-aperture approximations to the exact solutions can also possess an extremely large depth

## PHYSICAL REVIEW

## LETTERS

Volume 58 13 APRIL 1987

> Diffraction-Free Beams
> J. Durnin and J. J. Miceli, Jr.
> The Insfitute of Optics, University of Rochester, Rochester, New York 14627
> and
> J. H. Eberly ${ }^{(6)}$
> Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
> (Reqeived 20 October 1986)
> It was recently predicted that nondiffracting beams, with beam spots as small as a few wavelengths, can exist and propagate in free space. We report the first experimental inventigation of these beams.
> PACS numbers: $03.50 .-\mathrm{z}, 03.65 .-\mathrm{w}, 41.10 . \mathrm{Hv}, 42.10 . \mathrm{Ho}$

## NDBs can be easily constructed using plane waves

NDBs can be constructed by adding plane waves.

REQUIRED CONDITION: All constituent plane waves must to have the same phase velocity $v_{p}$ along the propagation direction, i.e. all plane waves must to have the same longitudinal wavenumber $\boldsymbol{k}_{z}$.


$$
\begin{aligned}
& U(\mathbf{r})=A \exp \left(i \mathbf{k}_{1} \cdot \mathbf{r}\right)+A \exp \left(i \mathbf{k}_{2} \cdot \mathbf{r}\right) \\
&=2 A \cos \left(k_{t} x\right) \exp \left(i k_{z} z\right) \\
& v_{p}=\frac{c}{\cos \theta_{0}}
\end{aligned}
$$

## Plane wave expansion of the nondiffracting beams



Three-dimensional expansion

$$
\begin{gathered}
U(\mathbf{r})=\int_{\mathbf{K}} \widetilde{U}(\mathbf{K}) \exp [i \mathbf{K} \cdot \mathbf{r}] \mathrm{d}^{3} K . \\
\widetilde{U}(\mathbf{K})=A(\varphi)\left[\frac{\delta(K-k)}{K}\right] \delta\left(K_{z}-k_{z}\right) \\
\end{gathered}
$$

$$
\begin{aligned}
U(x, y, z \geq 0) & =\exp \left(i k_{z} z\right) \int_{-\pi}^{\pi} A(\varphi) \exp \left[i k_{t}(x \cos \varphi+y \sin \varphi)\right] \mathrm{d} \varphi \\
U(r, \theta, z \geq 0) & =\exp \left(i k_{z} z\right) \int_{-\pi}^{\pi} A(\varphi) \exp \left[i k_{t} r \cos (\varphi-\theta)\right] \mathrm{d} \varphi
\end{aligned}
$$

## An example of a nondiffracting field



## Apertured NDBs are restricted to a finite volume region

Geometrical visualization of the nondiffracting region

Interferring
2 plane waves:
Cosine fringes $\cos \left(k_{t} x\right) \exp \left(i k_{z} z\right)$

$z=0 \quad z=0.5 z_{\text {max }} \quad z=0.9 z_{\text {max }}$
a1)


## Apertured NDBs are restricted to a finite volume region



## Geometrical propagation of a focused NDBs



## Axial intensity of the focused NDB

The on-axis intensity of a focused NDB is a Lorentzian curve


Figure 3. The geometric prediction of the axial intensity of a focused PIOF is given by a Lorentzian curve.
J. C. Gutiérrez-Vega, et al., J. Opt. A, 5, 273 (2003)

## There are four fundamental families of NDBs

Helmholtz equation $\left[\nabla^{2}+k^{2}\right] U(\mathbf{r})=0$ is separable in 11 orthogonal systems
Four of them are cylindrical i.e $\mathbf{r}=\left(\mathbf{r}_{t}, z\right)$

Cartesian coordinates
Plane waves


Elliptic cylindrical coordinates
Mathieu beams


Circular cylindrical coordinates
Bessel beams


Parabolic cylindrical coordinates
Parabolic beams


## Bessel beams

## Bessel beams: Amplitude and phase distribution

Field distribution:

$$
\begin{aligned}
U(\mathbf{r}) & =J_{m}\left(k_{t} r\right) \exp (i m \theta) \exp \left(i k_{z} z\right) \\
& =\exp \left(i k_{z} z\right) \int_{-\pi}^{\pi} \underbrace{\left[\frac{(-i)^{m}}{2 \pi} \exp (i m \varphi)\right]}_{\text {Angular spectrum: }} \exp \left[i k_{t} r \cos (\varphi-\theta)\right] \mathrm{d} \varphi
\end{aligned}
$$

Intensity distribution has azimuthal symmetry


$$
m=0
$$

$\mathrm{m}=1$
$m=5$
Phase distribution increases linearly along the angular coordinate from 0 to $2 m \pi$.


## Adding plane waves to build up Bessel beams



Bessel beams are vortex beams


Helical wavefronts of a vortex beam for the topological charge $m=$ 1 and $m=2$
The point where the phase dislocation appears can be identified by the nonzero value of the integral

$$
\oint \nabla \Phi \cdot \mathrm{d} \mathbf{l}=2 \pi m
$$

where the integration is performed along the closed line surrounding the examined point.

Interference of the optical vortex $m=2$ with the plane wave results in a fork-like interference patterns

[1] Z. Bouchal, "Nondiffracting optical beams," Czechoslovak J. Phys., 53, 537-624 (2003)
[2] L. Allen, S. M. Barnett and M. Padgett, "Optical Angular Momentum" IOP Publishing (2003) and references therein

## Simple experimental setup to produce NDBs: Durnin's setup


J. Durnin, "Exact solutions for nondiffracting beams," J. Opt. Soc. Am. A, 4, 651 (1987)

## BBs can also be produced with holograms or axicons


A. Vasara, J. Turunen, and A. Friberg, "Realization of general nondiffracting beams with computer-generated holograms," J. Opt. Soc. Am. A 6, 1748- (1989)

An axicon transforms a plane wave into a converging conical wave

(a)

(b)


Axicon Plane

Output Mirror
Plane
(c)

Converging conical waves build up the BB
Z. Jaroszewicz, A. Burvall, and A. T. Friberg, "Axicon - the Most Important Optical Element" Opt. Phot. News, 16, 34-39 (2005)

BBs can be produced by superposing the even and odd components

$$
J_{m}\left(k_{t} r\right) \exp (i m \varphi)=J_{m}\left(k_{t} r\right) \cos (m \varphi)+i J_{m}\left(k_{t} r\right) \sin (m \varphi)
$$

Even: Bessel-Cosine
Odd: Bessel-Sine
$J_{m}\left(k_{t} \rho\right) \cos (m \varphi) \quad J_{m}\left(k_{t} \rho\right) \sin (m \varphi) \quad J_{m}\left(k_{t} \rho\right) \exp (i m \varphi)$
Bessel

Amplitude


Angular spectrum

$\sin (m \varphi)$

$\exp (i m \varphi)$

## Constructing HOBBs with a Mach-Zehnder interferometer

$J_{m}\left(k_{t} r\right) \exp (i m \varphi)=J_{m}\left(k_{t} r\right) \cos (m \varphi)+i J_{m}\left(k_{t} r\right) \sin (m \varphi)$

$$
g_{1}(\varphi)=\cos (m \varphi), \quad g_{2}(\varphi)=\sin (m \varphi)
$$


C. López-Mariscal, et al, "Production of high--order Bessel beams with a Mach--Zehnder interferometer," Appl. Opt. 43, 5060-5063 (2004)

Some results


$J_{1}\left(k_{t} r\right) \sin (\varphi)$ $J_{1}\left(k_{r} r\right) \exp (i \varphi)$


[^0]
## Creating rotating waves with Bessel beams

The interference of a HO-BB with spherical waves produces Spiraling waves (there is a scaling factor due the spherical wave)


Z-scan of 4th-HOBB interferred with a spherical wave

## HOBBs carry Orbital Angular Momentum.

[1] C. López-Mariscal, et al, "Production of high--order Bessel beams with a Mach--Zehnder interferometer," Appl. Opt. 43, 5063 (2004)
[2] K. Volke-Sepúlveda et al. "Orbital angular momentum of a high order Bessel light beam," J. Opt. B, 4, S82-S89 (2002).
[3] L. Allen, S. M. Barnett and M. Padgett, "Optical Angular Momentum" IOP Publishing (2003) and references therein

## Active method to generate BBs: Bessel-Gauss Resonator

An axicon transforms a plane wave into a converging conical wave


Resonator with refractive and reflective axicon


$$
L=\frac{a}{2 \tan \theta_{0}} \simeq \frac{a}{2 \theta_{0}}=\frac{a}{2(n-1) \alpha} .
$$



## Wave optics analysis: Intracavity field distributions



(a)

J. C. Gutiérrez-Vega, et al, JOSA A, 20, 2113 (2003)

Experiment: CO2 Bessel-Gauss resonator

M. Alvarez, et al, "Construction and characterization of CO 2 laser with an axicon based Bessel-Gauss resonator," SPIE Vol. 5708-19, 323-331 (2005)

Focusing the Bessel-Gauss beam


## Mathieu beams

## Mathieu beams: Elliptic coordinates

$$
\begin{aligned}
& (x, y) \leftrightarrow(\xi, \eta) \\
& x=f \cosh \xi \cos \eta \\
& y=f \sinh \xi \sin \eta \\
& z=z
\end{aligned}
$$

For a given ellipse

$$
\begin{aligned}
& f^{2}=a^{2}-b^{2} \\
& e=\frac{f}{a}=\frac{1}{\cosh \xi_{0}}
\end{aligned}
$$


$\eta \in[0,2 \pi)$


Mathieu beams: Separation of the Helmholtz equation


## Mathieu beams: Mathieu functions

$\left.\begin{array}{r}\text { Radial Mathieu } \\ \text { equation }\end{array} \frac{d^{2}}{d \xi^{2}}-(\alpha-2 q \cosh 2 \xi)\right] R(\xi)=0$

J. C. Gutiérrez-Vega et al., "Mathieu functions, a visual approach," Am. J. Phys. 71, 233 (2003)

## Visualization of Mathieu functions

## Angular Mathieu functions



Fig. 2. Graphical visualization of angular Mathieu functions $\mathrm{ce}_{m}(\eta ; q)$ and $\mathrm{se}_{m+1}(\eta ; q)$ over the ( $\left.\eta, q\right)$ plane. The function $\mathrm{ce}_{0}(\eta ; q)$ is never negative, although oscillatory.

## Radial Mathieu functions



Fig. 4. Plots of radial Mathieu functions with $q=1$ (solid line), $q=2$ (dashed line), and $q=3$ (dotted line).

Mathieu beams: Transverse intensity distribution

$$
\begin{array}{ll}
{ }_{e} U_{m}(\mathbf{r})=J e_{m}(\xi, q) c e_{m}(\eta, q) \exp \left(i k_{z} z\right), & m=\{0,1,2,3 \ldots\}, \\
{ }_{o} U_{m}(\mathbf{r})=J o_{m}(\xi, q) \operatorname{se}_{m}(\eta, q) \exp \left(i k_{z} z\right), & m=\{1,2,3 \ldots\} .
\end{array}
$$

## Fundamental Mathieu beam




## Mathieu beams: Angular spectrum

$$
\begin{aligned}
\mathrm{Je}_{m}(\xi, q) \mathrm{ce}_{m}(\eta, q) & \propto \int_{-\pi}^{\pi} \mathrm{ce}_{m}(\phi) \exp \left[i k_{t} r \cos (\phi-\theta)\right] \mathrm{d} \phi \\
\mathrm{Jo}_{m}(\xi, q) \operatorname{se}_{m}(\eta, q) & \propto \int_{-\pi}^{\pi} \mathrm{se}_{m}(\phi) \exp \left[i k_{t} r \cos (\phi-\theta)\right] \mathrm{d} \phi
\end{aligned}
$$



$$
c e_{3}(\eta, 35) \quad J e_{3}(\xi, 35) c e_{3}(\eta, 35)
$$


J. C. Gutiérrez-Vega, et al., Opt. Lett., 25, 1493-1495 (2000)

## Experimental observation: Fundamental Mathieu beam



Even Mathieu beam order 1: $\mathrm{Je}_{1}(\xi) c e_{1}(\eta)$


Even Mathieu beam order 2: $\mathrm{Je}_{2}(\xi) \mathrm{ce}_{2}(\eta)$


## Helical $M B_{m}(\xi, \eta)=J e_{m}(\xi) c e_{m}(\eta)+\imath J o_{m}(\xi) s e_{m}(\eta)$

a) $J e_{5}(\xi) c e_{5}(\eta)$

d) Phase of a)

a) $\mathrm{Jo}_{5}(\xi) \mathrm{Se}_{5}(\eta)$

e) Phase of b)

a) $\mathrm{Je}_{5} \mathrm{Ce}_{5}+\mathrm{i} \mathrm{Jo} 5 \mathrm{Se}_{5}$

f) Phase of c)


Evolution $M B_{m}(\xi, \eta)=J e_{m}(\xi) c e_{m}(\eta)+\imath J o_{m}(\xi) s e_{m}(\eta)$


## Effect of changing the ellipticity parameter



Intensity pattern

Phase pattern

Abs of the angular spectrum

Phase of the angular spectrum

Bessel beam spectra of the corresponding MB
S. Chávez-Cerda, et al, "Holographic generation and orbital angular momentum of high-order momentum",
J. Opt. B: Quantum Semiclass. Opt. 4, S52-S57, Apr. 2002

## Effect of changing the ellipticity parameter

Helical Mathieu beam: $\quad m=7$


Intensity


Phase

## Vortices in Mathieu beams are along the interfocal line

Phase structure of an fifth-order MB 5 propagating invariant vortices are aligned along the interfocal line.


Central phase structure of an 2nd-order MB

Fork-like patterns resulting from the interferogram with a plane wave

J. C. Gutiérrez-Vega et al., Opt. Lett., 26 (22), 1803-1805, 2001

## Holographic generation of Helical Mathieu beams

Holographic setup


Intensity at focal plane of L1
Diffraction order are identified at bottom


Chavez-Cerda et al, J. Opt. B: 4, 52, 2002

Mathieu art: Gallery of nondiffracting patterns


## Self-imaging patterns with Mathieu beams (Talbot effect)

In general, two collinear IOFs with different longitudinal propagation constant interfere to produce self-images separated by a distance:

$$
L_{B}=\frac{2 \pi}{\left|k_{z, 2}-k_{z, 1}\right|}
$$

Interferring two fundamental Mathieu beams

Evolution along the plane $(y-z)$

$$
k_{t 1}=2 k_{t 2}
$$



Evolution of a focused Mathieu beam: $(y, z)$ plane


## Evolution of elliptical rotating waves produced by

 superposing Mathieu beams and spherical waves$$
U(\mathbf{r})=\left[J e_{\boldsymbol{m}}(\xi ; q) c e_{\boldsymbol{m}}(\varphi, q)+i J o_{m}(\xi ; q) s e_{\boldsymbol{m}}(\varphi, q)\right] \exp \left(i k_{\mathbf{z}} z\right)+\frac{C}{\sqrt{\rho^{2}+z^{2}}} \exp \left(i k \sqrt{\rho^{2}+z^{2}}\right)
$$


$\begin{array}{cc}-2 & 0 \\ (m, q)=(5,10), z=1+0.3\end{array}$

$(m, q)=(5,10), z=1+0.05 L_{\text {日 }}$

$(m, q)=(5,10), z=1+0.1 L_{B}$

$(m, q)=(5,10), z=1+0.25 L_{\text {B }}$


## Mathieu beams in an axicon resonator



Disaligned cavity

and at the focal plane
$15 \mu \mathrm{rad}$
$25 \mu \mathrm{rad}$
M. Alvarez, et al, "Construction and characterization of CO2 laser
with an axicon based Bessel-Gauss resonator," SPIE Vol. 5708-19, 323-331 (2005)

$$
U(\mathbf{r}, t)=\underbrace{}_{H_{m}^{(1),(2)}\left(k_{t} r\right) \quad k_{\text {Hankel function }}^{J_{m}\left(k_{t} r\right) \pm i N_{m}\left(k_{t} r\right)} \exp (i m \theta) \exp \left(i k_{z} z-i \omega t\right)}
$$


[1] S. Chávez-Cerda et al., "Nondiffracting Beams: travelling, standing, rotating and spiral waves", Opt. Commun 123, 225 (1996).
[2] S. Chávez-Cerda, "A New Approach to Bessel Beams", J. Mod Opt. 46, 923-930 (1999).
[3] J. C. Gutiérrez-Vega, "Formal analysis of the propagation of invariant optical fields with elliptical symmetry," Ph.D. Thesis (2001)

## Mathieu beams as Mathieu-Hankel waves

$$
\begin{aligned}
& U_{m}^{e}=\left[J e_{m}(\xi ; q) \pm i N e_{m}(\xi ; q)\right] c e_{m}(\eta ; q) \exp \left[i\left(k_{z} z-\omega t\right)\right] \\
& U_{m}^{o}= {[\underbrace{\left[J o_{m}(\xi ; q) \pm i N o_{m}(\xi ; q)\right]}_{M H_{m}^{(1),(2)}(\xi, q)} s e_{m}(\eta ; q) \exp \left[i\left(k_{z} z-\omega t\right)\right]} \\
&\left.\begin{array}{c}
\text { Incoming } \\
\text { wave } \\
\text { Sink or source } \\
\text { resion }
\end{array}\right)
\end{aligned}
$$

## An application of Mathieu beams in optical manipulation



## Mathieu modes: Analogy with mechanics

1) Probability distributions in elliptic quantum billiards
2) Vibrating modes in elliptic membranes

$$
\begin{array}{ll}
{ }_{e} U_{m}(\mathbf{r})=J e_{m}(\xi, q) c e_{m}(\eta, q), & m=\{0,1,2,3 \ldots\} \\
{ }_{o} U_{m}(\mathbf{r})=J o_{m}(\xi, q) s e_{m}(\eta, q), & m=\{1,2,3 \ldots\}
\end{array}
$$



[^1]
## Summary of key points of the Mathieu beams

1. MBs are characterized by an "ellipticity" parameter $q$ and the order $m$.
2. MBs are transition beams between $\mathrm{BBs}(q=0)$ and finite width cosine beams ( $q$ tends to infinite).
3. The transverse intensity shape of MBs is composed by confocal ellipses.
4. MBs have a continuous gradient of phase around the interfocal line.
5. Contrary to HOBBs, the even and odd MBs are structurally different.
6. The angular spectrum is given directly by the Angular Mathieu functions.
7. The $m$ in-line vortices of a $m$-th order BB split into $m$ vortices of a $m$-th order MB along the interfocal line.
8. It is possible to construct rotating waves with elliptical trajectories.
9. Similar to BBs, MBs form a complete and orthogonal set of Invariant Optical Fields, such that any IOF can be reconstructed by linearly superposing MBs.

## Parabolic beams

## Parabolic beams: Parabolic coordinates

$$
\eta^{2}=\sqrt{x^{2}+y^{2}}+x, \quad \xi^{2}=\sqrt{x^{2}+y^{2}}-x
$$

## Parabolic beams: Separation of the Helmholtz equation

Taking $\quad U(\mathbf{r})=R(\xi) \Theta(\eta) Z(z)$,
Helmholtz equation in parabolic coordinates separates into

$$
\begin{aligned}
R^{\prime \prime}(\xi)+\left(k_{t}^{2} \xi^{2}-2 k_{t} a\right) R(\xi) & =0 \\
\Phi^{\prime \prime}(\eta)+\left(k_{t}^{2} \eta^{2}+2 k_{t} a\right) \Phi(\eta) & =0 \\
Z^{\prime \prime}(z)+k_{z}^{2} Z(z) & =0
\end{aligned}
$$

$$
\begin{aligned}
& 2 k_{t} a=\text { sep. cons } \\
& k^{2}=k_{t}^{2}+k_{z}^{2}
\end{aligned}
$$

By the simple change of variables $\quad \xi \sqrt{2 k_{t}} \rightarrow v$,
above equations become the canonical form of the Parabolic cylinder equation

$$
P^{\prime \prime}(v)+\left(v^{2} / 4-a\right) P(v)=0
$$

PFs can be expressed in terms of a Taylor expansion about $v=0$.

$$
P(v, a)=\sum_{n=0}^{\infty} c_{n} \frac{v^{n}}{n!}, \quad \text { where } c_{n+2}=a c_{n}-\frac{n(n-1) c_{n-2}}{4}
$$

## Parabolic cylinder functions

Even solution: $P e(v, a)$





Odd solution : $\operatorname{Po}(v, a)$

$$
c_{0}=0, \quad c_{1}=1
$$



## Parabolic beams: Angular spectrum

$U e(\xi, \eta, a)=C_{a} P e(\xi, a) P e(\eta,-a) \exp \left(i k_{z} z\right)$,
$U o(\xi, \eta, a)=C_{a} P o(\xi, a) P o(\eta,-a) \exp \left(i k_{z} z\right)$.
$U(\mathbf{r})=\exp \left(i k_{z} z\right) \int_{0}^{2 \pi} A(\Phi) \exp \left[i k_{t}(x \cos \Phi+y \sin \Phi)\right] d \Phi$,

$$
\begin{aligned}
& A e(\varphi, a)=\frac{1}{2 \sqrt{\pi|\sin \varphi|}} \exp \left(i a \ln \left|\tan \frac{\varphi}{2}\right|\right), \\
& A o(\varphi, a)=\frac{1}{i}\left\{\begin{array}{cl}
-A e, & \varphi \in(-\pi, 0) \\
A e, & \varphi \in(0, \pi)
\end{array}\right.
\end{aligned}
$$


(a)

(b)

## Parabolic beams: Transverse intensity distributions



[^2]
## Parabolic beams: Transverse intensity distributions



Parameter $a$ is a measure of the concavity of parabolae

## Parabolic beams: Transverse intensity distributions

$$
\begin{aligned}
& U e(\xi, \eta, a)=C_{a} P e(\xi, a) P e(\eta,-a) \exp \left(i k_{z} z\right), \\
& U o(\xi, \eta, a)=C_{a} P o(\xi, a) P o(\eta,-a) \exp \left(i k_{z} z\right) .
\end{aligned}
$$

- Even

$$
a=4
$$




## Parabolic beams: Travelling solutions



## Vortices along the positive (or negative) $x$-axis:

Fork-like patterns resulting from the interferogram with a plane wave

$$
a=1 \quad a=2 \quad a=3
$$



Phase evolution under propagation of a traveling PB

## Experimental evidence: phase structure



## Energy flux in apertured Parabolic beams



Fig. 3. a) Photographic sequence of the propagation of a bounded traveling PB $T U^{-}(\eta, \xi ; a=4)$. (b) Computer simulated propagation.
C. López-Mariscal, "Observation of Parabolic nondiffracting wave fields," Opt. Express, 13, 2364 (2005)

## Summary of key points of the Parabolic beams

1. PBs are characterized by a "parabolicity" parameter $a$.
2. PBs have a continuous order $a$.
3. The transverse intensity shape of PBs is composed by confocal parabolae.
4. PBs have a continuous gradient of phase around the positive (or negative) $x$-axis.
5. The angular spectrum is given directly by a general algebraic expresion.
6. PBs exhibit an infinite number of vortices along the positive (or negative) $x$-axis.
7. It is possible to construct travelling waves with parabolic trajectories.
8. Similar to BBs and MBs, PBs form a complete and orthogonal set of Invariant Optical Fields, such that any IOF can be reconstructed by linearly superposing PBs.

## Papers related to Mathieu and Parabolic beams

[1] J. C. Gutiérrez-Vega, M.D.Iturbe-Castillo, and S.Chávez-Cerda, "Alternative formulation for invariant optical fields: Mathieu beams," Opt. Lett., 25 (20), 1493-1495, Oct. 15, 2000
[2] J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, E. Tepichin, and S. Chávez-Cerda, "New Member in the Family of Propagation Invariant Optical Fields: Mathieu beams," Opt. and Phot. News, 11 (12), 35-36, Dec. 2000
[3] J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, G. A. Ramírez, S. Chávez-Cerda, and G.H.C. New, "Experimental demonstration of optical Mathieu beams," Opt. Comm., 195 (1-4), 35-40, 1 Aug. 2001
[4] J. C. Gutiérrez-Vega, S. Chávez-Cerda y R. M. Rodríguez-Dagnino, "Probability distributions in classical and quantum elliptic billiards," Rev. Mex. Fis., 47 (5), 480-488, Oct. 2001
[5] S. Chávez-Cerda, J. C. Gutiérrez-Vega, and G.H.C. New, "Elliptic vortices of electromagnetic wavefields," Opt. Lett., 26 (22), 1803-1805, 15-Nov. 2001
[6] S. Chávez-Cerda, M.J. Padgett, I. Allison, G.H.C. New, J. C. Gutiérrez-Vega, A.T. O’Neil, and J. Courtial, "Holographic generation and orbital angular momentum of high-order momentum", J. Opt. B 4, S52-S57, Apr. 2002
[7] J. C. Gutiérrez-Vega, R. M. Rodríguez-Dagnino, M. A. Meneses-Nava, and S. Chávez-Cerda, "Mathieu functions, a visual approach," Am. J. Phys. 71 (3), 233-242, Mar. 2003
[8] Miguel A. Bandres, Julio C. Gutiérrez-Vega, and S. Chávez-Cerda, "Parabolic nondiffracting optical wavefields," Opt. Lett., 29 (1), 44-46, 01-Jan. 2004
[9] Carlos López-Mariscal, Miguel A. Bandrés, S. Chávez-Cerda, and Julio. C. Gutiérrez-Vega, "Observation of Parabolic nondiffracting wave fields," Opt. Express, 13 (7), 2364-2369, April 2005

## Lecture 3

## Scalar

## Helmholtz-Gauss beams

- Ideal nondiffracting beams have an infinite extent and energy (they are not square integrable), and thus they are not physically realizable.
- In view of this, some papers have been devoted to describing modified versions of Bessel beams, which carry finite energy and may be said to be nearly nondiffracting because they can propagate over a large range without significant divergence.


## Classical paper: Bessel-Gauss beams by Gori et al.

## BESSEL-GAUSS BEAMS

F. GORI, G. GUATTARI
and
C. PADOVANI

Received 13 Augus 1987

A new type of solution of the paraxial wave equation is pressented. It encompasses as IMITing cass boik the difraction-fre

## 1. Introduction

Propagation of coherent or partially coherent ligh in the form of beams is of obvious importance from both the theoretical and the experimental point of view. Although light beams of one form or another are simple to produce in practice, the corresponding analytical description is not that casy. This occurs the propagation formulas seldom leads to close expressions. As a celebrated example, we recall that the deceptively simplest way of shaping a light pencil, namely limiting a plane wave by a circular aperture, prompted the introduction of a new family of special functions, known as Lommel functions (1], types of light beams both useful and analytically sim ple are known today. They range from the ubiquitous gaussian beam of zero order $[2,3]$, to more sophisticated forms or bin tially coherent [8-26] beams.
diffraction-free beams, have be light beams, called They have the peculiar property of conserving the same disturbance distribution (apart from a phase factor) across any plane orthogonal to the direction
of propagation, say the $z$-axis. An intuitive under-
$030-4018 / 87 / 503.50$ © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)
standing of these beams can be gained by thinking of standing of these beams can be gained by thinking of vectors lie on a cone around the $z$-axis. All these plane waves have the same component of the wave vecto along the $z$-axis. Accordingly, they all suffer the same phase change for any given pathlength along the $z$ axis. The mutual phase relations among the variou plane waves do not change on propagation, so that shape at any plane $z=$ constant. For the simples beam of this type, which is circularly symmetric, the transverse disturbance distribution has the form of a Bessel function of the first kind and zero order $J_{0}(\beta r)$, where $r$ denotes the distance from the $z$-axis
and $\beta$ is the length of the component, orthogonal to the $z$-axis, of any wave vector belonging to one of the plane waves producing the beam. As well known, the maxima of the oscillating function $J_{0}(x)$ tend to decrease like $1 / x^{1 / 2}$ when $x$ goes to infinity. Because of this slow decrease law, it is impossible to realize ex perimentally a beam giving everywhere a good ap-
proximation to the ideal model. Note also that the ideal beam should carry an infinite power because of the divergence of the norm of $J_{0}(\beta r)$. In a laborator test [27], an experimental beam was realized whose disturbance in the plane $z=0$ was of the form $J_{0}(\beta r)$ disturbance in the plane $z=0$ was of the form $J_{0}(\beta)$ )
within a circular aperture and vanished elsewhere. It
F. Gori, G. Guattari, and C. Padovani, "Bessel-Gauss beams," Opt. Commun. 64, 491-495 (1987).

Field at $z=0$

$$
V(r, 0)=A J_{0}(\beta r) \exp \left[-\left(r / w_{0}\right)^{2}\right]
$$

Propagated field for $z>=0$

$$
\begin{align*}
& V(r, z)=\left(A w_{0} / w(z)\right) \\
& \quad \times \exp \left\{\mathrm{i}\left[\left(k-\beta^{2} / 2 k\right) z-\Phi(z)\right]\right\} \\
& \quad \times J_{0}[\beta r /(1+\mathrm{i} z / L)] \exp \left\{\left[-1 / w^{2}(z)\right.\right. \\
& \left.\quad+\mathrm{i} k / 2 R(z)]\left(r^{2}+\beta^{2} z^{2} / k^{2}\right)\right\}, \tag{2.7}
\end{align*}
$$

where the parameter $L$ is given by

$$
\begin{equation*}
L=k w_{0}^{2} / 2, \tag{2.8}
\end{equation*}
$$

and where the functions $w(z), \Phi(z)$ and $R(z)$ are as follows

$$
\begin{align*}
& w(z)=w_{0}\left[1+(z / L)^{2}\right]^{1 / 2}  \tag{2.9}\\
& \Phi(z)=\arctan (z / L)  \tag{2.10}\\
& R(z)=z+L^{2} / z \tag{2.11}
\end{align*}
$$

## Scalar Helmholtz-Gauss beams

We call Helmholtz-Gauss (HzG) beam a general solution to the paraxial wave equation.

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+2 i k \frac{\partial}{\partial z}\right) \Psi(\mathbf{r})=0
$$

whose disturbance across the plane $z=0$ is given by the product of a Gaussian factor and the transverse shape of an arbitrary nondiffracting beam

$$
U_{0}\left(\mathbf{r}_{t}\right)=\exp \left(-\frac{r^{2}}{w_{0}^{2}}\right) W\left(\mathbf{r}_{t} ; k_{t}\right)
$$

$W\left(x, y ; k_{t}\right)$ satisfies the two-dimensional Helmholtz equation

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k_{t}^{2}\right) W\left(\mathbf{r}_{t} ; k_{t}\right)=0
$$

and can be expanded in terms of plane waves (angular spectrum)

$$
W\left(\mathbf{r}_{t} ; k_{t}\right)=\int_{-\pi}^{\pi} A(\varphi) \exp \left[i k_{t}(x \cos \varphi+y \sin \varphi)\right] \mathrm{d} \varphi
$$

## Analitical expression of Helmholtz-Gauss beams

The analytical expression of the HzG waves is given by the product of three factors:

- a complex amplitude dependent on $z$ only
- a Gaussian beam and
- a complex scaled version of the transverse profile of the nondiffracting beam.

where $\mathrm{GB}(\mathbf{r})=\frac{\exp (i k z)}{\mu} \exp \left(-\frac{r^{2}}{\mu w_{0}^{2}}\right)$.

$$
\mu=\mu(z)=1+i z / z_{R}, \quad z_{R}=k w_{0}^{2} / 2
$$

Julio C. Gutiérrez-Vega and Miguel A. Bandres, "Helmholtz-Gauss beams," JOSA A, 22, 289 (2005)

## Angular spectrum of Helmholtz-Gauss beams

Two-dimensional Fourier transform

$$
\mathfrak{U}(u, v ; z)=\frac{1}{2 \pi} \iint U(x, y, z) \exp (-i x u-i y v) \mathrm{d} x \mathrm{~d} y
$$

Angular spectrum of the HzG waves

$$
\begin{array}{r}
\mathfrak{U}(u, v ; z)=D(z) \exp \left(-\frac{w_{0}^{2} \mu}{4} \rho^{2}\right) W_{\mathbf{t}}\left(\frac{w_{0}^{2}}{2 i} u, \frac{w_{0}^{2}}{2 i} v ; k_{t}\right) . \\
\text { where } \quad \rho=\left(u^{2}+v^{2}\right)^{1 / 2}, \quad D(z)=\frac{w_{0}^{2}}{2} \exp \left(-\frac{1}{4} k_{t}^{2} w_{0}^{2}\right) \exp (i k z) .
\end{array}
$$

Exact NDBs
Ideal plane waves


HzG beams
Tilted plane-wave-Gaussian beam


Cosine-Gauss beams

$$
W\left(\mathbf{r}_{t} ; k_{t}\right)=\cos \left(k_{t} y\right)
$$

Field
$\mathrm{CG}(\mathbf{r})=\exp \left(-i \frac{k_{t}^{2}}{2 k} \frac{z}{\mu}\right) \mathrm{GB}(\mathbf{r}) \cos \left(\frac{k_{t} y}{\mu}\right)$

Spectrum
$\mathfrak{C} \mathfrak{G}(u, v ; z)=D(z) \exp \left(-\frac{\mu w_{0}^{2}}{4} \rho^{2}\right) \cosh \left[2 \gamma^{2}\left(v / k_{t}\right)\right]$

Fig. 2. (a)-(c) Transverse amplitude distribution of a Cosine-Gauss beam at different $z$ planes. (d)-(e) Propagation of the amplitude and phase profiles along the planes $(y, z)$ and ( $x, z$ ). (f)-(h) Amplitude and phase distribution of the angular spectrum at different $z$ planes. $\mathrm{f} 2 \mathrm{NDG} . \mathrm{eps}$.


## Bessel-Gauss beams

$$
\begin{aligned}
\mathrm{BG}_{m}(\mathbf{r}) & =\exp \left(-i \frac{k_{t}^{2}}{2 k} \frac{z}{\mu}\right) \mathrm{GB}(\mathbf{r}) J_{m}\left(\frac{k_{t} r}{\mu}\right) \exp (i m \phi) \\
\mathfrak{B G}_{m}(u, v ; z) & =(-i)^{m} D(z) \exp \left(-\frac{\mu w_{0}^{2}}{4} \rho^{2}\right) I_{m}\left(2 \gamma^{2} \rho / k_{t}\right) \exp (i m \phi)
\end{aligned}
$$

(a)

(b)

(c)



Propagation of the amplitude and phase profiles along the $(x, z)$ plane in the range $[0,2 Z \max ]$.

## Mathieu-Gauss beams

$$
\begin{aligned}
& W^{e}\left(\mathbf{r}_{t} ; k_{t}\right)=\mathrm{Je}_{m}(\xi, q) \mathrm{ce}_{m}(\eta, q) \\
& W^{o}\left(\mathbf{r}_{t} ; k_{t}\right)=\mathrm{Jo}_{m}(\xi, q) \mathrm{se}_{m}(\eta, q)
\end{aligned}
$$

## Field

$$
\begin{aligned}
\mathrm{MG}_{m}^{e}(\mathbf{r}) & =\exp \left(-i \frac{k_{t}^{2}}{2 k} \frac{z}{\mu}\right) \mathrm{GB}(\mathbf{r}) \mathrm{Je}_{m}(\bar{\xi}, q) \mathrm{ce}_{m}(\bar{\eta}, q) \\
x & =f_{0}\left(1+i z / z_{R}\right) \cosh \bar{\xi} \cos \bar{\eta} \\
y & =f_{0}\left(1+i z / z_{R}\right) \sinh \bar{\xi} \sin \bar{\eta},
\end{aligned}
$$

## Spectrum

$$
\begin{aligned}
\mathfrak{M G}_{m}^{e}(u, v ; z) & =D(z) \exp \left(-\frac{\mu w_{0}^{2}}{4} \rho^{2}\right) \mathrm{Je}_{m}(\widehat{\xi}, q) \mathrm{ce}_{m}(\widehat{\eta}, q) \\
u & =\frac{2 i}{w_{0}^{2}} f_{0} \cosh \widehat{\xi} \cos \widehat{\eta}, \\
v & =\frac{2 i}{w_{0}^{2}} f_{0} \sinh \widehat{\xi} \sin \widehat{\eta} .
\end{aligned}
$$

Complex elliptic variables $(\xi, \eta)$ !!


Fig. 5. (a)-(c) Transverse amplitude and phase distributions of a seventh-order HMG beam at different $z$ planes, (d)-(f) amplitude and phase distributions of the angular spectrum as a function of the normalized coordinates $\left(u / k_{t}, v / k_{t}\right)$.

Helical Mathieu-Gauss beams: experiment


Carlos López-Mariscal et al, "Observation of the experimental propagation properties of Helmholtz-Gauss beams," To be published in Opt. Eng. 2006

## Parabolic-Gauss beams

$$
\begin{aligned}
& W^{e}\left(\xi, \eta ; k_{t}\right)=\frac{\left|\Gamma_{1}\right|^{2}}{\pi \sqrt{2}} \mathrm{P}_{e}\left(\sqrt{2 k_{t}} \xi ; a\right) \mathrm{P}_{e}\left(\sqrt{2 k_{t}} \eta ;-a\right) \\
& W^{o}\left(\xi, \eta ; k_{t}\right)=\frac{\left|\Gamma_{1}\right|^{2}}{\pi \sqrt{2}} \mathrm{P}_{e}\left(\sqrt{2 k_{t}} \xi ; a\right) \mathrm{P}_{e}\left(\sqrt{2 k_{t}} \eta ;-a\right)
\end{aligned}
$$

## Field

$$
\begin{aligned}
\mathrm{PG}^{e}(\mathbf{r} ; a)= & \exp \left(-i \frac{k_{t}^{2}}{2 k} \frac{z}{\mu}\right) \mathrm{GB}(\mathbf{r}) \frac{\left|\Gamma_{1}\right|^{2}}{\pi \sqrt{2}} \\
& \mathrm{P}_{e}\left(\sqrt{2 k_{t} / \mu} \xi ; a\right) \mathrm{P}_{e}\left(\sqrt{2 k_{t} / \mu} \eta ;-a\right)
\end{aligned}
$$

## Spectrum

$$
\begin{aligned}
\mathfrak{P G}^{e}(u, v ; z)= & D(z) \exp \left(-\frac{\mu w_{0}^{2}}{4} \rho^{2}\right) \frac{\left|\Gamma_{1}\right|^{2}}{\pi \sqrt{2}} \\
& \mathrm{P}_{e}\left(\sqrt{-i k_{t} w_{0}^{2}} \widetilde{\xi} ; a\right) \mathrm{P}_{e}\left(\sqrt{-i k_{t} w_{0}^{2}} \widetilde{\eta} ;-a\right)
\end{aligned}
$$

Traveling Parabolic-Gauss beam $\operatorname{TPG}^{+}(\xi, \eta, z ; a=3)$


(d)

(e)

(f)

Fig. 7. (a)-(c) Transverse amplitude and phase distributions of a TPG beam with $a=3$ at different $z$ planes, (d)-(f) amplitude and phase distributions of the angular spectrum.

## Helical Parabolic-Gauss beams: experiment



Carlos López-Mariscal et al, "Observation of the experimental propagation properties of Helmholtz-Gauss beams," To be published in Opt. Eng. 2006

## Vector HzG beams

We introduce a general family of localized vector beam solutions of the Maxwell equations in the paraxial regime.

The family of solutions is constructed starting from the scalar solutions of the 2D Helmholtz equation, thus we refer to them as vector Helmholtz-Gauss (vHzG) beams.

The transverse fields appear naturally as solutions of the vector paraxial wave equation ( vPWE ) by applying the separation of variables method.

Under the appropriate limits, the vHzG beams reduce to the special cases of

- Scalar Helmholtz-Gauss beams [1,2,3]
- TE and TM Gaussian vector beams [4,5]
- Nondiffracting vector Bessel beams [6]
- Vector Bessel-Gauss beams [7]
- Propagating modes supported by waveguides and cavities with constant crosssection [8].


## Vector Paraxial wave equation

Consider the free space propagation of a monochromatic electromagnetic beam along the positive $z$ axis of a coordinate system $\mathbf{r}=\left(\mathbf{r}_{t}, z\right)$ where $\mathbf{r}_{t}=(\widehat{\mathbf{x}} x+\widehat{\mathbf{y}} y)$ is the transverse radius vector. The electric and magnetic fields are written as

$$
\mathbf{E}=\left(\mathbf{E}_{t}+\widehat{\mathbf{z}} E_{z}\right) \exp (i k z) \text { and } \mathbf{H}=\left(\mathbf{H}_{t}+\widehat{\mathbf{z}} H_{z}\right) \exp (i k z)
$$

From the perturbative series expansion of Maxwell equations provided by Lax et al., [PRA 11, 1365 (1975)] it is known that zeroth-order fields are purely transverse and satisfy the vector paraxial wave equation

$$
\left[\nabla_{t}^{2}+2 i k \frac{\partial}{\partial z}\right]\left\{\begin{array}{l}
\mathbf{E}_{t} \\
\mathbf{H}_{t}
\end{array}\right\}=0,
$$

where $\nabla_{t}=\widehat{\mathbf{x}} \partial / \partial x+\widehat{\mathbf{y}} \partial / \partial y$ is the transverse nabla operator. Lax expansion also showed that in next-order correction a small longitudinal field component must be present and its value is obtained from the transverse components through

$$
\left\{\begin{array}{l}
E_{z} \\
H_{z}
\end{array}\right\}=\frac{i}{k} \nabla_{t} \cdot\left\{\begin{array}{l}
\mathbf{E}_{t} \\
\mathbf{H}_{t}
\end{array}\right\} .
$$

Additionally, to be consistent with Maxwell equations, the transverse fields and the unit vector $\widehat{\mathbf{z}}$ are mutually perpendicular and satisfy

$$
\mathbf{H}_{t}=\left(\epsilon_{0} / \mu_{0}\right)^{1 / 2} \widehat{\mathbf{z}} \times \mathbf{E}_{t} .
$$

## Extracting the Gaussian envelope of the PWE

vPWE

$$
\left[\nabla_{t}^{2}+2 i k \frac{\partial}{\partial z}\right]\left\{\begin{array}{l}
\mathbf{E}_{t} \\
\mathbf{H}_{t}
\end{array}\right\}=0
$$

A rigorous analytical solution to the vPWE is obtained by writing

$$
\begin{equation*}
\mathbf{E}_{t}(\mathbf{r})=\mathbf{U}(X, Y, \zeta) \mathrm{G}(\mathbf{r}) \tag{5}
\end{equation*}
$$

where $(X, Y)=(x / \zeta, y / \zeta)$ are scaled Cartesian coordinates,

$$
\begin{align*}
& \zeta(z)=1+i z / z_{R}, \text { and } \\
& \mathrm{G}(\mathbf{r})=\frac{1}{\zeta} \exp \left(-\frac{r^{2}}{\zeta w_{0}^{2}}\right) \tag{6}
\end{align*}
$$

is the familiar Gaussian beam with waist size $w_{0}$, and Rayleigh range $z_{R}=k w_{0}^{2} / 2$. Inserting Eq. (5) into (2) produces the equation for U :
Reduced vPWE $\quad \nabla_{T}^{2} \mathbf{U}-\frac{4 \zeta^{2}}{w_{0}^{2}} \frac{\partial \mathbf{U}}{\partial \zeta}=0$,
where $\quad \nabla_{T}=\widehat{\mathbf{x}} \partial / \partial X+\widehat{\mathbf{y}} \partial / \partial Y \quad$ is the transverse nabla in the scaled coordinates

## Applying the separation of variables method

Equation (7) admits the separation of variables $\quad \mathbf{U}=\mathbf{\Psi}(X, Y) Z(\zeta)$
upon which we find that

$$
\begin{equation*}
Z(\zeta)=\exp \left(-i \frac{k_{t}^{2} z}{2 k \zeta}\right) \tag{8}
\end{equation*}
$$

where $k_{t}^{2}$ is the separation constant and $\Psi(X, Y)$ satisfies the 2 D vector Helmholtz equation

$$
\begin{equation*}
\nabla_{T}^{2} \boldsymbol{\Psi}+k_{t}^{2} \boldsymbol{\Psi}=0 \tag{9}
\end{equation*}
$$

Now Eq. (9) admits the two independent vector solutions of the form [J. A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941)]

$$
\begin{align*}
& \boldsymbol{\Psi}^{(1)}=\nabla_{T} W(X, Y),  \tag{10a}\\
& \boldsymbol{\Psi}^{(2)}=-\widehat{\mathbf{z}} \times \boldsymbol{\Psi}^{(1)}, \tag{10b}
\end{align*}
$$

where $W(X, Y)$ is a solution of the 2D scalar Helmholtz equation

$$
\begin{equation*}
\nabla_{T}^{2} W+k_{t}^{2} W=0 \tag{11}
\end{equation*}
$$

## Collecting the partial results

First class vector beam solution

$$
\begin{aligned}
\mathbf{E}_{t}^{(1)} & =Z(\zeta) \mathrm{G}(\mathbf{r}) \nabla_{T} W \\
E_{z}^{(1)} & =-\frac{i Z(\zeta) \mathrm{G}(\mathbf{r})}{\zeta}\left(\frac{k_{t}^{2}}{k} W+\frac{2}{k w_{0}} \nabla_{T} W \cdot \frac{\mathbf{r}_{t}}{w_{0}}\right), \\
\mathbf{H}_{t}^{(1)} & =\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} Z(\zeta) \mathrm{G}(\mathbf{r})\left(\widehat{\mathbf{z}} \times \nabla_{T} W\right), \\
H_{z}^{(1)} & =-\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \frac{2 i}{k w_{0}} \frac{Z(\zeta) \mathrm{G}(\mathbf{r})}{\zeta}\left(\widehat{\mathbf{z}} \times \nabla_{T} W\right) \cdot \frac{\mathbf{r}_{t}}{w_{0}},
\end{aligned}
$$

where $W(X, Y)$ is a solution of the 2D scalar Helmholtz equation

$$
\nabla_{T}^{2} W+k_{t}^{2} W=0
$$

M. A. Bandres and J. C. Gutiérrez-Vega, "Vector Helmholtz-Gauss and vector Laplace-Gauss beams," Opt. Lett., 30, 2155 (2005)

Collecting the partial results
Second class vector beam solution

$$
\begin{aligned}
\mathbf{E}_{t}^{(2)} & =-Z(\zeta) \mathrm{G}(\mathbf{r})\left(\widehat{\mathbf{z}} \times \nabla_{T} W\right), \\
E_{z}^{(2)} & =\frac{2 i}{k w_{0}} \frac{Z(\zeta) \mathrm{G}(\mathbf{r})}{\zeta}\left(\widehat{\mathbf{z}} \times \nabla_{T} W\right) \cdot \frac{\mathbf{r}_{t}}{w_{0}}, \\
\mathbf{H}_{t}^{(2)} & =\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} Z(\zeta) \mathrm{G}(\mathbf{r}) \nabla_{T} W \\
H_{z}^{(2)} & =-\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \frac{i Z(\zeta) \mathrm{G}(\mathbf{r})}{\zeta}\left(\frac{k_{t}^{2}}{k} W+\frac{2}{k w_{0}} \nabla_{T} W \cdot \frac{\mathbf{r}_{t}}{w_{0}}\right)
\end{aligned}
$$

where $W(X, Y)$ is a solution of the 2D scalar Helmholtz equation

$$
\nabla_{T}^{2} W+k_{t}^{2} W=0
$$

## Vector distributions for some families

The fundamental and orthogonal families of eigenfunctions of the 2D Helmholtz equation

Circular coordinates:
Vector Bessel-Gauss beams

$$
W=J_{m}\left(k_{t} r\right) \exp ( \pm i m \phi)
$$

Elliptic coordinates [9]:
Vector Mathieu-Gauss beams

$$
W=\mathrm{Je}_{m}(\xi, q) \mathrm{ce}_{m}(\eta, q)
$$

Parabolic coordinates [10]:
Vector Parabolic-Gauss beams

$$
W=\operatorname{Pe}\left(u \sqrt{2 k_{t}} ; a\right) \operatorname{Pe}\left(v \sqrt{2 k_{t}} ;-a\right)
$$


(a)

(c)

(e)

Parabolic-Gauss

(b)

(d)

(f)

## Special case: vector Bessel-Gauss beams

The first class vector beam solution

$$
\begin{aligned}
& \mathbf{E}_{t}^{(2)}=-Z(\zeta) \mathrm{G}(\mathbf{r})\left(\widehat{\mathbf{z}} \times \nabla_{T} W\right), \\
& E_{z}^{(2)}=\frac{2 i}{k w_{0}} \frac{Z(\zeta) \mathrm{G}(\mathbf{r})}{\zeta}\left(\widehat{\mathbf{z}} \times \nabla_{T} W\right) \cdot \frac{\mathbf{r}_{t}}{w_{0}}, \\
& \mathbf{H}_{t}^{(2)}=\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} Z(\zeta) \mathrm{G}(\mathbf{r}) \nabla_{T} W \\
& H_{z}^{(2)}=-\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \frac{i Z(\zeta) \mathrm{G}(\mathbf{r})}{\zeta}\left(\frac{k_{t}^{2}}{k} W+\frac{2}{k w_{0}} \nabla_{T} W \cdot \frac{\mathbf{r}_{t}}{w_{0}}\right)
\end{aligned}
$$

reduces to the Vector-beam solutions of Maxwell's wave equation found by:
D. G. Hall, "Vector-beam solutions of Maxwell's wave equation", Opt. Lett. 21, 9 (1996).
S. R. Seshadri, "Electromagnetic Gaussian beam", JOSA A, 15, 2712 (1998)
when circular cylindrical coordinates are used and

$$
W=J_{m}\left(k_{t} r\right) \exp ( \pm i m \phi)
$$

## Special case: Vector TM and TE nondiffracting beams

When the Gaussian beam size becomes very large ( $w_{0} \rightarrow \infty$ ) we have

$$
\begin{aligned}
& \mathbf{E}^{\mathrm{TM}}=\exp \left(i k_{z} z\right)\left(\nabla_{t} W-\widehat{\mathbf{z}} \frac{i k_{t}^{2}}{k} W\right), \\
& \mathbf{H}^{\mathrm{TM}}=\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \exp \left(i k_{z} z\right)\left(\widehat{\mathbf{z}} \times \nabla_{t} W\right), \\
& \mathbf{E}^{\mathrm{TE}}=-\exp \left(i k_{z} z\right)\left(\widehat{\mathbf{z}} \times \nabla_{t} W\right), \\
& \mathbf{H}^{\mathrm{TE}}=\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \exp \left(i k_{z} z\right)\left(\nabla_{t} W-\widehat{\mathbf{z}} \frac{i k_{t}^{2}}{k} W\right)
\end{aligned}
$$

These expressions reduce to the vector Bessel beams discussed by Z. Bouchal and M. Olivík, "Nondiffractive Bessel beams," J. Mod. Opt. 42, 1555 (1995) when circular cylindrical coordinates are used:

$$
W=J_{m}\left(k_{t} r\right) \exp ( \pm i m \phi)
$$

## Laplace-Gauss beams

The case when $k_{t}=0$ is important. From Eq. (7) we have $Z=1$, thus the function $\mathbf{U}=\boldsymbol{\Psi}(X, Y)$ depends only on the transverse coordinates ( $X, Y$ ). From Eq. (8) it is evident that $\Psi$ satisfies now the 2D vector Laplace equation $\nabla_{T}^{2} \Psi=0$, whose solutions are also given by Eqs. (9) where $W \rightarrow \bar{W}(X, Y)$ is now a solution of the scalar Laplace equation $\nabla_{T}^{2} \bar{W}=0$. Setting $k_{t}=0$ in Eqs. (11), the first-class vHzG beams reduce to

$$
\begin{aligned}
& \mathbf{E}_{t}^{(1)}=\mathrm{G}(\mathbf{r}) \nabla_{T} \bar{W} \\
& E_{z}^{(1)}=-\frac{2 i}{k w_{0}} \frac{\mathrm{G}(\mathbf{r})}{\zeta}\left(\nabla_{T} \bar{W} \cdot \frac{\mathbf{r}_{t}}{w_{0}}\right) \\
& \mathbf{H}_{t}^{(1)}=\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \mathrm{G}(\mathbf{r})\left(\widehat{\mathbf{z}} \times \nabla_{T} \bar{W}\right) \\
& H_{z}^{(1)}=-\sqrt{\frac{\epsilon_{0}}{\mu_{0}}} \frac{2 i}{k w_{0}} \frac{\mathrm{G}(\mathbf{r})}{\zeta}\left(\widehat{\mathbf{z}} \times \nabla_{T} \bar{W}\right) \cdot \frac{\mathbf{r}_{t}}{w_{0}}
\end{aligned}
$$

where $\bar{W}(X, Y)$ is a solution of the 2D scalar Laplace equation
M. A. Bandres and J. C. Gutiérrez-Vega, "Vector Helmholtz-Gauss and vector Laplace-Gauss beams," Opt. Lett., 30, 2155 (2005)

Thanks to my Nondiffracting collegues


Carlos López-Mariscal Tecnológico de Monterrey, México


Miguel A. Bandres
Tecnológico de Monterrey, México


[^3]
[^0]:    C. López-Mariscal, et al, "Production of high--order Bessel beams with a Mach--Zehnder interferometer," Appl. Opt. 43, 5060-5063 (2004)

[^1]:    J. C. Gutiérrez-Vega, et al., Am. J. Phys. 71 (3), 233-242, Mar. 2003
    J. C. Gutiérrez-Vega, et al., Rev. Mex. Fis., 47 (5), 480-488, Oct. 2001

[^2]:    C. López-Mariscal, "Observation of Parabolic nondiffracting wave fields," Opt. Express, 13, 2364 (2005)

[^3]:    Prof. Sabino Chávez-Cerda INAOE, México

