

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR.1738 - 19

WINTER COLLEGE on QUANTUM AND CLASSICAL ASPECTS of INFORMATION OPTICS

30 January - 10 February 2006

Free Space Quantum Cryptography

J.G. RARITY

Department of Electrical & electronic Engineering University of Bristol Bristol UK

Trieste lecture 2 Free Space Quantum Cryptography 7th Feb 2006 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk

LMU Munich University of Bristol University of Vienna QinetiQ HP labs Bristol

Overview

- Introduction to quantum cryptography
 - Faint pulse
 - Entangled state
- Experiments
 - Faint pulse
 - Heralded entangled photon
- Performance limits
- Future experiments

Bennett and Brassard 1984 Secure key exchange using quantum cryptography

Receivesno. BitPol.24614510040452134003245004765105698045

Entanglement and key exchange

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(H \rangle_{A} |H\rangle_{B} + |V\rangle_{A} |V\rangle_{B} \right)$$

= $\frac{1}{\sqrt{2}} \left(|45'\rangle_{A} |45'\rangle_{B} + |-45'\rangle_{A} |-45'\rangle_{B} \right)$

Previous faint pulse free space experiment over 23.4km

Kurtsiefer et al, (2002), Nature, 419, 450.

Entangled state/heralded single photon system

K. J. Resch, Optics Express 13, 202-9 (2005)

Miniature Bob detector unit:

Medium Bob (F5 optics)

Miniature Alice

Portable Crystal based entangled pair source

Transmission limitations of any system Background count error probability per pulse $P_{\rm b}=Bt/4$ (half lead to errors) The photo-count probability $P_{\rm p} = \mu T \eta /2 \qquad (BB84)$ μ = photons per bit (0.1 faint pulse, ~0.75 heralded) T = transmission (variable) h= efficiency of receiver (20%) *B*= background rate (~2000) *t*= gate width (~1ns)

Error rate (QBER)

$E=E_0+Bt/2\mu T\eta$

 E_0 is the technical error

QBER as a function of loss

Secret bit yields, after error correction and privacy amplification

Raw bit rate

$$K = 10^{-L/10} \mu \eta_B R$$

Number of sifted bits in time T

$$n_{rec} = KT / 2$$

Number of bits revealed in error correction [1]

$$n_E = n_{rec} (1 - E)$$
$$E = \varepsilon \left(\frac{7}{2} - \log_2(1 - \varepsilon) \right)$$

Every error could be a result of eavesdropping Information leakage [2]:

$$n_{leak} = n_{rec} \left(\log_2 \left(1 + 4\varepsilon - 4\varepsilon^2 \right) \right)$$

Final key length thus given by:

$$n_{fin} = n_{rec} - n_E - n_{leak} - n_s$$
$$= n_{rec} \left(E - \log_2 \left(1 + 4\varepsilon - 4\varepsilon^2 \right) \right) - n_s$$

 $n_{\rm s}$ = excess reduction to enhance security

For Poisson sources all multiphoton pulses are insecure

$$n_{fin} = n_{rec} a \left(E - \log_2 \left(1 + 4 \frac{\varepsilon}{a} - 4 \left(\frac{\varepsilon}{a} \right)^2 \right) \right) - n_s$$

 $a = \frac{e^{-\mu} \cdot \mu}{1 - e^{-\mu}}$ Is the fraction of pulses containing photons that contain only one

Infinite technology Eve

Multi-photon pulses are split and sent on through a loss free channel to Bob.

$$n_{fin} = n_{rec} b \left(E - \log_2 \left(1 + 4\frac{\varepsilon}{b} - 4\left(\frac{\varepsilon}{b}\right)^2 \right) \right) - n_s$$
$$b = 1 - \frac{(1-a)}{10^{-L/10}} \ \mu > 10^{-L/10} \ , b < 0$$

Eve can only get at >3 photon pulses

$$a' = a(1 + M/2)$$
 $b = 1 - \frac{(1 - a')}{4T}$

- 1. L. Tancevski, et al. Proc. SPIE, 3228, 322-331 (1997).
- 2. N. Lutkenhaus, Phys. Rev. A 59, 3301–3319 (1999).
- 3. G. Brassard, et alPhys.Rev.Letts, 85, pp1330-1333 (2000).

Expected Secret bit yields as a function of loss after error correction and privacy amplification

Atmospheric Transmission Windows for long range.

Chosen trial site:

- 1 The Observatorio del Roque de los Muchachos (Island of La Palma)
 - http://www.iac.es/gabinete/orm/indice.html
 - 2 The Observatorio del Teide (Island of Tenerife)

http://www.iac.es/ot/indice.html

The design and loss budget

- 10 MHz pulse rate, 0.1 photons/pulse
- Entangled source with >5.10⁶ pairs/sec (>100000/s locally)
- 700/810/850nm wavelength
- <20 µR beam divergence
- Diffraction spot <3 m diameter after 144 km
- Expect ~40 µR from turbulence + ~10 dB absorption/scatter
- Collection and atmospheric transmission, 25-35dB loss
- Aim for background counts <2000 cps/detector through 10nm filter at night

La Palma: Roque de los Muchachos

Overview of Roque with Tenerife in background

La Palma from Tenerife

Schuary 2005

Optical ground station Tenerife

Overview of Izana (Tenerife) site

OGS with mount Tiede in background

ExpEral of QuComms

ESA OGS 1 metre telescope (Bob)

Metrology:

- Cartesian distance OGS NOT : 143.630 km
- in position angle (North trough West) : 251°.
- Angle TNG-NOT-Teide: 123°.7 (vertex at NOT).
- Also possible Teide-OGS-La Palma (see TN4)

Coincident key generation at 1000km separations using satellite, also tests the non-locality of QM

Philosophical questions Non-locality of entangled photon pairs

Rarity: Science Perspective August 2003