

The Abdus Salam International Centre for Theoretical Physics

SMR.1738 - 21

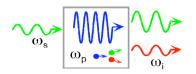
WINTER COLLEGE on QUANTUM AND CLASSICAL ASPECTS of INFORMATION OPTICS

30 January - 10 February 2006

Optical Communications and It's Quantum Limits

Prem KUMAR

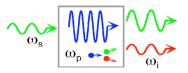
Dept.Elec.& Comp.Engineering Northwestern University 2145 N. Sheridan Road IL 60208-3118 Evanston USA



Optical Communications and It's Quantum Limits

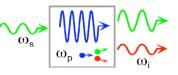
Prem Kumar Northwestern University

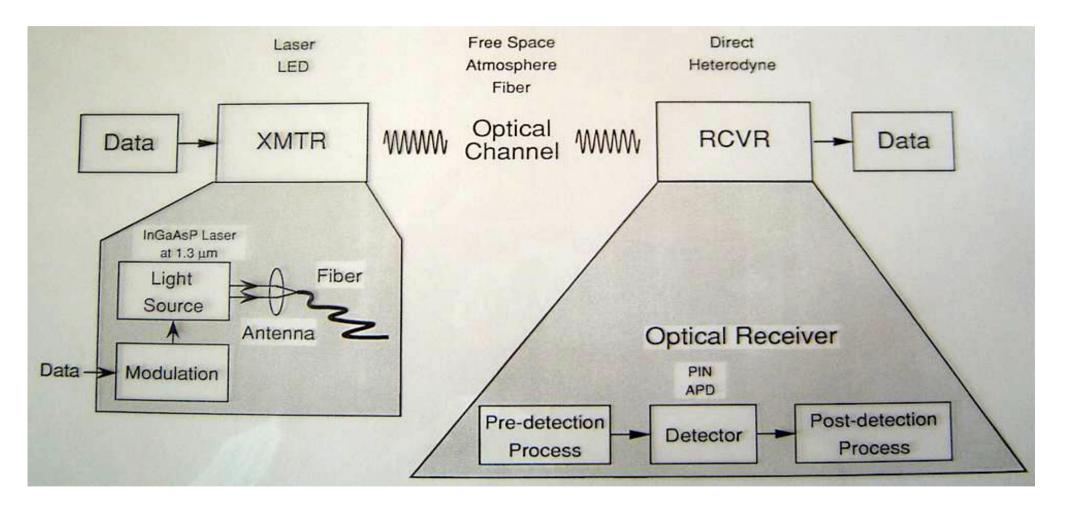
Winter College on Quantum and Classical Aspects of Information Optics ICTP, Trieste, Italy February 8, 2006



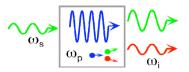
- Modern optical transmitters
- Optical receivers,
- Performance criteria,
- Quantum limits on optical communications
- Linear communication systems
- Nonlinear systems

A Generic Optical Communication System

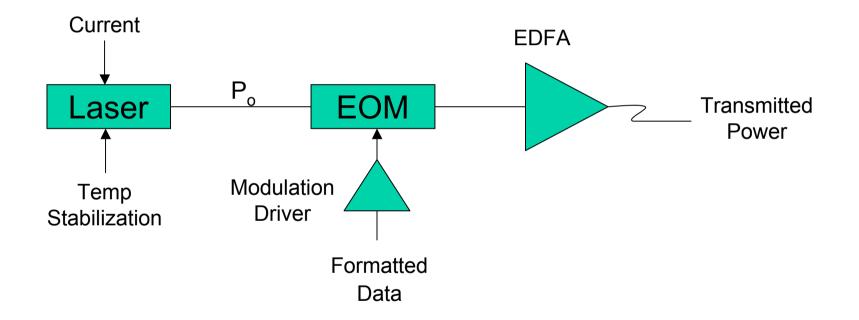




This is an old schematic, but now a days in most high-end fiber-optic systems the lasers are at 1.5 mm wavelength.

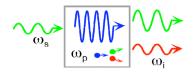


Transmitter (XMTR) Block Diagram



• Data format depends on whether the communication is binary or M'ary

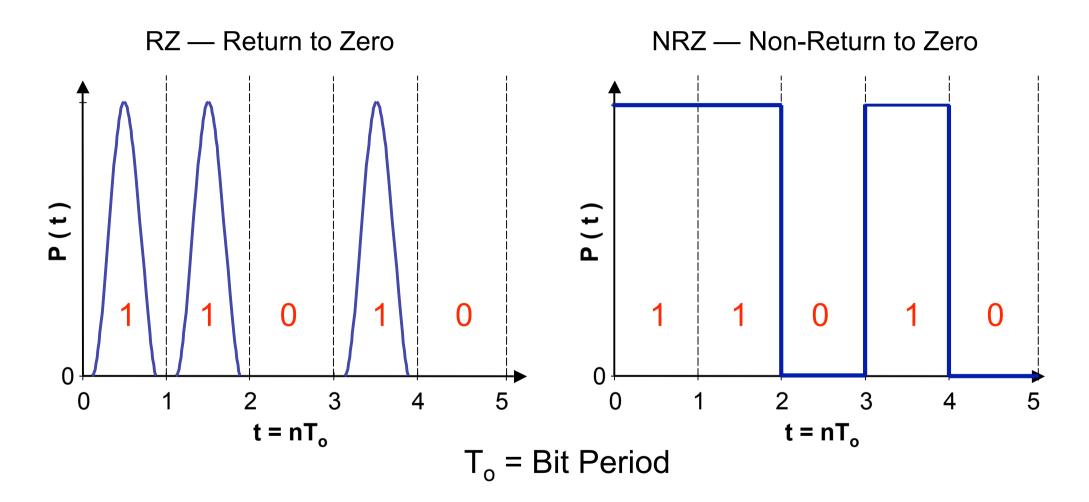
Binary vs. M'ary Data Formats



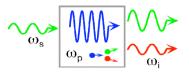
	Binary Communications	M'ary Communications
Decimal data	M = 1	M = 2
0	0000	00
1	0001	01
2	0010	02
3	0011	03
4	0100	10
5	0101	11
6	0110	12
7	0111	13
8	1000	20
9	1001	21
10	1010	22
11	1011	23
12	1100	30
13	1101	31
cation and Computing	1110	McCormick 32 000 of Engin

Center for Photonic Communication and Computing

McCormick School of Engineering and Applied Science



• NRZ requires less bandwidth compared to RZ, and hence is preferred.



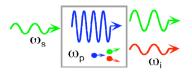
• Let the electric field of the lightwave be:

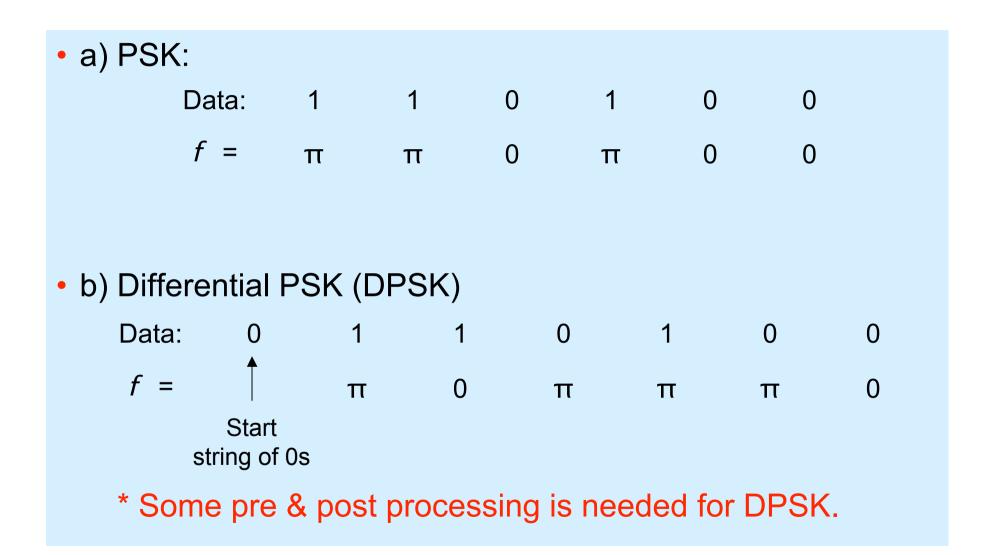
$$e(t) = \operatorname{Re}[\varepsilon(t)e^{-i\omega_0 t}]$$

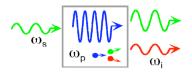
- Then the power carried by the lightwave is: $P(t) \propto \left| \varepsilon(t) \right|^2$
- The amplitude and phase are defined through:
 $$\begin{split} \varepsilon(t) = \sqrt{P(t)} \ e^{i\phi(t)} \\ \uparrow \end{split}$$

amplitude phase

PSK vs. Differential PSK







- Basically, a modern transmitter emits a certain amount of power over a • sequence of bit slots, which are encoded in the amplitude or the phase of laser light.
- The output of a well stabilized laser can be modeled as emitting a coherent state of light over the bit slot.

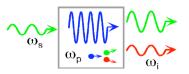
$$=\frac{P_{o}T_{o}}{h\nu_{o}}\equiv n$$

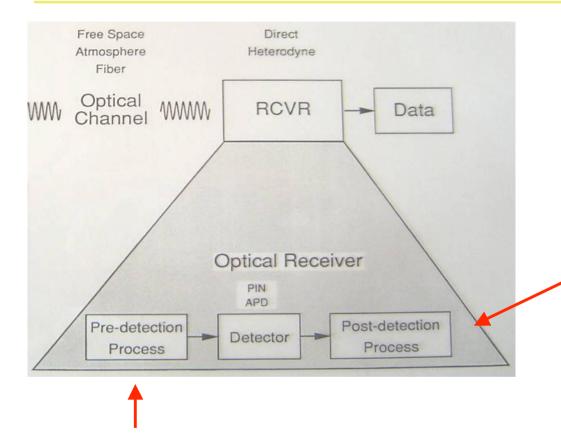
• # of photons/slot

$$\frac{1}{h\nu_{o}} \equiv n$$

- In a coherent state, photons are randomly distributed with Poisson law. $\ddot{A}n = \sqrt{n_o}$, with $\ddot{A}n = \left[\left\langle (n - n_o)^2 \right\rangle \right]^{1/2}$ Therefore, $\ddot{A}n\ddot{A}\phi \Box 1$
- From the Heisenberg uncertainty relation:

Modern Optical Receivers

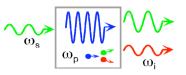




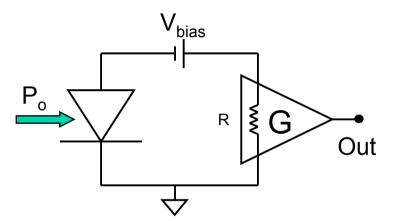
Mixing with a Local Oscillator (LO) as in Homodyne or Heterodyne detection, or delayed self-mixing as in a DPSK receiver This entails processing of detected photo current or voltage in some fashion prior to making a bit decision.

For example, decisions are made based on measured values of two successive time slots in DPSK encoded systems.

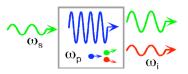
Signal-to-Noise Model of a Detector



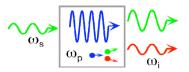
Receiver input end:



- Carrier Internal Pre-Generation Light Current Gain amplifier Output Shot Excess Dark Thermal Noise Current noise Noise • Photocurrent due to received power: $i_r = \frac{\eta P_r eG}{h\nu_0}.$ (3)• Shot Noise: $\langle i_n^2 \rangle = 2eG^2 i_r B.$ (4)Thermal Noise: $\langle i_{\rm th}^2 \rangle = \frac{4k_B T B}{B}.$ (5)The various symbols are defined on the next page.
- Main Photodetector Types: Si for $0.4 - 0.85 \,\mu \text{m}$ and InGaAs for $1.3 - 1.6 \,\mu \text{m}$.
 - PIN photodiode ($G = 1, \eta \simeq 0.9$),
 - avalanche photodiode or APD ($G \simeq 100, x \simeq 0.5, \eta \simeq 0.9$).



- P_r = received optical power,
- P_b = background light on the detector,
- B = electrical bandwidth of the receiver,
- G =photodetector gain,
- $I_d = \text{photodetector dark current},$
- η = quantum efficiency of the photodetector,
- x = photodetector excess-noise factor,
- $\nu_0 = c/\lambda = \text{center frequency of light},$
- R = input impedance of the preamplifier,
- T =photodetector temperature,
- h = Planck's constant,
- $k_B = \text{Boltzman's constant},$
- e = electron charge.



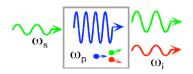
The carrier-to-noise ratio (CNR) is given by

$$CNR = \frac{(\eta P_r / h\nu_0 B)}{G^x [1 + (P_b + P_d) / P_r] + P_{\rm th} / P_r},$$
 (6)

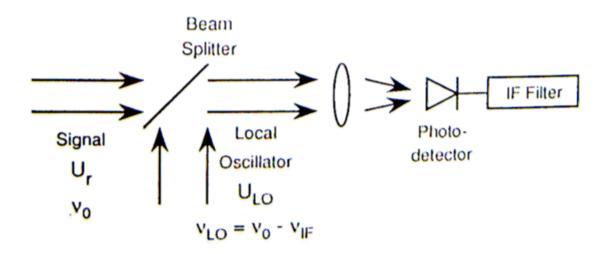
where the equivalent dark and thermal-noise powers are defined as

$$P_{d} \equiv \frac{h\nu_{0}}{\eta eG} I_{d}, \qquad (7)$$
$$P_{\rm th} \equiv \frac{2k_{B}T h\nu_{0}}{Re^{2}G^{2}\eta P_{r}}, \qquad (8)$$

• Quantum Limited CNR
$$=\frac{P_r}{h\nu_o B}=\frac{P_r T_o}{h\nu_o}\equiv n_o$$
, $B=1/T_o$

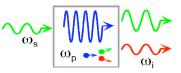


It is possible to obtain quantum-limited CNR without having large P_r or G. A local oscillator (LO) at the receiver provides the mixing gain.



$$P_{det} = \left| U_r + U_{LO} e^{-i\omega_{IF}t} \right|^2 = \left| U_r \right|^2 + \left| U_{LO} \right|^2 + 2U_r U_{LO} \cos\left(\omega_{IF}t + \phi\right)$$
$$= P_r + P_{LO} + 2\sqrt{P_r P_{LO}} \cos\left(\omega_{IF}t + \phi\right)$$

A radio-frequency filter in the receiver separates the IF photocurrent



• Mode-Matching Efficiency (MME):

Overlap of the signal and LO wave fronts at the photodetector is determined by the MME defined as

$$M = \iint_{A_d} dx \, dy \, U_r(x, y) \, U_{LO}^*(x, y)$$

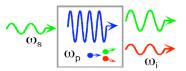
$$\leq 1. \tag{11}$$

• Heterodyne CNR:

For $P_{LO} \gg P_r$, $P_b + P_d$, and P_{th} , the heterodyne CNR is given by

$$SNR_{het} = \frac{\eta P_r}{h\nu_0} \frac{1}{B}.$$
 (12)

Thus, heterodyne detection achieves the quantum limited CNR. The price one pays is in the complexity of the system. A mode-matched LO is needed at the receiver.



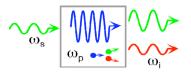
$$BER = EP \times BR \tag{13}$$

where EP = Error Probability, and BR = Bit Rate. Generally,

$$EP \simeq e^{-SNR}$$
. (14)

The actual EP depends upon the detection scheme and the modulation format.

$$EP = Pr(0) \times Pr(1|0) + Pr(1) \times Pr(0|1)$$
$$= \frac{1}{2} [Pr(1|0) + Pr(0|1)], \text{ for equally-likely binary}$$



- Using OOK and direct detection,

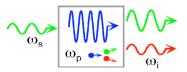
$$BER = BR \times e^{-\eta P_r T/h\nu_0}$$
$$= BR \times e^{-n_r}.$$
(15)

Here T is the bit duration and n_r is the number of photons detected during the bit duration. A minimum of 21 photons is needed to achieve an error probability of 10^{-9} .

- Using OOK and heterodyne detection,

$$BER = BR \times e^{-\eta P_r T/4h\nu_0}$$
$$= BR \times e^{-n_r/4}.$$
 (16)

In this case, a minimum of 84 photons is needed to achieve an error probability of 10^{-9} .



- Linear systems employing erbium-doped fiber amplifiers
 - Many wavelength channels are multiplexed
 - ITU frequency/wavelength grid defines channel spacing of 100 GHz, although many systems run channels 50 GHz apart
 - 10 Gbps data rate on each channel, one fiber can carry several terabits per second of data
 - Data signals are periodically amplified to overcome loss due to propagation in the fiber (generally every 80 km or so)
 - ASE (amplified spontaneous emission) from the amplifiers is equivalent to background light on the receiver
 - In multiplexed systems, fiber nonlinearity causes cross-talk penalties, and sets a limit on how far signals can propagate
 - 5 Mm terrestrial systems and 10 Mm submarine systems have been demonstrated