

The Abdus Salam International Centre for Theoretical Physics

SMR.1738 - 27

WINTER COLLEGE on QUANTUM AND CLASSICAL ASPECTS of INFORMATION OPTICS

30 January - 10 February 2006

AMO realizations

Drawing on work from the EU QBITS and QGATES Networks

(First Part)

Peter KNIGHT

Imperial College of Science, Technology and Medicine the Blackett Laboratory - Optics Section Prince Consort Road SW7 2BW London United Kingdom Lecture 1: AMO realizations Trieste Winter School, February 2006

> Peter Knight Imperial College London Drawing on work from the EU QBITS and QGATES Networks

Coverage in this set of lectures

• Section 1

- Basics of quantum gates etc
- AMO realizations
- DiVincenzo criteria
- Section 2: Ions

• Section 3: atoms, lattices and chips

- Cold atoms
- Optical lattices
- Mott transition
- Atom chips and decoherence

Moore's Law: Growth in chips and shrinking space. What when/if get to one electron/gate?

Computation = physical process

Hardware obeys the laws of physicsbut nature is quantum mechanical

So what would a quantum computer look like?

"Computers of the future may weigh no more than 1.5 tons"

Popular mechanics, 1949!

Quantum Computing History

Initial Ideas - quantum more powerful than classical Benioff - 1982, Feynman - 1984

Quantum Parallelism - *oracles, Hadamards...* Deutsch-Jozsa (92)/ Bernstein-Vazirani (93) / Simon (93)

Quantum Factoring- *explosion of interest* Shor (94)

Implementations- *hardware, gates, decoherence* Cirac-Zoller (94) Wineland, Kimble, Haroche, Hughes, Blatt,....

Error Correction- *the conquest of decoherence* Shor, Steane

Pioneers:

1.Deutsch: basic ideas, parallelism, first quantum algorithms2.Shor: factorisation algorithm, error correction3.Steane: error correction

Complexity and tractable problems

I/P size ~ amount of info in bits needed to specify I/P

Then evaluate number of steps needed as f(size)

Polynomial: tractable, complexity class "P"
Non-polynomial: difficult to prove, easy to verify, complexity class NP
Exponential: intractable, complexity class E

David Deutsch PRS A400, 97(1985) M changes this

Qubits & Quantum Registers

Quantum Logic I

Define a quantum XOR => Quantum **CNOT** gate

State 1	State 2	Out 1	Out 2
10>	0>	10>	0>
10>	1>	10>	11>
1>	10>	11>	11>
1>	1>	11>	10>

Looks the same as before! Differences? Diffe

Map superpositions of states into entangled states!

$$(|0>+|1>)|0> \rightarrow |00>+|11>$$

Quantum Logic II

We need gates that make quantum superpositions.

The Hadamard gate

H|0> → (|0> + |1>) /
$$\sqrt{2}$$

H|1> → (|0> - |1>) / $\sqrt{2}$

General single qubit rotations

$$0 \rightarrow \cos x |0\rangle + \exp(iy) \sin x |1\rangle$$
$$1 \rightarrow -\sin x |0\rangle + \exp(-iy) \cos x |1\rangle$$

Quantum Logic I: one-bit Hadamard Gates

Consider a k-bit string: $|0\rangle|0\rangle$ $|0\rangle$ Apply one bit (Hadamard) rotation S to each bit

But entangle? 2 qubit tensor product not same as two classical strings each in superposition

Quantum Logic III

Make entanglement

Measure entanglement

Controlled NOT

 $|0><0|\otimes 1+|1><1|\otimes \sigma_x$

Controlled NOT as entangler

Quantum Logic IV

Want a quantum processor to compute function F(x)!

Have state |x> of many qubits which represents number x in binary notation (Example: |1>|1>|1>=|11> represents 7!)

Wish U|x> = |F(x)> ! BUT that's not always unitary.

Make Computation reversible:

|x>|0> $\langle x>|F(x)>$

There is a unitary operation that implements this for any x!

Reversible Quantum Computation

Dual registers and possible outputs

Each input x \implies |x>, quantum state of first register

Each possible output $y=f(x) \implies >$, quantum state of 2nd register

Function evaluation determined by unitary U acting on both registers

 $U_{f} | x > | 0 > = | x > | f(x) >$

Eg|00>+|01>+...f(x)=x+1|01>+|10>+...many
inputsone
computnmany
results

Prepare superposition of inputs, run computation U just once and get all 2^m output values f(0), f(1),f(-12)^m but can you read them all? One measurement: look for global property...

Quantum Computation

N-level system (unary representation) can also have 2^n states but needs 2^{E} energy and cannot always get fast access (eg sho.....)

See Seth Lloyd quant-ph/9903057 for discussion of role of entanglement. Also recent wavepacket experiments of Bucksbaum..

Quantum Networks

Applications & Algorithms

- 1 Deutsch-Jozsa Algorithm
- **2 Shor Factorization**
- **3 Grover Search**
- 4 Lloyd/Feynman Quantum Simulation
- 5 Wineland/Huelga Frequency Standards

Factoring and Data Security

• Factoring number N of L digits takes time ~ 10^{II}

For T=400, execution time ~ 10^{17} sec onds Value of function 10^{17} sec onds

Quantum Computer could take seconds data security problems

Quantum Parallelism: preserve phases, no decoherence

Initial state, superpositions of classical inputs

Final state, superposition of corresponding outputs

Requirements: DiVincenzo Checklist

- 1. State Space Control Identify qubits, addressable, scalable
- 2. Cold States Accurate preparation of initial conditions
- 3. Isolation Fidelity $1 - f = 1 - \langle \psi | \rho | \psi \rangle \sim 10^{-4}$
- 4. Controlled Time Evolution
- 5. Projective State Measurements Possible

Error correction?

Encode logical bits using set of bits: eg 3 bit code $|0\rangle \Rightarrow (|0\rangle + |1\rangle)(|0\rangle + |1\rangle)(|0\rangle + |1\rangle) = |\tilde{0}\tilde{0}\tilde{0}\rangle$ $|1\rangle \Rightarrow (|0\rangle - |1\rangle)(|0\rangle - |1\rangle)(|0\rangle - |1\rangle) = |\tilde{1}\tilde{1}\tilde{1}\rangle$

Phase error in normal basis = amplitude error in tilda basis

$$\boldsymbol{\sigma}_{z}\left[|\tilde{0}\rangle\right] = |\tilde{1}\rangle \qquad \boldsymbol{\sigma}_{z}\left[|\tilde{1}\rangle\right] = |\tilde{0}\rangle$$

detect 100 in tilda basis - know there was phase error in first qubit. Proper error correction will need \sim 5 bit codes

Successes?

- 1. Ions Qubit gates: Wineland
- 2. Atoms-PhotonsLarge Phase Shifts: Kimble3. Photon-Photon
- Nonlinear Phase Shifts? Franson

4. NMR

Deutsch-Jozsa algorithm realized Grover search algorithm realized Three Qubit error correction realized

Munro et al

Approach	Qubit	Preparation	Decoherence	Gates	Measurement	What has been done?
Linear optics	Photon polarization or dual rail	Photons from down-conversion	Photon loss in fibres	Photon bunching, measurement	Photo-detectors	CNOT gate between two qubits
Non-linear optics	Photon polarization or dual rail	Photons from down-conversion	Photon loss in fibres, dephasing in atomic systems	Photons interact through atomic systems	Photo-detectors	EIT seen in certain atomic systems for classical fields
Continuous variables	Qunat encoded in quadratures of coherent light pulse	Weak coherent light source or vacuum	Photon loss in fibres	Non-linear medium giving Hamiltonians polynomial in quadrature operators	Homodyne or heterodyne detection	Teleportation of a continuous variable
lons in traps	Energy levels of ion	Optical pumping and laser cooling	Fluctuating fields, level lifetimes	Collective vibrations and external lasers	Resonance fluorescence	Deutsch-Jozsa algorithm and teleportation
Neutral atoms in optical lattices	Energy levels or motional states of atom	Optical pumping and laser cooling	Fluctuating fields, level lifetimes	Dipole-dipole coupling or collisions	Resonance fluorescence	Mott transition loading of a lattice

Ion experiments

Ion trap (Oxford)

7 trapped ions (Innsbruck)

NMR experiments: computing within a molecule

Cory et al; Gershenfeld & Chuang; Jones et al - Cytosine:

Liquid State NMR & Quantum Computation

Experimental Quantum Error Correction: D. Cory et al. PRL81,2152,1998

Complete Quantum Teleportation Nielsen, Knill & Laflamme, Nature 396, 52, 1998

Further reading

- 1. Barenco, Cont Phys 37, 375 '96
- 2. Bennett, Phys Today 48, 24, Oct 95
- 3. Steane Rep Prog Phys 61, 117 (98)
- 4. Zeilinger, Physics World March 98, 35
- 5. Phoenix&Townsend Cont Phys36,165 '95
- 6. Hughes et al Cont Phys 36, 149 '95
- 7. Vedral& Plenio Cont Phys 39, 431 '96
- 8. Vedral & Plenio Prog Qu El 22, 1 '98
- 9. Haroche, Phys Today, July '98 p36
- 10. More each day in quant-ph!!