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Coverage in this set of lectures

• Section 1
– Basics of quantum gates etc
– AMO realizations
– DiVincenzo criteria

• Section 2: Ions

• Section 3: atoms, lattices and chips
– Cold atoms
– Optical lattices
– Mott transition
– Atom chips and decoherence



Moore’s Law: Growth in chips and shrinking
space. What when/if get to one electron/gate?



Computation = physical process

Hardware obeys the laws of physics-
but nature is quantum mechanical

So what would a quantum computer
look like?

“Computers of the future may weigh no more than 1.5 tons”

Popular mechanics, 1949!



Quantum Computing History

Initial Ideas - quantum more powerful than classical
Benioff - 1982, Feynman - 1984

Quantum Parallelism - oracles, Hadamards...
Deutsch-Jozsa (92)/ Bernstein-Vazirani (93) / Simon (93)

Quantum Factoring- explosion of interest
Shor (94)

Implementations- hardware, gates, decoherence
Cirac-Zoller (94)
Wineland, Kimble, Haroche, Hughes, Blatt,….

Error Correction- the conquest of decoherence
Shor, Steane

Quantum Computing History



David Deutsch Peter Shor Andy Steane

Pioneers:
1.Deutsch: basic ideas, parallelism, first quantum algorithms
2.Shor: factorisation algorithm, error correction
3.Steane: error correction



Complexity and tractable problems

 Polynomial: tractable, complexity class “P”

 Non-polynomial: difficult to prove, easy to
verify, complexity class NP

 Exponential: intractable, complexity class E

exp(L)

L
n

Number
of steps

size L

I/P size ~ amount of info in 
bits needed to specify I/P

Then evaluate number of
steps needed as f(size)

David Deutsch PRS A400, 97(1985)             QM changes this



Qubits & Quantum Registers

0 or 1 0 or 1 or    0   1

Classical Bit Quantum Bit

Classical register Quantum register

101 000  001  010  011
100  101  110  111  



Quantum Logic I

 Define a quantum XOR  =>  Quantum CNOT gate

  |0>  |1>  |1>  |1>

  |1>  |1>  |0>  |1>

  |1>  |0>  |1>  |0>

  |0>  |0>  |0>  |0>

  Out 2  Out 1State 2State 1
  Looks the same as before!

              Differences?

Map superpositions of states into entangled states!

              (|0> + |1>) |0>    |00> + |11>

Basic input |0> and |1>
unit called    qubit

Quantum Mechanics allows
for superpositions of states!



Quantum Logic II

We need gates that make quantum superpositions.

  The Hadamard gate

H|0>  (|0> + |1>) / 2

H|1>  (|0> - |1>) / 2
H

General single qubit rotations

|0>         cos x |0>  + exp(iy)  sin x  |1>
|1>        -sin x |0>  + exp(-iy) cos x |1>



Quantum Logic I: one-bit Hadamard Gates

Consider a k-bit string:
Apply one bit (Hadamard)
rotation S to each bit

But entangle? 2 qubit tensor product not same as two classical
strings each in superposition

| 0! | 0!...... | 0!

S = (1/ 2 )
1 !1

1 1

" 

# $ 
% 

& ' 

(
! k / 2
2 )(| 0"+ | 1")(|0"+ | 1")....(| 0"+ | 1")

= (
! k / 2

2 ) | i"
i

# sum over all               k-bit strings
k

2



Quantum Logic III

Make entanglement

Measure entanglement

H
|00> + |11>

|0>

|0>

H|0>

|0>
|00> + |11>

>>>!> 0|1|11|00| a

>>>!>

>>>+>

1|1|10|01|

1|0|10|01|

a

a



Controlled NOT

0

do nothing

CONTROL TARGET

1 swap states

| 0 >< 0 |!1+ | 1 ><1|!"
x



Controlled NOT as entangler

Superpositions                entangled states

(a | 0! + b | 1!) | 0!" a | 00! + b | 11!

| 00!

| 01!

| 10!

|11!

| 00!

| 01!

|11!

| 10!
CNOT

Truth table for CNOT

A

B

A control

A    B  target

3 CNOTs swap



Quantum Logic IV

Want a quantum processor to compute function F(x)!
 

Have state |x> of many qubits which represents number x in 
binary notation (Example: |1>|1>|1> = |111> represents 7!)

Wish        U|x> = |F(x)>  !   BUT that’s not always unitary.

Make Computation reversible:
                                 |x>|0>               |x>|F(x)>

There is a unitary operation that implements this for any x!    

000 
001
010
011
100
101
110
111

F(000)
F(001)
F(010)
F(011)
F(100)
F(101)
F(110)
F(111)

F (x)

Quantum

Processor



Reversible Quantum Computation

*classical
0! f (0);1! f (1)

x = 00001001

and

f (x) = x +1

" x = 00001010

one input

one computation

one result

*quantum Computation is unitary, reversible

| x >!>| f (x) >
:if f is not a 1:1 mapping, ie if f(x)=f(y) for some x 
not equal to y, then 2 orthogonal kets |x>, |y> can
be evolved into same ket |f(x)>=|f(y)> and so violate
unitarity! Need 2 registers!



Dual registers and possible outputs

Each input x         |x>, quantum state of first register

Each possible output y=f(x)      |y>, quantum state of 2nd register

Function evaluation determined by unitary U acting on both registers

Uf | x >| 0 >=| x > | f (x) >

Eg  |00>+|01>+…      f(x)=x+1           |01>+|10>+...

many
inputs

one
computn

many
results

Prepare superposition of inputs, run computation U just once
and get all     output values f(0), f(1), ….f(    -1): but can you
 read them all? One measurement: look for global property...

2
m

2
m



Quantum Computation

Quantum processor
computing function

F(x)

x x

0 F x( )

|!
IN
>= | x > | 0 >"|!

OUT
>= | x >| F(x) >

x
#

x
#



Qubits and resources

+ + …N

N 2-level systems:uses nE energy in n

2 states

N-level system (unary representation) can also have
states but needs     E energy and cannot always get fast access (eg
sho……)

See Seth Lloyd quant-ph/9903057 for discussion of role of entanglement.
Also recent wavepacket experiments of Bucksbaum..

n

2
n

2



Quantum Networks

000 
001
010
011
100
101
110
111

F(000)
F(001)
F(010)
F(011)
F(100)
F(101)
F(110)
F(111)

F (x)

Quantum

Processor

Quantum logic gatesINPUT OUTPUT



Applications &Algorithms

1 Deutsch-Jozsa Algorithm

2 Shor Factorization

3 Grover Search

4 Lloyd/Feynman Quantum Simulation

5 Wineland/Huelga Frequency Standards



Factoring and Data Security

 Factoring number N of L digits takes time ~
10

L

For L=400, execution time ~ 
10

20 seconds

Age of Universe ~
10

17

sec onds

Quantum Computer could take seconds
  data security problems



Quantum Parallelism: preserve phases,
no decoherence

Initial state,
superpositions
of classical inputs

Final state,
superposition of
corresponding outputs

|! IN >= | x > | 0 >"|! OUT >= | x >| F(x) >x#x#



Requirements: DiVincenzo
Checklist

1. State Space Control
Identify qubits, addressable, scalable  

2. Cold States
Accurate preparation of initial conditions

3. Isolation
Fidelity

4. Controlled Time Evolution

5. Projective State Measurements Possible

1! f =1!"# $# %~ !4
10



Error correction?

Encode logical bits using set of bits: eg 3 bit code

  | 0!" (| 0!+ | 1!)(| 0!+ | 1!)(| 0!+ | 1!) = | ˜ 0 ̃  0 
( 
0 !

|1!" (| 0!# | 1!)(| 0!# | 1!)(|0!# | 1!) = | ˜ 1 ̃  1 ̃  1 !

Phase error in  normal basis = amplitude error in tilda basis

detect 100 in tilda basis - know there was phase error in
first qubit. Proper error correction will need ~ 5 bit codes

z! | ˜ 0 "[ ] =| ˜ 1 "
z! | ˜ 1 "[ ] = | ˜ 0 "



 Successes?

1. Ions
 Qubit gates: Wineland

2. Atoms-Photons
Large Phase Shifts: Kimble

3. Photon-Photon
Nonlinear Phase Shifts? Franson 

4. NMR
Deutsch-Jozsa algorithm realized
Grover search algorithm realized
Three Qubit error correction realized



Munro et al



Ion experiments

Ion trap
(Oxford)

7 trapped ions (Innsbruck)



NMR experiments: computing within a
molecule

Cory et al;
Gershenfeld & Chuang;
Jones et al - Cytosine:





Further reading
1. Barenco, Cont Phys 37, 375 ‘96

2. Bennett, Phys Today 48, 24, Oct 95

3. Steane Rep Prog Phys 61, 117 (98)

4. Zeilinger, Physics World March 98, 35

5. Phoenix&Townsend Cont Phys36,165 ‘95

6. Hughes et al Cont Phys 36, 149 ‘95

7. Vedral& Plenio Cont Phys 39, 431 ‘96

8. Vedral & Plenio Prog Qu El 22, 1 ‘98

9. Haroche, Phys Today, July ‘98 p36
10. More each day in quant-ph!!


