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* Fiber nonlinearity for quantum communication
- Entanglement generation in fibers
* Quantum cryptography with fiber systems

- Keyed communication in quantum noise.

— Cryptographic objective: direct data encryption

— Cryptographic objective: key generation
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Our Motivation for Using Fibers | i A
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 Realistic long-distance quantum communication must
integrate with existing optical-fiber networks

- Fiber offers several advantages over c(2):

— Excellent modal purity, highly desirable for schemes requiring
multiple quantum interactions

— Possible to wavelength multiplex several entangled channels
on existing fiber plant

— Avoids coupling photons from ¢ crystals into fiber

— Long interaction lengths possible, owing to high quality of
commonly available optical fibers

- Side benefit: Allowing us to investigate fundamental
limits of practical optical communication technology
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Sharping et al., Opt. Lett. 26, 1048 (2001)
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Coincidence Counting Results ol S s
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* We tested the
parametric
fluorescence at the

* The counted photon
number depends
on the
injected pump
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Fiorentino, Voss, Sharping,
and Kumar,
IEEE Photon. Technol. Lett.
14, 983 (2002)

* We measure coincidences for signal and idler photons generated by one

pump pulse

» Coincidence rate is greater than that measured for two adjacent pulses
* The latter fit well with the theory for two independent pump sources
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How do we create
Polarization Entanglement?

Isotropic nature of Kerr nonlinearity gives

HHY)Y or |VV)

How to get:

H H)=e
V2
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Fiber Source of Polarization-Entangled
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Quantum Memory and Distribution of o T
Polarization-Entangled Photons
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What is the cause and nature
of the observed background photons?

Evidence from the excess noise figure of

fiber-optical parametric amplifiers being

developed for telecom systems suggests
the reason to be the Raman effect.
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Nonlinear Optics in Fiber o WL
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An Example of a PIA @, -3 [N
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Voss and Kumar, “Raman-noise induced noise-figure limit for ¢
parametric amplifiers,” Optics Letters, Vol. 29, 2004, pp. 445—-447.

 Addition of Raman noise can be treated analytically

()1,
ca1(2) T + c(2) 1>

Excess noise
terms due to
Raman effect

=~ ("

a,z) = p(z)a,0)+vyz)a
0.(2) = pa(2) a,(0) + v, (2) @ N

« Matches PIA noise figure data with no fitting parameters

25 v l 55 T T T T T T T
PIA with Raman excess noise DSF
§ 5 Need to look ]
([) —_—
s 2 ) closer to pump
© © 4.5 wavelength
- Ideal PIA S
~ (@)
o .
S o 4
1.5 2
.3 Data from =
2 Voss, Tang, and Kumar, 3.5
OL 2003.
1' . - . 3 I I | | ! | |
0 S 10 15 > 15 1 05 0 05 1 15 2
Gain (Linear Scale) Frequency Shift (Hz) « 10"

Center for Photonic Communication and Computing McCormick School of Engineering and Applied Science



Correlated Photon Pairs with Low Background > WV v~
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Stokes — ntl Bose Population |7 = Ry
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Observation of High Purity Entanglement Q{)"}{[ AV
Average visibility > 98%; meets the ARDA roadmap criteria
120 b
e % & ‘ 3610°s d Vieiblity = 38 3%
I (',;OO I signal s 10t ; o oo isibility = 98.3%
IdIOO * % | ..oo..OOOQ. ] g n ‘ ‘
c . jeswta | O
n - P00 idler 1210* I_ . Ciooo |- """""""" o """ 7
i 80 - €400 | """ "ann LE L L L e T i e L ® .
- d 1510%q - f s . ; . e Bececee
0 L |300 [ | 4 800 , ,,,,,,,,,,,,,,,, . ,,,,,,, ®_ ‘ ,,,,,,,,,,,,,,, ,,,,,,, |
c | c 1110* o | 0 | | | ; |
rP00 - ° | | | |
(o e
0 I %E Co 0 50 100 150 200 g | : 0 I 777777777777777777777777777777777 7777777 |
i 40 " Relative Angles U | M n
t % . || n . 400 R S L |
I t ] i | | |
; I ? 29,8 = TIK s /
20 & ot E = 195K | 200 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _—
T T R I S G T | | |
T °° ° ®er e 5 - a | . 3
ol . |  300K", | | 0 M 0 ergrmem g S B orrer®
0 0.001 0.002 0.003 0.004 ©.00 0 2 4 6 10
Single Counts/Pulse . No of Trials
o

Presented as a postdeadline paper to FiO’2005, Tucson, AZ
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Public Communication i

Bob

The telecom band (around 1550 nm) polarization entangled photon pair source delivers photon
a to Alice and photon b to Bob.

The auxiliary DFB laser light is chopped into pulses which do not overlap with photon a and
photon b in time. Its wavelength is several nm away from photons a and b.

The endless polarization controllers compensate the polarization

fluctuations by monitoring the polarization state of the auxiliary light.
Alice and Bob’s polarization modulators (their principle axis are 45° to the system’s principle

axis) apply the modulation according to randomly chosen measurement bases.
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Data Encryption with the BB84 / Ekert ~ >
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* Protocols allow two parties to remotely agree on a string of
binary random numbers known only to each other (a
cryptographic key)

* The parties use the key either with mathematical encryption
algorithms such as 3DES or AES or with Vernam Cipher
(one-time pad)

* Mathematical encryption algorithms are not proven to be
secure and may have difficulty keeping up with the data
rates on high-speed optical networks

* One-time pad is proven to be information theoretically
secure on public channels, but it requires one key bit for

Bes\t/ rg cilt t?otggt? dzabtka ra% ~1kbe¥ gelgaetra g?a{.\%teew 02Mbps-km
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M agreed-upon

bases Alice and Bob use
choices with a short secret key
M >>+In Alice S Bob Use of secret key
unveils the shroud
n = number of * for Bob

photons Irreducible Quantum noise protects
per bit data from Eve

Bits shrouded in
quantum-noise
of light
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Quantum Data Encryption gQDE) Protocol = | W -
| want to thank the organizers for inviting me to speak before this distinguish&d™=-| "

audience at Frontiers in Optics 2004 in Rochester, New York. (1136 bits)

C shits De— kK T— T shits D
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P w;u)> _ aei6m>
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BPSK logical encoding:
{MM,VV }% L1 {uv,v,u }% LO

E. Corndorf, G. Barbosa, C, Liang, H. Yuen, and P. Kumar, Optics Letters 28, 2040 (2003); CLEO’04 postdeadline paper.
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Bob’s and Eve’s Eye Patterns, 200km o] W s

500ps/div 500ps/div

« 200km in-line amplified line  Eve located at source (Alice)
* 650Mbps data rate « Simulated by Bob with incorrect
. 215.bjt PRBS secret key

- Eve’s PDF is uniform
* Bursty, not streaming!

- M= 2,047
« -25dBm (~40,000 ph/bit) at launch

E. Corndorf, G. Kanter, C. Liang, and P. Kumar, * No CIOCk recovery,
CLEO’04 postdeadline paper; to appear in PTL. common ClOCk!
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622 Mbps Streaming System | ke A
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Data encryption/transmission layer
/

¥

All optical
network

Quantum
data encryption

Quantum
data encryption
A

Fast (GHz)

QKG Alice --------------- ‘-‘ ---------- ,-, ----------------------- QKG Bob
Quantum” channel

Classical channel

Slow (Hz)

Key server layer: /

» With proposed satellite up-down link

 Potentially 100-200 km apart with KCQ or fiber generated entanglement
(recent NU work) using BB84 type protocols
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