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Topics for Lecture 3

• Fiber nonlinearity for quantum communication

• Entanglement generation in fibers

• Quantum cryptography with fiber systems

• Keyed communication in quantum noise.

– Cryptographic objective: direct data encryption

– Cryptographic objective: key generation
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Our Motivation for Using Fibers

• Realistic long-distance quantum communication must
integrate with existing optical-fiber networks

• Fiber offers several advantages over c (2):
– Excellent modal purity, highly desirable for schemes requiring

multiple quantum interactions

– Possible to wavelength multiplex several entangled channels
on existing fiber plant

– Avoids coupling photons from c (2) crystals into fiber

– Long interaction lengths possible, owing to high quality of
commonly available optical fibers

• Side benefit: Allowing us to investigate fundamental
limits of practical optical communication technology
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• FWM is nondegenerate optical
parametric amplification (OPA),
as in c (2)  crystals

• Signal and idler photons are
created in pairs

• They should exhibit
entanglement properties similar
to signal and idler photons
created in c (2) parametric down-
conversion

Quantum Mechanically:

Four-Wave Mixing and Parametric
Fluorescence in Optical Fiber
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Photon Counting of Parametric Fluorescence

Double
Grating
Filter

• Pump pulse contains ~108

photons

• Interested in detecting 0.01

photons / pulse

• Therefore, 100 dB rejection of

pump photons is required

• > 30dB rejection by Sagnac loop

helps a great deal
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Coincidence Counting Results

Accidental 
Coincidences

• We tested the
parametric
fluorescence at the
single photon level

• The counted photon
number depends
quadratically on the
injected pump
photon number

Fiorentino, Voss, Sharping,
and Kumar,
IEEE Photon. Technol. Lett.
14, 983 (2002)

• We measure coincidences for signal and idler photons generated by one
pump pulse

• Coincidence rate is greater than that measured for two adjacent pulses

• The latter fit well with the theory for two independent pump sources
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How do we create
Polarization Entanglement?

H H V Vor

Isotropic nature of Kerr nonlinearity gives

2

2 !i
e±H H V V

2

2 !i
e±H H V V

How to get:
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Fiber Source of Polarization-Entangled
Photons
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• Pump power in each polarization:
0.55mW average

• Average production rate of correlated
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X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, Optics Letters 30, 1201 (2005).
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What is the cause and nature 
of the observed background photons?

Evidence from the excess noise figure of
fiber-optical parametric amplifiers being
developed for telecom systems suggests

the reason to be the Raman effect.
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• Small core  high intensity

• Large interaction length

• Excellent mode matching
• Low loss for some λ’s

• Doping is possible

• Dispersion
• Relatively small χ(3)

Glass as a c (3) Medium

Kerr effect

Phase Matching

Nonlinear
Coefficient

Pump SPM

XPM

Four-Wave
Mixing

Nonlinear Optics in Fiber
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Fiber Optical Parametric Amplifier (FOPA):
An Example of a PIA

• 1 km linear FOPA
configuration

• Gain as high as
20 dB

• 1537.5 nm pump

• 1.3 W pump peak
power

• 700 ns pump
pulses

• 8 kHz pump
pulse rate

• CW signal
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Measurement of the Photon Statistics
and Noise Figure of a Fiber PIA

P. L. Voss, R. Tang, and P. Kumar,
Optics Letters, Vol. 28, 2003, pp. 549.

Some excess noise is
found on the amplified
signal.

G = 16

No fitting parameters are used.
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NF Limit Due to Raman Effect

• Addition of Raman noise can be treated analytically

• Matches PIA noise figure data  with no fitting parameters

Excess noise
terms due to
Raman effect

Voss and Kumar, “Raman-noise induced noise-figure limit for c (3)
parametric amplifiers,” Optics Letters, Vol. 29, 2004, pp. 445–447.

Need to look
closer to pump

wavelength
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Correlated Photon Pairs with Low Background

λp = 1536nm, λs = 1532, λi = 1540nmλp = 1535.5nm, λs = 1530.5nm, λi = 1540.5nm

Spontaneous Raman scattering is suppressedSpontaneous Raman scattering is suppressed 10
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Observation of High Purity Entanglement

Presented as a postdeadline paper to FiO’2005, Tucson, AZ 
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System Under Development at NU

Entangled Photon Pair Source
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• The telecom band (around 1550 nm) polarization entangled photon pair source delivers photon

a to Alice and photon b to Bob.

• The auxiliary DFB laser light is chopped into pulses which do not overlap with photon a and

photon b in time. Its wavelength is several nm away from photons a and b.

• The commercially available endless polarization controllers compensate the polarization

fluctuations by monitoring the polarization state of the auxiliary light.
• Alice and Bob’s polarization modulators (their principle axis are 45° to the system’s principle

axis) apply the modulation according to randomly chosen measurement bases.
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• Protocols allow two parties to remotely agree on a string of
binary random numbers known only to each other (a
cryptographic key)

• The parties use the key either with mathematical encryption
algorithms such as 3DES or AES or with Vernam Cipher
(one-time pad)

• Mathematical encryption algorithms are not proven to be
secure and may have difficulty keeping up with the data
rates on high-speed optical networks

• One-time pad is proven to be information theoretically
secure on public channels, but it requires one key bit for
every data bit  data rate = key generation rate

Data Encryption with the BB84 / Ekert
Protocols

Best results to date: ~20km at ~1kbps  Rate-distance ~0.02Mbps-km
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Alice Bob

Irreducible Quantum noise protects
data from Eve

Alice and Bob use
 a short secret key
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Lab Demonstration of Difference Between
Bob’ s and Eve’s Measurements

Original Data:

Alice to Bob:

Alice to Eve:

Eve with a
random key
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I want to thank the organizers for inviting me to speak before this distinguished
audience at Frontiers in Optics 2004 in Rochester, New York. (1136 bits)
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• 200km in-line amplified line

• 650Mbps data rate

• 215-bit PRBS

• M = 2,047

• -25dBm (~40,000 ph/bit) at launch

QCSA=12.32

500ps/div 500ps/div

• Eve located at source (Alice)

• Simulated by Bob with incorrect
secret key

• Eve’s PDF is uniform

•Bursty, not streaming!

• No clock recovery,
common clock!

Bob’s and Eve’s Eye Patterns, 200km

E. Corndorf, G. Kanter, C. Liang, and P. Kumar,
CLEO’04 postdeadline paper; to appear in PTL.
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622 Mbps Streaming System
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Quantum Data Encryption over ATDnet
in Washington, DC
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QKG Alice QKG Bob

Quantum
 data encryption

Classical channel

“Quantum” channel

Quantum
 data encryption

TX RX

All optical
network

Key server layer:
• With proposed satellite up-down link

• Potentially 100-200 km apart with KCQ or fiber generated entanglement
(recent NU work) using BB84 type protocols

Data encryption/transmission layer

Slow (Hz)

Fast (GHz)

Physical Layer Security over WANs


