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Digital holography and image processing: twins
born by the computer era

Digital holography:

- computer synthesis, analysis and simulation of wave fields

Digital image processing:

- digital image formation;

- image perfection;

- image enhancement for visual analysis;

- image measurements and parameter estimation;
- image storage & transmission;

- image visualization
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FAST TRANSFORMS FOR DIGITAL HOLOGRAPHY:
Discrete Fourier transforms
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FAST TRANSFORMS FOR DIGITAL HOLOGRAPHY

Discrete Fresnel transforms
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Reconstruction of a hologram on different distances using Fourier reconstruction
algorithm (left), Fourier reconstruction algorithm with appropriate hologram
masking to avoid aliasing ( middle) and Convolution reconstruction algorithm

Hologram courtesy Dr. J. Campos,
UAB, Barcelona, Spain





Hologram reconstruction: Fourier algorithm vs Convolution algorithm ¢

Fourier
reconstruction of
the central part of
the hologram free of Convolutien
aliasing reconstruction

Fourier
reconstruction

Image is
destroyed
due to the
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7=33mm; p*=0.2439

Aliasing
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All
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are identical
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Hologram courtesy Dr. J. Campos,
UAB, Barcelona, Spain




Point spread function of numerical reconstruction
of electronically recorded optical holograms

Digital reconstruction of samples of the object wave front amplitude from
samples of its hologram is treated as a process of sampling the object wave front.

Signal sampling is a linear transformation that is fully specified by its point
spread function:

a, = _[ a(x)PSF(x,k)dx

Sampling device
Point Spread
Function

Object’s

According to the sampling theorem,
ideal sampling PSF is sinc-function
PSF (k,x)=sinc|[z(x — kAx)/ Ax]
_sin|z(x — kax)/ Ax]
—[#(x— kax) Ax]




Point Spread Functions of reconstruction of
holograms recorded in far diffraction zone:

For hologram recording in far diffraction zone, wave propagation kernel WP(x,f) is :

oy X[

WP(x, )= exp(—i27 ~-
(x, f)=exp(-i ”ﬂZ)
Assume that, for hologram reconstruction, shifted and scaled DFT is used with the reconstruction
kernel:

DR(k,r) = lexp[iZﬂ'M}
N oN

where v, and ¢ are shift and scale parameters

With this reconstruction kernel, point spread function of the reconstruction process PSF*%(x,k) is

PSFFZ(x,k)= djd(%)exp{_ i27[|:i(vr ¥+ N;l)_g(w +_N2_1jj|}sincd|:N,ﬂ'(x—kA;_xj/Ax:|

where q)d(ﬁ) = I¢d(f )exp[(—ﬂ” %))df is frequency response of the hologram sampling device and

szﬂZ/SH=ﬂZ/NAf SinCd(N’x)=%

Define hologram discretization and reconstruction device coordinate system through the object
coordinate system by choosing v =v.=(N-1)/2. Then

PSF 2 (x,k)= ¢d(%)sincd[Nr,ﬂ'(x—ki_xj/Ax}




PSF of reconstruction of holograms recorded in
far diffraction zone (ctnd)

As one can see from the equation,

PSF™(x,k)= qb"(%) sined[ NV, 7 (x — kAx)/ Ax]

The point spread function is a periodical function of k:

PSF™(k+ goN )= (1™ pSF" (k);

(g is integer). It generates o/N samples of object wavefront masked by the frequency response of the
hologram recording and sampling device, the samples being taken with discretization interval

Ax/6 =17/ 68, =AZ/ GNAf

within the object size S = 1Z/ Af.

The case ¢ =1 corresponds to a “cardinal” reconstructed object wavefront sampled with discretization
interval Ax= A7/ S,, =AZ/ NAf . When ¢ >1 , reconstructed discrete wavefront is ¢ -times over-sampled,
or ¢ -times zoomed-in. One can show that in this case the reconstructed object wavefront is a discrete
sinc-interpolated version of the “cardinal” one.



PSF of reconstruction of holograms recorded in
far diffraction zone (ctnd)

Discrete sinc-function is a discrete analog of the continuous sampling sinc-function, which is a point
spread function of the ideal low-pass filter. As distinct from the sinc-function, discrete sinc-function is a
periodical function with period NAx or 2NAx depending on whether /N is an odd or an even number and
its Fourier spectrum is a sampled version of the frequency response of the ideal low pass filter
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IMAGE PROCESSING

Target localization and tracking in cluttered multi-
component images and video

Localization result (marked with a cross); SNR=24 9201 Target (highlighted)
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Object tracking in video sequencies: examples

The experimental svstem
Frame gabher EF:_EF ‘_@
¢ Video cassette

Atorage device Ei

R =

Eﬁ—} COMPUTER :

[nteractive

litraty araghical
L/ X user irtetface
o8 H

Analyzed mone Movemerts Parameters

Program

For details see http://www.eng.tau.ac.il/~yaro

Tracking fetus movements in Ultrasound movie




Face detection in complex images

The developed algorithm is
capable of detecting, with
high reliability, faces of
varying size from minimum
size of 12 pixels width and
15 pixels height to the
maximum size of the input
image.

The face detection capability
of the developed system was
experimentally examined on
two test databases of images
of high and low quality. The
detection rates 96% and
84% were achieved for these
databases, respectively.

http://www.eng.tau.ac.il/~yaro/Zion/ZionPhdSeminar4Web.pdf



Face detection: two-stage algorithm

1%t stage

N
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The “non-face” detection algorithm was proved to have “non-face” rejecting rate of ~99% and false alarm rate of
1.3% (faces wrongly rejected), thus leaving only 1% of the image area for subsequent thorough analysis by the “multi-
template classification” algorithm. The algorithm is fast and requires approximately 200 flops per pixel in an input
image of 640480 pixels size.



Face detectmn Face like- non face and non-
face hke face data bases

“Multi-template Examples of “Non-Face-  Examples of “Face-like-
lassification” algorith : " : " =
W P W like-Face” objects Non-Face” objects

prepared for different target : . ' £
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The developed algorithms ?

were trained using a specially ,
created training database

obtained by extending four i?“

“face” databases to 32,000 e ﬂ 5‘ “

images and one ‘“non-face”

database to one million C|u5’[er|ng @ C|u5’[ering@

images by means of scaling

“clutter like faces” templates ’

and rotating database images.
WS Y T “NFF” templates “FNF” templates

In particular, “face”, “non-
training databases.




IMAGE PROCESSING

MULTI COMPONENT IMAGE RESTORATION:
Spatial/temporal adaptive linear filters

Transform Scanning
Scanning d dofnain Inverse
o b Transform
i 7/ Filter :

Ouiput pixel

Modified
spectrum

Element-wise
multiplication by
the filter mask

Direct Transform
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3-D Local adaptlve spatlal-temporal ﬁlterlng
denmsmg and deblurrlng Qf thermal VldeO
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3-D Local adaptlve spatlal-temporal ﬁlterlng
denmsmg and deblurrlng of thermal Vldeo (ctnd)

After
(5x5x5 DCT domain filtering)

Before





Stabilization and restoration of atmospheric
turbulent video

Restored stabilized video
with moving objects
unaffected

Moving objects Initial video





~ Turbulent atmosphere video

il -l il





Stabilized turbulent atmospherevideo
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IMAGE PROCESSING:

Fast interpolation error
free discrete sinc-
interpolation algorithms
for image resampling and
geometrical
transformations:




Boundary effect free discrete sinc-interpolation in
DCT domain
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Comparisen of interpolation distortions:

higher order spline interpolator vs discrete sinc-interpolator

High order
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Spline interpolation and discrete sinc-

interpolation:
Rotation error spectra: 10 rotations through 36°

Bicubic ;o Spline531

1D zection of the rotation eror spectrum
(Diagonal)

Betall i B DFT-sinc

] 01 0.2 0.3 0.4
Morrmalized frequency




Comparison of interpolation accuracy of

different interpolation techniques:

Bilinear

Spline531

Spectra, for 10X36°
rotations, of the test
random image low
pass filtered to 0.7 of
the base band



Discrete-sinc-interpolated image resizing using
Scaled DET

initial
image S/m- scaled
image

4/n- scaled

image

3/m- scaled
image

2/n- scaled 3
image '

1/mt- R
scaled
image §




Using RotDFT-based rotation/resizing algorithm
for simultaneous image rotation, resizing and
enhancement

Initial

10°-rotated #  10°-rotated, 1.7X-

and 1.7X- mhalgniﬁed and P-
magnified th law spec?rum
i compression

image
enhanced (P=0.5)
image

tul128orig_Onoise
stul_Orand_x17%10_P10%10Th0%10.tif
tul_Orand_x17%10_P5%10Th25%10.tif



Tmage z}rbitrary mapping 'in; sliding Window

MapY

Icmapping_arbitr(len,(mapX+i*mapY)/1.5,8,8)







Sliding window discrete sinc-interpolation in
DCT domain:

Simultaneous image resampling and
restoration/enhancement

Inverse
Modification DCT/DST
of the
mput | Computin Introducing spectrum for Quriput
_signal | g gliding |_,| p-shift |_,| restoration/ | 2 iml,
window enhancement

DCT




. Slidi‘ligéwindow-si_nc_-interl-)o;lation in' DCT
domain: signal resampling and denoising

Initial noisy signal

250

50 100 150 200
MWYWDCTsine(2) shift 16.54 pixels, hard threshaold
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Sl . 100 150 200
MWYWDCTsine(d) shift 16.54 pixels, soft threshaold

S . 100 150 200 250
MW OCTsinc(F) Shift 16.54, Wiener filter(0.1)
| P ST ST :
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50 100 150 200 250

Noisy image (a) and a result of the rotation and denoising with
sliding window DCT sinc-interpolation and denoising (b).
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Sliding window sinc-interpolation
DCT domain: local adaptive interpolation

»] Discrete DCT domain

glgl::l Computing sinc-interpolator
— 1" sliding window
DCT
Analysis of local (S)il:gg);t
—» spectrum ] Mixer } I

Nearest neighbor
interpolator




Adaptive versus non adaptive signal interpolation

Initial signal

50 100 150 200 250

MWDCTeinc-shifted 16.54 pixels
= T T T T T

50 100 150 =200 250

s T T T T T

50 100 150 200 =250

Signal (upper plot) shift by non-adaptive (middle plot) and adaptive
(bottom plot) sliding window DCT sinc-interpolation. One can notice
disappearance of oscillations at the edges of rectangle impulses when
interpolation is adaptive.
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Comparison of nearest neighbor, linear, bicubic spline and adaptive
sliding window sinc interpolation methods for zooming a digital signal
(From left to right, from top to bottom: Continuous signal; initial
sampled signal; nearest neighbor -interpolated signal ; linearly -
interpolated signal; cubic spline -interpolated signal; sliding window
sinc-interpolated signal ).



Image rotation with adaptive and non-adaptive
discrete sinc interpolation




IMAGE PROCESSING

Nonlinear (rank)
filters for image
de-noising and
enhancement




Rank filters for image de-noising and enhancement

Iterative SCSigma-filter .
Window 5x5, Evpl=Evmn=15; 5 iterations

Noisy image, stdev = 20, Pn=0.15



- Nonlinear filters: Image enhancement

Initial image SIZE(Evnbh(Wnbh5x5,2,2))-filter HIST(W-nbh)-filter



_Local P-histogram equalization: color images =

-l

.(blind-_;_calib_ratio-n of .CCD.—-__came_ra im;_ages)_ Yy







‘Redundancy of stereoscopic images - -~ .
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Computer synthesis and display of stereoscopic images
and video

Bahai garden, Haifa, Israel



Discobolus



Computer generated stereo from 2-D video
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