,\) Scanning photoemission microscopy:

=2/ spatial resolution & chemical sensitivity
Maya Kiskinova, Sincrotrone Trieste

There's Plenty of Room at the Bottom

1) STATIC: Heterogeneity by nature (e.g. phase separation),
by design (e.g. y and nanostructures), generated in
reactive environment by local radiation or heat.

2) STATIC: Reduced dimensionality and unique properties,
e.g. structural and electron confinement effects.

3) MASS TRANSPORT: thermal and electro-migration,
reorganizations in reactive environment.
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é,l Types of X-ray microscopes using soft x-rays
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Focusing optics: zone plates, mirrors, capillaries

KP-B mirrors each
focusing in one direction:
soft & hard: ~ 1000 nm

Soft & hard x-rays!
chromatic focal point,
easy energy tunability,

comfortable working
distance

Resolution ~ 1000 nm

>

ERS———— — ¢ t

Zone Plate optics: from ~
200 to ~ 8000 eV
Resolution: 30 nm in
transmission

Normal incidence:
spherical mirrors with
multilayer interference coating ma— Hard x-rays ~ 4-70 keV
(Schwarzschild Objective) Hard x-rays ~ 8-18 keV Resolution: > 1000 nm
not tunable, E < 100 eV Resolution: > 3000 nm
Resolution: best ~ 100 nm

Capillary: multiple

! Refractive lenses
reflection concentrator

—~
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Interactions of x-rays with the matter:
23/ redirection & absorption: x-ray transmission
and x-ray and electron emission

Scaltered X-rays —
(elastic { ineiastic) Reflected X-rays

.

Incident X-rays

Transmitied / Kefracted X-rays
XANES

Electron Emission
PES-AES-XANES

Photon Emission-hard x-rays

FS. XANES
ICTP- Synchrotron Radiation School, May 2006



) All chemical specific spectroscopies are based on
absorption of the photons by the matter and
following excitation & de-excitation processes
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Photoelectric effect & de-excitation
processes = chemical specific spectroscopies

initial state x-ray emission Auger decay T T i rs
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.s) Scanning photoemission microscopy:

S {
photoelectron, fluorescence and XAFS
Transmission
F aster scanned detedor
sample
Zone plate
E xit =slits
spherical grating
monochromator
E ntrance slits
ﬁ e- HS dengTor-)_(PS | HH
or energy dispersive
FEEJF"’:F x-ray detector - XFS Y
ﬂulamr

source g ‘

[ f—n]
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Sampling depth:
determined by the inelastic mean free path
(“universal curve”)

Secondary

1000 electrons (XANES)

A (monolayers)

Electron energy (eV)
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What does photon-induced
electron emission provide

* Qualitative and quantitative elemental information: CL
- Chemical composition and chemical bonding:CL & VB

- Electronic and magnetic structure (VB, ARUPS, PED, XMCD-
XMLD with secondary electrons).

+ Information depth < 10 nm (surface sensitive)
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PHOTOEM.
INTENSITY

Valence
Information depth = dsiné band
d = Escape depth ~3 4
#= Emission angle relative to surface
A= Inelastic Mean Free Path

4+—— BINDING ENERGY

Core
levels c
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Hard X-ray Microscopy:
lower spatial resolution but X-ray fluorescence

100 £
10' ¢ = Penetration depth: > 50um
1533 * Fluorescence yield.
o = All type of samples
1 = -XANES (S, P, K, Ca, Fe..)
0.1k
00015 20 25 30 85 4o XRF (Scanning +
o [ Aeme nber £ energy/wavelength dispersive
e K-sheil = detection)
- 3 - Element specific (no labelling)
E e = * Co-localisation
8 os| s - Low detection limit (trace
-~ e N ¥ element).
:: e - High signal-to-background
o b 3 ratio (low dose)
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@} X-ray SPECTRO-microscopy and imaging

=
soft (< 1500 eV) hard (2-20 keV)
SURFACES & INTERFACES: BULK SAMPLES
PHOTON IN/ELECTRON OUT PHOTON IN/PHOTON OUT
(probing depth=f(E,)) max ~ 20 nm) (probing depth = f (E,;) > 100 nm)
PE spectroscopy (XPS-AES) X-ray Fluorescence spectroscopy (XFS)
ONLY CONDUCTIVE SAMPLES
Chemical surface sensitivity: Chemical bulk sensitivity
Quantitative un-XPS (0.01 ML) Quantitative u-XFS
chemical & electronic (VB) structure Trace element mapping

(ppm 0.01/Pb - 200/S)

Total e- yield Absorption spectroscopy XANES Total hv yield
(sample current) Transmitted x-rays

(ZP) focal length and depth of focus increases with E,,: more space
around the sample for detectors!
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«5) Chemical Imaging and p-spectroscopy

2D maps of energy I Si2p
window: S e R T
the contrast reflects
element concentration
(XPS&XFS), different
chemical states (XPS&
XANES), BB (XPS)
shifts etc.

-101 -100 -99 -6 -4 -2 0
Binding Energy (eV)

* Detailed characterization of coexisting
micro-phases via microspectroscopy
XPS, XFS or XANES from selected spots:
fingerprints of local composition, chemical
state, electronic properties, BB, charging
state, magnetic spin, MOs etc

ICTP- Synchrotron Radiation School, May 2006



é» Maping core level electron emission (CLEE):
<74/ concentration’ inhomogeneity of solid materials

SPEM

Ti6AI7Nb (wt?%):
biocompatible alloy used for
implantation in bone surgery:
surface composition affect

the local reactivity and in
turn the degree of
acceptance by the human
body:
SAM has inferior
chemical sensitivity

1 1 1 1
580 582 584 586 588

PE intensity (a.u.)

610 615 620 625 630 115 120 125 130 135

Kinetic Energy (eV)
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Maping core level electron emission (CLEE):

Characterization of nanomaterials MoS,-nanotubes

ZP-SPEM

Twisted chiral bundles of Mo-S individual cylinders: Mo

Binding Energy [eV]

150

Intensity [a.u.]

Intensity (an.)

-ad -52 -50 48
Binding Energy (2V)

ERRRREEE R
Valence Band

Hanotubes
sidewalls

w8 B A [
Binding Energy [&V]

Due to the low dimensionality and/or
presence of I the S 2p, Mo 3d and
VB spectra, reflecting the electronic
properties, differ significantly from
those of the MoS, crystal. SPEM
revealed I (used as a carrier) in
interstitial positions between the
tubes bonded to outer S atoms.

J. Kovac, A. Zalar, M. Remaskar et al, Josef Stefan Inst., Luibljana,& ESCAMicroscopy
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&) Heterogeneity related to defective structure

= Me/SC interfaces: Ni/6aN

Interfacial reaction: = Ni6a (N)+N,:
- Starts at RT;
- Higher activity at the 'defect areas’;

- Heterogeneity ‘'maximum’ at ~300 C;
- Ni penetration into GaN lattice;
- C embedded in the ‘holes’;

SiC defects pr'opaga’rmg info GaN epilayers lead to
notorious changes in the film morphology:
‘dark holes’ in the Ga3d and N1s maps = micropipes?

Ga 3d Intensity (a.u.)

I -22 .-20 .. -i8 .
Binding Energy (eV) 16 ym
A_.Barinov et al. APL 79, 2752
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Maping core level electron emission (CLEE):
Laser-induced reactions used for “writing” silicide

interconnects ZP-SPEM

Lateral distribution of Pt-silicide phases: Pt4f and Si2p maps

.

Pt 4f Intensity (counts/sec)

Si 2p Intensity (counts/sec)

A

Si 2p and Pt 4f Intensity

:—lllllll]lllli;llll

'l'lllllllllllll‘:llsllllll
718 16 74 72 -70 '
L -102 -101 -100 -99 -98
0 200 400 600 800 1000
Binding Energy (eV) pm Binding Energy (eV)

The reaction rate in molten state (A) is faster and causes depletion
of Pt from the surrounding region (B). Beyond (B) the magnitude of
Pt - Si intermixing and the PtSi film thickness is exclusively
controlled by the temperature. A. Nelson et al, APL 81, 11246
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Intensity (countsizec)

} Maping core level electron emission (CLEE):

Degradation of organic light emission devices

ZP-SPEM

= “iole ranspert
Transpjxr'em‘ Jnode: InSnp

v vY v

Why do they degrade?
What causes the break of
the cathode (black spots) ?

With SPEM we found anode material (In
- and Sn) deposited around the hole created
S e o in the Al cathode.

P. Melpigniano et al, APL 86, 41105
ICTP- Synchrotron Radiation School, May 2006
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Imaging ‘signal attenuation spatial anisotropy
in the oxide film thickness on Ru(0001)
ZP-SPEM

Maps of Ru bulk component: measure of the Ruox thickness:
IRu(b) IR ©)- e-x(Ruox)/kcose
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S 0 2 i S 0 2 4 6 A. Bottcher et al,
(um) J.Chem.Phys. 117, 8104.
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a Maping core level electron emission (CLEE):

Spreading of MoO; on Al,O; at 630 K
ZP-SPEM

35 min 70 min 170 min A !
2% i 3 ; [ul n/n.\'l % : u'-'h uu: ]
2 i e Y | i}& B 18" mgo ool o

‘Ruled out the
‘unrolling’ carpet
mechanism: coverage
of the spread phase
remains below 1 ML.

‘Determined the
Disotanclgfrozg crs;ostaﬁc()umio » difoSiOn COI’\STO"T 01.
630 K: 0.47 ym/min.

v S. Giinther, J. Chem. Phys.
112 (2000) 5440.

Mo3d/Al2p ratio

350 355 360
Kinetic Energy [eV]
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Imaging of band-bending: Si 2p shifts across p-n
junctions indicate anomalous spatial variations in the
doping profile across a pn-junction Si device:

ZP-SPEM

p

“ Y

\

|

12. 8 ym

Si 2p image : TN
p-stripe 3965  397.0
- 18 3 Kinetic Energy (eV)
Ia'oioim/ﬁ?nfed Reconstructed Si w0 5 o 5 0
Bi P d q 2p spectra Distance / pm
S'mTO n- ?Pel . corresponding to dd
i(100) N=10 the p, n and p enhanced dopant
/cm3 ) edae concentration at
g the p-edge
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Imaging Fermi edge and the valence band:
metal-insulator transitions in colossal magneto-
resistive (CMR) oxides

Topography

52K —= 253K —= 50K E SO-SPEM

e i 'Electronic phase separation’': SPEM
e spatially resolved images (20x50 pum?)
of the valence band provided the first
ol evidence of memory effects (not

: related to topography) in the electronic
§ é&* domains during T-induced phase
e transition from antiferromagnetic,
charge-ordered insulating phase to

_ ferromagnetic metallic phase of
dj La,/,Prs/gCaz/sMnO;,
= Insulating patches are reappearing
KNS inside the metallic phase: most likely
i | MO (M long-range strain effects.
Topography 55K —= 132K —»= 46.5 D. D. Sarma et al, PRL 93, 097202
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Hard X-ray Microscopy:
lower spatial resolution but X-ray fluorescence

K-shell

= Penetration depth: > 50um

= Fluorescence yield.

= All type of samples

= y-XANES (S, P, K, Ca, Fe..)

Fluorescence yield
o]
0]

L-shell
(average)
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XRF (Scanning +
energy/wavelength dispersive
detection)

+ Element specific (no labelling)

 Low detection limit (trace element).

- High signal-to-background ratio (low

0'0110' 15 20 25 30 35 40 dose)
Atomic number Z
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,$) XFS imaging of environmental samples (polluted
<%/ area near metallurgic plant) and human bones
(osteoporosis)

Absorption

ol S
¥ -

Cr Ko XRF
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Metabolism of a new As-based drug:
u-XF imaging and spectroscopy on patient's hair

% Hair section from
patient with acute leukemia
treated with
pharmacological doses of
arsenic trioxide (>1 mmol/I)
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I. Nicolas, Faculté de Pharmacie, Paris V
S. Benazeth, LURE
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u-XANES of single neuron: role of metals in processes
leading to degeneration and atrophy of nerve cells in
Parkinson's disease (PD) & Amyotrophic Lateral Sclerosis (ALS)

Tissle Secrien iy
~ Parkinson

pm o

0 5 10 15 20

Y Axis Title
o o

Absorption coefficient (A U)
o o o o o [y
° Y IS > 3 o
L L | L L L

' Energy keV ' e ok E:ea:,gy(kev)g.gz
Courtesy J. Susini, ESRF
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TiO2-DNA nano-composites for in-vivo Gene
Surgery: XRF maps

Chemical FS imaging is crucial to
quantify the success rate and reveal the
/ location of the single stranded
Tio, - DNA nanoparticle in the cell chromosome

DNA-TiO2 particle 1My

crossing cell walls
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New perspectives for more efficient utilisation of
the synchrotron facilities: direct writing of
photoluminescent structures with focused beam

=

Main advantages of using x-rays for maskless writing: (i) smaller lateral spreading
of the x-ray beam and (ii) weaker charging effects

Intensity [arb. units)
Lr

10 pm

Stable Color Centers with fabricated in thin LiF films using SPEM at ELETTRA

Applications: efficient point light sources in near-field optical microscopy and
optical memories, novel miniaturised coherent light sources, such as active
waveguides and microcavities for optolectronics
R. Larciprete et al, Appl.Phys.Lett. 80 (2002) 3862
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f} Multiple applications by choosing the best
’ spectroscopic y- approach

Different domains of material science:
(Surf-XPS & Surf&Bulk - XANES, bulk - FS&XANES)

> Composition, electronic and magnetic properties at micro and
nano-scales complex materials, micro- and nano - structures,

superconductors, polymers, astrophysics, tribology and corrosion
phenomena etc. XPS, XFS & XANES

>  Mass transport due to reactions, bulk and surface
electromigration: XPS & XFS.

>  Environmental and Earth Sciences XFS & XANES
> Bio-science and medicine XFS & XANES

samples "natural” environment: liquid or air, cryo-techniques,
high pressure

ICTP- Synchrotron Radiation School, May 2006
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