Spectral and image analysis

Luca Gregoratti

Sincrotrone Trieste SCpA, Area Science Park, SS14-Km163.5, 34012 Trieste, Italy

email: luca.gregoratti@elettra.trieste.it

Contrast mechanisms in a photoemission image

• Other sources of contrast

Getting the chemical information out of the artefacts

۲

Artefacts

- 1. Topography
- 2. Beam induced effects:
- C deposition (residual gases)
- O₂ reduction
- Charging

3. Background level

Multichannel detection

ICTP School on Synchrotron Radiation and Applications - Trieste

Spectra analysis

 $L(E) = \frac{1}{\left(1 + 4\left(\frac{E - E_L}{\Gamma_r}\right)^2\right)}$ Natural linewidth or core hole lifetime (Lorentzian) Good for insulators and semiconductors **E**₁ = centroid $\Gamma_{I} = FWHM$ $G(E) = \exp \left| -4\ln 2 \left(\frac{E - E_G}{\Gamma_C} \right)^2 \right|$ Instrumental resolution and phonon broadening (Gaussian) E_{c} = centroid $\Gamma_{G} = FWHM$ $I(E_G) = \int_{-4\sigma}^{+4\sigma} \exp\left[-4\ln(2)\left(\frac{E-E_G}{\Gamma_G}\right)^2\right] \times \frac{1}{\left(1+4\left(\frac{E-E_L}{\Gamma_G}\right)^2\right)} dE$ Convolution of the Gaussian and the Lorentzian (Voigt)

Natural linewidth or core hole lifetime (Doniach-Sunjic)

Good for metals

$$DS(E) = \frac{Gamma(1-\alpha)\cos\left[\frac{\pi\alpha}{2} + (1-\alpha)\arctan\left(2\left(\frac{E-E_L}{\Gamma_L}\right)\right)\right]}{\left(\left(E-E_L\right)^2 + 4\Gamma_L^2\right)^{\frac{1-\alpha}{2}}}$$

$$E_L = \text{centroid}$$

$$\Gamma_L = \text{FWHM}$$

$$\alpha = \text{asymmetry}$$

Lineshape for metals

$$I(E_G) = \int_{-4\sigma}^{+4\sigma} \exp\left[-4\ln(2)\left(\frac{E-E_G}{\Gamma_G}\right)^2\right] \times DS(E)dE$$

Fitting procedure

Background removal

Background functions:

•Tougaard
$$F(E) = j(E) - \lambda \int_{E}^{\infty} dE' K(E' - E) j(E')$$

 $F(E)$ =primary excitation spectrum
 $j(E)$ =flux of emitted electrons
 $K(E,T)$ =probability for an electron of loosing energy
 λ =mean free path for inelastic scattering
•Shirley $b_i = k \sum_{j=i+1}^{N} p_j$ b_i =background of the point i
 p_j =signal of the point j
 N =highest kinetic energy
 k =constant

•Cubic

ICTP School on Synchrotron Radiation and Applications - Trieste

Rh 3d_{3/2} fitting procedure (same experiment)

References

S. Gunther, A. Kolmakov, J. Kovac, M. Kiskinova, "Artefact formation in scanning photoelectron emission microscopy", Ultramicroscopy 75 35-51, (1998).

J.J. Joice, M. Del Giudice and J. H. Weaver, "Quantitative analysis of synchrotron radiation photoemission core level data", J. of Elec. Spectr. And Relat. Phenom. 49 31-45 (1989).

Stefan Hufner, "Photoelectron spectroscopy, principles and applications", Springer