

Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H.

## **THz Spectroscopy**

using

### **Coherent Synchrotron Radiation**

Ulrich Schade BESSY



1



#### THz Radiation from a Storage Ring:

Infrared Synchrotron Radiation: Source Parameters Coherent Synchrotron Radiation: Mechanism, Properties

#### Instrumentation:

Infrared Beamline at BESSY, Detectors, Spectrometers

#### Application of the CSR:

Superconductors THz Near-field Spectroscopy

**Conclusions:** 







#### Why Terahertz?

#### **Condensed Matter Physics**

#### Superconductivity

Energy gap Symmetry of the order parameter Strength of coupling

#### Magnetism

Interplay magnetism and superconductivity Itinerant versus localized moments

#### **Low-dimensional effects**

Dimensionality crossover Non-Fermi liquid normal states Broken symmetry ground states

#### Strongly correlated electrons

Kondo problem Heavy electrons



#### **Life Sciences**



Protein dynamic Secondary and tertiary structure Metabolism Influence of nutrition

#### New Technologies

Medical diagnostic Early cancer detection



Industrial production Material inspection

**Defense industry/Homeland security** Detection of explosives and biohazards



#### Berlin Electron Storage Ring Company for synchrotron radiation



| Start user operation:                 | 1999   |
|---------------------------------------|--------|
| Circumference of the synchrotron:     | 96 m   |
| Circumference of the storage ring:    | 240 m  |
| Number of bending dipoles:            | 2 x 16 |
| Number of possible insertion devices: | 15     |
| Number of beamlines commissioned:     | ~ 50   |
|                                       |        |

2002

Commissioning of the IR-beamline IRIS:





#### THz Radiation from a Storage Ring:

- Infrared Synchrotron Radiation: Source Parameters
- Coherent Synchrotron Radiation: Mechanism, Properties

# BESSY

#### **Infrared Synchrotron Radiation**



In the far-infrared (THz) region the natural opening angle of the synchrotron radiation drastically increases with decreasing photon energy.

Synchrotron radiation is generated from relativistic charged particles, e.g. electrons, subjected to a transverse acceleration, e.g. by a magnetic field and is emitted into an natural opening angle.



# BESSY

#### **Infrared Synchrotron Radiation**



Source brilliance:

$$B = \frac{photon \ flux}{s_v \cdot s_h \cdot \Theta_v \cdot \Theta_h}$$

The high brilliance of the infrared synchrotron radiation source is of advantage to low-throughput experiments.

**Source Dimensions:** 

$$s = \sqrt{s_{electron}^2 + s_{projection}^2 + s_{diffraction}^2}$$





**Dedicated Machine Mode:** 

"Low α" Optics at BESSY:

- Bunch shortening down to and below the mm-range
- Emission in the FIR range is drastically enhanced:

$$I = I_{incoh} + I_{coh} = Ni(1 + Nf_v), \qquad A_f = \frac{I_{coh}}{I_{incoh}} = Nf_v$$



#### **Radiation Spectrum**

#### **Coherent Synchrotron Radiation (CSR)**

N-times higher intensity (Gaussian bunch assumed!).

Cut-off due to shielding effects.

Powerful source emitting in the THz and sub-THz range.





#### CSR at higher frequencies observed than for Gaussian bunches expected

#### With increasing current of the bunch:

- the CSR spectrum extends to higher photon energies.
- the low-frequency noise in the THz beam drastically inclines.

#### **Present understanding:**

Interaction of bunch with CSR-wakefield leads to:

- a static non-Gaussian deformation of the bunch (Bane, Krinsky and Murphy, 1996)
  - $\rightarrow$  steady-state CSR
- bursting CSR emission above a current threshold (micro-bunching, Stupakow and Heifets, 2002)
  - $\rightarrow$  high power bursting CSR



#### Steady-state vs. Bursting CRS





#### 









SSY Fourier Transform-Infrared (FT-IR) Spectroscopy source Michelson interferometer interferogram moveable mirror Intensity (a.u.) beam splitter mirror displacement (a.u.) Fourier-Transformation sample single channel spectrum detector 0.40 Intensity (a.u.) 0.10 0.20 0.30 **Advantages:** Jacquinot: high throughput Fellget: multiplex high resolution, broadband 2000 1500 4000 3500 3000 2500 1000 500 **Connes:** wavenumber (cm<sup>-1</sup>) School on Synchrotron Radiation, Trieste, 8-26 May 2006

#### 19



#### Spectrometer:

|                                    | Bruker 66/v                  | Martin-Puplett (DLR)     |
|------------------------------------|------------------------------|--------------------------|
| spectral range (cm <sup>-1</sup> ) | 2 - 600                      | 2 - 100                  |
| beamsplitter                       | 6 μm, 50 μm and 125 μm Mylar | free-standing wire grids |

#### **Detector:**

|                                    | DTGS     | Si-Bolo 4.2 K | Si-Bolo 1.2 K | InSb HEB | SC HEB  |
|------------------------------------|----------|---------------|---------------|----------|---------|
| spectral range (cm <sup>-1</sup> ) | 50 - 600 | 10 - 600      | 2 - 60        | 2 - 30   | 7 - 100 |
| max. BW                            | 1 kHz    | 1kHz          | 1kHz          | 1MHz     | 5 GHz   |
| NEP (W/ $\sqrt{Hz}$ )              | 1e-9     | 1e-13         | 3e-15         | 1e-13    | 1e-12   |









School on Synchrotron Radiation, Trieste, 8-26 May 2006

BESSY



- Absolute measurements of reflectivity with high photometric accuracy at low temperatures.
- Direct measurement of JPR in optimally doped Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>.
- Bridge between microwave magnetoabsorption and conventional far-IR spectroscopy.

E. J. Singley et al., Phys. Rev. B. 69, 092512 (2004).



#### **THz Problems Near-field Optics Could Solve**

THz ellipsometer for

magneto-optic investigations

(M. Schubert, Uni Leipzig)

#### **Small-Throughput Experiments**

- complicated optical path (cryostat, magnets, etc.)
- large F#







#### Large THz Focal Spot

- Frauenhofer diffraction (1. disk: 84 % intensity)



D = 10 mm (F/4, 10 cm<sup>-1</sup>) D = 50 mm







- shadow image
- x-ray



- far-field @ 1 mm (0.3 THz)
- con-focal geometry
- bursting mode



- near-field @ 1 mm
- 200 µm aperture
- bursting mode



mmm

BERKELEY LA

- near-field @ 1 mm
- 200 µm wire cone
- low alpha mode



#### THz Near-field Imaging with CSR

**Spectral near-field images** of the lesion region between 3 and 20 cm<sup>-1</sup> (between 0.5 and 3 mm wavelength).

The corresponding wavenumber is indicated on top of each frame. Note that the simulated caries lesion is indicated by a lower absorption between 5 and 7 wavenumbers.





U. Schade et al., Proc. SPIE Vol. 5725 46 (2005).



#### **Coherent Synchrotron Radiation**

Low-noise, broadband, steady-state, high power, diffraction limited, polarized, pulsed (fs)

- superconducting gap
- · hybridization energy in heavy fermion systems
- intra-molecular vibrations
- phonons, plasmons, cyclotron resonances ...
- electron energy levels in confined systems
- ....

Triggering new technologies

- THz near-field optics
- THz Martin-Puplett-ellipsometer
- remote sensing for homeland security applications
- fs-slicing diagnostics
- ...

### Acknowledgments

| William B. Peatman<br>Tino Noll<br>Jörg Feikes<br>Peter Kuske<br>Gode Wüstefeld<br>Karsten Holldack<br>Jonseok Lee<br>Michele Ortolani | BESSY         |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Arnulf Röseler<br>Karsten Hinrichs<br>Michael Gensch<br>Gert Hinte                                                                     | ISAS          |
| Heinz-Wilhelm Hübers                                                                                                                   | DLR           |
| Michael C. Martin<br>E. Jason Singley                                                                                                  | ALS           |
| Dimitri N. Basov                                                                                                                       | UC SD         |
| Dan Fried                                                                                                                              | UC SF         |
| Paolo Calvani                                                                                                                          | U La Sapienza |

School on Synchrotron Radiation, Trieste, 8-26 May 2006

BESSY