Two Colors and Photon Correlation Spectroscopy

F. Parmigiani,

Università degli Studi di Trieste & SincrotroneTrieste Italy

Klaus Sokolowski-Tinten

Institut für Experimentelle Physik

Klaus Sokolowski-Tinten

Institut für Experimentelle Physik

Matias Bargheer, N. Zhavoronkov, Y. Gritsai, M. Wörner, T. Elsaesser

K_{α} line radiation:

	$\mathrm{K}_{\alpha}\mathrm{energy}/~\mathrm{eV}$	K_{α} flux / $4\pi^*s$
Ga	9.2	4.5×10^{10}
Cu	8.2	3.9x10 ¹⁰
Ni	7.5	$6.7 x 10^{10}$

- Plasma generated in 15 µm copper
- X-ray focus 15 µm
- Estimated pulse duration: 200 fs

Brilliance = 4 x 10⁷/ (mrad²*mm²s*0.1%BW)

According to specs	Flux on sample / s	Focus / µm
Multilayer mirror (Osmic)	$1.4 x 10^{6}$	30
HOPG reflector (IfG)	5x10 ⁷	200

BACH - Beamline for Advanced diCHroism

	Units	SASE 1
Wavelength*	Å	1-5
Peak power	GW	37
Average power	W	210
Photon beam size (FWHM)**	μ m	100
Photon beam divergence (FWHM)***	μ rad	0.8
Bandwidth (FWHM)	%	0.08
Coherence time	fs	0.3
Pulse duration (FWHM)	fs	100
Min. pulse separation****	ns	93
Max. number of pulses per train****	#	11500
Repetition rate****	Hz	5
Number of photons per pulse	#	$1.8 imes10^{12}$
Average flux of photons	#/sec	$1.0 imes10^{17}$
Peak brilliance	B^{*****}	$8.7 imes10^{33}$
Average brilliance	B^{*****}	$4.9 imes10^{25}$

*Parameters are given for the shortest wavelength.

** Value at the exit of the undulator.

*** Far field divergence.

**** Values determined by the time structure of the electron beam in the accelerator. The average parameters for the SASE-1 FEL are given for the ultimate case when only this beamline is in operation.

***** In units of photons/(sec · mrad 2 · mm2 · 0.1 % bandwidth).

Top: Basic scheme of a two-stage FEL [16] providing full longitudinal and transverse coherent light, see text for details. Bottom: GENESIS simulation of the two-stage FEL employing a 3 kW seed in the second undulator.

First Ultraviolet High-Gain Harmonic-Generation Free-Electron Laser

L. H. Yu,* L. DiMauro, A. Doyuran, W. S. Graves,[†] E. D. Johnson, R. Heese, S. Krinsky, H. Loos, J. B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, J. Skaritka, X. J. Wang, and Z. Wu

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, USA (Received 25 March 2003; published 14 August 2003)

We report the first experimental results on a high-gain harmonic-generation (HGHG) free-electron laser (FEL) operating in the ultraviolet. An 800 nm seed from a Ti:sapphire laser has been used to produce saturated amplified radiation at the 266 nm third harmonic. The results confirm the predictions for HGHG FEL operation: stable central wavelength, narrow bandwidth, and small pulse-energy fluctuation.

Spectrum of the BESSY SASE-FEL for a lasing photon energy of $\hbar \omega = 1 \text{ keV}$ compared to the BESSY II performance. BESSY II: single bunch operation with 10 mA of average beam current at E = 1.7 GeV. BESSY SASE-FEL: I = 5 kA, E = 2.25 GeV and a planar undulator with $\lambda_u = 2.75$ cm and N = 1450 periods. Spectra are calculated with a transmission efficiency of the monochromator of 5%.

Peak Brightness Comparison

An ultrashort pulse of light in the time domain. In this figure, the amplitude and intensity are <u>Gaussian functions</u>. The phase function is quadratic, resulting in an instantaneous frequency sweep sometimes called <u>chirp</u>, in analogy to the sound of some <u>birds</u>.

Time structure

Sample

Sputter gun

Pump - Probe setup

$$U_e(\tau) \propto \int_{-\infty}^{\infty} I_X(t) I_{IR}(t-\tau) dt$$

Mach Zehnder type interferometer

Brilliance — Microscopy

•X-ray microscopy

•X-ray dichroic microscopy

Coherence — X-ray scattering

•X-ray elastic scattering (statistical optics)

•X-ray FT interferometry

Time structure — Pump-Probe

•Time resolved core level spectroscopy

•Time resolve spectroscopy zooming in the momentum space

•TR X-ray diffraction

•Dynamics of the phase transitions

Klaus Sokolowski-Tinten

Institut für Experimentelle Physik

F.Parmigiani et al.

Undirectly Populated IPS on Ag(100)

Photoemission Spectra on Ag(100) single crystal

Non-Linear Photoemission Process

PHOTOEMISSION PROCESS PROBLEMS:

Upon the absorption of two photon the electron is already free.

Which is the absorption mechanism responsible of the free-free transition?

Keldysh parameter $\gamma = 1500 > 1$ perturbative regime $\gamma = \frac{\omega}{e}$

$$q = \frac{\omega}{e} \sqrt{\frac{mc\epsilon_0 W_b}{I}},$$

Evidence of ABOVE THRESHOLD PHOTOEMISSION in solids ?

Some preliminary considerations:

• Type of experiments

Pump-probe

Single pulse

• Energy resolution / momentum resolution:

 $\Delta E \ge h/4\pi$ $\Delta \underline{\mathbf{p}} \ge \frac{\Delta \mathbf{x}}{2} \ge h/4\pi$

Hot electron mediated surface charge transfer process on 100-500fs timescales

Real-Time Observation of Adsorbate Atom Motion Above a Metal Surface

Observation of atomic and dynamics on surface is possible by time-resolved two photon photoelectron spectroscopy. The unusual changes in the surface electronic structure within 160 fs after excitation are attributed to atomic motion in a Cu-Cs bond-breaking process.

The availability of sub ps coherent VUV and soft X-ray pulses with variable polarization will extend this technique to e very large set of systems where also the momentum and the structural parameters depending on the polarization can be explored.

