

Vacuum Technology for Synchrotron Radiation Sources

Jana Miertusova

Sincrotrone Trieste S.p.A.

Contents

About Vacuum Ι **Vacuum requirements** Π **III** Choice of material **IV** Cleaning procedures V **Chamber design VI Pumping requirements VII Beam cleaning efficiency VIII Pumping system IX** Vacuum measurement **Real experimental conditions** X

About Vacuum

Vacuum = Empty

AVS definition: "Vacuum refers to a given space filled with gas at pressures below atmospheric. Molecular density less than about 2.5x10¹⁹ molecules/cm³

P = nkT [mbar)

n ... number of molecules per unit volumek ... Boltzman's constantT ... temperature in Kelvin

I About Vacuum

☐ Vacuum ranges

Low (and medium): from atmospheric to about 10⁻² mbar Piston pumps, water ring, rotary, sorption (nitrogen)

High vacuum: from 10⁻³ mbar to 10⁻⁷ mbar Roots, ejector, diffusion, molecular (water vapour)

Ultra-high vacuum: from 10⁻⁸ mbar to 10⁻¹⁶ mbar Ion, cryogenic, sorption (hydrogen)

I About Vacuum Pumping

Main parameters:
→ the lowest pressure (ultimate pressure)
→ the pressure range
→ the pumping speed
↓ S = V/t [1/s]
↓ S is pumping speed, V is the volume, t is time
→ the exhaust pressure (additional pump)
→ the selectivity and residual gas composition (UHV)

I About Vacuum Conductance

Conductance C [l/s] $N = C(n_1 - n_2)$ N ... number of molecules n_1, n_2 ... concentrations on both part of the conductance C depends on the shape and geometry of the components and on the type of gas (analytical or numerical calculations)

I About Vacuum Outgassing

Desorption rate from materials -Arrhenius' equation dN/dT = - const. N [exp(-E/kT)]_ E ... binding energy of the molecules on the surface [kJ/mol] dN/dT = Q ... thermal outgassing rate _ At the equilibrium (UHV systems) $\square P = Q/S$

II Vacuum requirements for synchrotron radiation sources

Beam lifetime due to gas density must be > 10 h $1/\tau = 1/\tau_{el} + 1/\tau_{br} + 1/\tau_{tousch}$ Short "conditioning time" **Quick recovery after venting** Simplicity in modification for new installations Smooth chamber wall design **ELETTRA** - operating pressure < 10⁻⁸ mbar (dynamic pressure < 10⁻¹⁰ mbar/mA)

RF shielding - "fingers"

III The choice of material

_ Sufficient mechanical strength _ $L_c = 1.11 \text{ D(D/h)}^{1/2}$

⊥ L_c ... critical length for cylindrical parts
 ⊥ D ... mean diameter
 ⊥ h ... wall thickness

_ Impermeable enough to gases

∟ Low vapour pressure (Cd, Zn - no!!!)

III The choice of material

Good resistance to special working conditions (temperature, humidity) Low specific outgassing rate **Low desorption yield _** Low magnetic permeability Good weldability and machining Good thermal conductivity **Required electrical parameters**

The choice of material

The mostly used materials:

- J stainless steel (bad thermal conductivity)
- □ aluminum (porous material, high desorption yield coef.)
- \Box copper (soft)
- 」 titanium véry promising material (expensive)

□ Coated chambers(Cu, TiN, NEG - Non Evaporable Getter)

Getter: a material which is included in a vacuum device
 (tube) for removing gas by sorption

NEG: Ti-Zr-V alloys, activation at 150-180 °C for 24 h do not pump methane and inert gases!

IV

Cleaning procedures

Necessity to remove impurities and hydrocarbons
 Specific outgassing rate:

 $\Box q_D < 1.5 \ge 10^{-12} \text{ mbar l/s cm}^2$

prior to assembly after assembly

- → physical cleaning (abrasives)
- ☐ chemical cleaning (solvents)
- ☐ firing at ambient or inert (???)

plasma cleaning (O₃, N₂) glow discharge cleaning in-situ bake-out atmosphere

Vacuum Chamber Design

J Main parts of the ring vacuum chamber:
 J - electron chamber (elliptical, cylindrical, rhomboidal)

- bending magnet chamber: antechamber solution
 efficient removal of desorbed gases far away from the
 electron trajectories through the slots
- ☐ with or without central pumping
- ☐ (NEG coated chambers lower conditioning time)

Pumping spot for the electron rhomboidal chamber

Aluminum Bending Magnet Vacuum Chamber

Insertion device vacuum chamber with central pumping

_ UHV conditions:

 \square - static pressure (without beam) < 10⁻¹⁰ mbar

J - operating pressure (with beam) < 10⁻⁸ mbar
 J Total gas load

 $Q_t = Q_{des} + Q_{ind}$ The total photon flux (Souchet at all, 1983)

 $\ \ \, \square \ \, dN_{ph}/dt = 8.08 \ \, x \ \, 10^{17} \ \, I \ \, E \ \, [photons/s]$

- □ I ... beam current in mA
- □ E ...machine energy in GeV

elettra

VI Pumping Requirements

ELETTRA: 400 mA at 2 GeV, $\rho = 5.5$ m Total number of photons = 6.4×10^{20} ph/s ▲ Molecules extracted from the walls $\Box N_{mol} = \eta N_{ph}$ $\square \eta \dots$ desorption yield coefficient Characteristic of materials - has to be measured The η decrease causes the pressure decrease, so called "conditioning" Measured against Amperhour (integrated current)

Pumps must be uniformly distributed along the vacuum chamber ☐ Pressure profile calculated at steady state $dO = C L d^2P/dx^2 dx$ <u>L... half distance between two pumps</u> □ C ... pipe conductance of the perimeter B Maximum pressure $\square P_{L} = q_{D} B L [1/S_{P} + 1/2C]$ Minimum pressure $\square P_0 = q_D B L / S_P$

elettra

VI Pumping Requirements

☐ The equilibrium pressure in the ring
 ☐ P = (17.8 η + q_D A) S_{ef}
 ☐ A ... the internal surface of the volume V
 ☐ Compromise between C and A (experience)

Cross Section of the Extruded Aluminium Insertion Device Vacuum Chamber with Cooling Chanels

Aluminium Insertion Device Vacuum Chamber without central pumping

VII Beam cleaning efficiency

□ The third generation synchrotron light sources
 □ 1 Ah of conditioning = 1.7x10²³ ph/m (R.P.Walker)
 □ η in the range of 10⁻⁷ mol/ph can be reached after about 5 Ah of conditioning
 □ After about 10 Ah of conditioning the specific outgassing rate is < 1x10⁻¹³ mbar l/s cm²
 □ Beam is the best cleaning agent !

VII Beam Cleaning Efficiency

In situ bake-out - described as flash desorption $\Box E_{\rm D}/RT_{\rm m}^2 = \text{const. exp}[-E_{\rm D}/RT_{\rm m}]$ \Box E_D... activation energy of desorption \Box T_m... surface temperature at the maximum desorption rate $\Box E_{D} = 300 \text{ x } T_{m} \text{ [kJ/mol]}$ Energy of photons $E = h v = h c/\lambda$ ☐ h, c ... Planck's constant, velocity of light, resp. \neg ν , λ ... frequency and vawelength of photons

VII Beam cleaning efficiency

□ Photon "cleaning"□ λ [nm] 500 200 1□ E [eV/mol] 4x10²⁶ 8x10²⁶ 2x10²⁷

VII Beam cleaning efficiency

LETTRA experience:

- \perp 1) no complete bake-out before start up (1993)
- ☐ 2) enormous thermal stress leaks found
- □ 3) residual mass spectra: 2(H₂), 16(CH₄), 18(H₂O), □ 28(CO, N₂), 44(CO₂)
- → 4) no difference in conditioning time between baked
- and unbaked vacuum sectors
- ☐ Bake-out is time consuming, non negligible cost

VIII Pumping system

 Sputter ion pump: used crossed electric and magnetic field
 Consists of: stainless steel vessel anode of honeycomb construction titanium cathode magnets

Advantages

Disadvantages

J Gas captured inside
 J High S for active gases
 J Clean vacuum
 J No vibrations

Start to work at 10⁻⁵ mbar Low S for inert gases (He) Argon instability (triode) Need refreshing (at 220 °C)

Pressure measurements according to the SIP's current reading

Current absorbed by the pump I = K Pⁿ

Calibration equations

$I = 1850 P^{1.65}$	SIP 45 l/s
$I = 1740 P^{1.18}$	SIP 60 l/s
$I = 1590 P^{1.06}$	SIP 120 l/s
$I = 1260 P^{1.1}$	SIP 230 l/s
$I = 1200 P^{0.99}$	SIP 400 l/s
$I = 1050 P^{1.03}$	SIP 900 l/s

VIII Pumping system

Ti sublimation pump
 Main parts: water (or LN₂) cooled SST vessel
 wire feed spool driven from outside
 Ti wire
 heated post
 filaments (cathode)
 Do not pump helium!

IX Pressure measurements

Fig. 4.64 Range of pressures covered by vacuum gauges.

IX Pressure measurements

Ionisation gauges - "hot cathode"

Bayard-Alpert hot cathode gauge

I⁺ = I ⁻ s P from 10⁻³ to 10⁻¹¹ mbar Need calibration for each gas species Linear calibration curve Sensitivity variation Outgassing

VIII Pressure measurements

Ionisation gauges - "cold" cathode

Some "Spurious" Effects

Crossed electric and magnetic field Self sustaining magnetic discharge Wide range - IMG Inverted magnetron gauge 10⁻³ - 10⁻¹¹ mbar

Need calibration for each species Striking at low pressures

Residual gas analyzer

Applied d.c.+a.c. for given frequency e/m is detected

Leak detector only mass 4 (He) registered

IX Residual Gas Analyses

OMA characteristics: 1) high pressure performance (< 1x10⁻⁵ mbar) 2) detection of small signals - fragment ions detection 3) dependence of sensitivity on gas species 4) hysteresis - less pronounced at $P > 10^{-8}$ mbar 5) formation of fragment ion 6) degassing of vacuum heads 7) total pressure measurement 8) last but not least - COSTS

X Reliability under real experimental conditions

What is special:

- very big facility
- must operate reliably
- radiation
- electric field
- external magnetic field
- RF structures
- overheated parts of the vacuum chamber

There is no space for vacuum instrument installation!

X Reliability under real experimental conditions

How to cure effect of:

 radiation: developed a metal structure installed with the PEG
 magnetic field: special shielding for PEG μ metal saturates over 300 Gauss double ARMCO sheets for RGA
 RF structure: inside the RF cavities frequency shifter installed

Detail of the pump attachment on the bending magnet vacuum chamber

Radio Frequency Cavity from Cu with cooling channels

Bending magnet with the vacuum chamber

Photon absorber

Design of the accelerator vacuum system is not only the science

It is an art