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Outline

•Main properties of SR, brilliance 

•Main properties of VUV, EUV and soft x-rays mirrors and 
gratings

• Conserving brilliance up to the experiment

• Determining optical paths from Fermat’s principle: 
general theory of aberrations 



Main properties of Synchrotron Radiation

• Very broad and continuous spectral range, from infrared 
up to soft and hard x-rays

• High intensity

• The emitted radiation is highly collimated and emanates 
from a very small source: the electron beam

• Pulse time structure

• High degree of polarization



Spectral range

4-30eV
300-40nm 30-250eV

40-5nm
250eV - several keV4-30eV

300-40nm
250eV - several keV

D.Attwood, “Soft x-rays and extreme ultraviolet radiation”, Cambridge University Press, 1999



Brilliance

BWI
fluxphotonBrilliance
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I = electron current in the storage ring
= transverse area from which SR is emitted
= solid angle into which SR is emitted

BW = spectral bandwidth, usually:               
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SR brilliance at ELETTRA



Why is brilliance important? (1)

more flux more signal for the experiment

But why combining the flux with geometrical factors? 

Liouville’s theorem: for an optical system the occupied phase 
space volume cannot be decreased along the optical path 
(without loosing photons) (σσ’)final ≥ (σσ’)initial
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Example : a focusing beam
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Liouville’s theorem: (σσ’)final ≥ (σσ’)initial



• transverse momenta px, pz can be expressed in terms of the direction cosines:

• defining: 

and assuming:                        ,

the transverse momenta are proportional to            :
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Why is brilliance important? (2)
Liouville’s theorem: (σσ’)final ≥ (σσ’)initial

to focus a beam in a small spot (which is needed for achieving energy 
and/or spatial resolution) one must accept an increase in the beam divergence 

High beam divergence along the beamline:
large optical devices 
high costs and low optical qualities

With a not brilliant source the spot size can be made small only reducing the 
photon flux.

The high brilliance of the radiation source allows the development of 
monochromators with high energy resolution and high throughput and 
gives also the possibility to image a beam down to a very small spot on 
the sample with high intensity.



The beamline
The researcher needs at his experiment a certain number of 
photons/second into a phase volume of some particular 
characteristics. Moreover, these photons have to be 
monochromatized.

The beamline:
• is the means of bringing radiation from the source to the 
experiment transforming the phase volume in a controlled way: it
demagnifies, monochromatizes and refocuses the source onto a 
sample
• must preserve the excellent qualities of the radiation source



VUV, EUV and soft x-rays

These regions are very interesting because are characterized by the 
presence of the absorption edges of most low and intermediate Z elements  

photons with these energies are a very sensitive tool for elemental and 
chemical identification
But… these regions are difficult to access.

We restrict ourselves to photon energies from 10 to 2000 eV.

4-30eV
300-40nm 30-250eV

40-5nm
250eV - several keV4-30eV

300-40nm
250eV - several keV



Ultra-high vacuum

VUV, EUV and soft x-rays have a  high degree of absorption in all 
materials 
No windows   The entire optical system must be kept under 

vacuum

Ultrahigh vacuum conditions (P=1-2x10-9 mbar) are required:
• Not to disturb the storage ring and the experiment
• To avoid photon absorption in air
• To protect the optical surfaces from contamination (especially from 

carbon)



Grazing incidence optics
Strong absorption of radiation by all materials: 

no lenses: the only optical elements that can work are mirrors and 
diffraction gratings, used in reflection

Reflectivities drop down fast with 
the increasing of the grazing 
incidence angle

only reflective optics at grazing 
incidence angles (1-2 degrees)



Focusing properties
The meridional or tangential plane contains the central incidence ray and the 
normal to the surface. The sagittal plane is the plane perpendicular to the 
tangential plane and containing the normal to the surface.



Paraboloid
Rays traveling parallel to the symmetry axis OX are all focused to a point A.
Conversely, the parabola collimates rays emanating from the focus A.
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J.B. West and H.A. Padmore, Optical Engineering, 1987



Ellipsoid

Rays from one focus F1 will always be perfectly focused to the second focus F2.
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Toroid (1)
The bicycle tyre toroid is generated by rotating a circle of radius ρ in an arc of 
radius R. In general, two non-coincident focii are produced: one in the 
meridional plane and one in the sagittal plane
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J.B. West and H.A. Padmore, Optical Engineering, 1987



Toroid (2)

For ρ=R   spherical mirror
A stigmatic image can only be obtained at normal incidence. 
For a vertical deflecting spherical mirror at grazing incidence the horizontal 
sagittal focus is always further away from the mirror than the vertical 
tangential focus. The mirror only weakly focusses in the sagittal direction.
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Gratings
The diffraction grating separates the different components of the spectrum by 
redirecting the radiation by an amount which depends upon the wavelength.

λβα Nk=+ sinsin

k=0

k=-1

Grating 
normal

k=-2

k=1k=2

Outside,
negative
orders

Inside,
positive
orders

Incident 
wavelength λ α β

N=1/d is the groove density, k is the order of diffraction (±1,±2,...) 



VUV, EUV and soft x-rays beamline

Basic elements:

• mirrors to focus, deflect and filter

• gratings to diffract

• slits to spatially select the radiation

Optical elements have to preserve the quality 
(brilliance) of the radiation



Conserving brilliance

Brilliance decreases because of: 

• roughness and slope errors on optical surfaces

• thermal deformations of optical elements due to heat load 
produced by the high power radiation

• aberrations of optical elements

In the following we will consider OEs with theoretical surface shapes.



Perfect imaging and aberrations

Deviations from perfect imaging are called aberrations.

An ideal optical element is able to perform perfect imaging 
if all the rays originating from a single object point cross at 
a single image point.



Aberrations theory
Image quality is essential for achieving high energy and spatial
resolution  knowledge of aberrations theory is necessary
It shows what the different aberration terms are and how they play 
a role in the image formation it teaches how aberrations can be 
reduced

Goal: understand in general terms how to treat mathematically the 
focusing properties of a concave optical element. 
We will study the case of a grating.

The general theory of  aberrations of diffraction gratings applies 
Fermat’s principle to derive expressions for the aberration 
coefficients. 



Fermat’s principle

Light-rays choose their paths to minimize the optical length

∫
B

A

dlrn )(

: index of refraction of the medium
dl : line segment along the path

)( rn

A

B

A more accurate statement: 
a light-ray going from A to B must traverse an optical path length 
which is stationary with respect to small variations of that path



Theory of conventional diffraction gratings

where λ is the wavelength of the diffracted light, k is the order of 
diffraction (±1,±2,...), N=1/d is the groove density 

For a classical grating with rectilinear grooves parallel to z with constant 
spacing d, the optical path length is:
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Perfect focus condition (1)
Let us consider some number of light rays starting from A and impinging 
on the grating at different points P.  Fermat’s principle states that if the 
point A is to be imaged at the point B, then all the optical path lengths 
from A via the grating surface to B will be the same.  

B is the point of a perfect focus 
if:

for any pair of (y,z )
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Perfect focus condition (2)

can be used to decide on the required characteristics of the diffraction 
grating:
•the shape of the surface
•the grooves density
•the object and image distances
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Aberrated image

In general,         and         are functions of y and z and can not be made zero for 
any  y,z

when the point P wanders over the grating surface, diffracted rays fall on 
slightly different points on the focal plane and an aberrated image is formed 
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produced by the central ray
• B: ray diffracted by the 
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Grating surface
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The grating surface may in general be described by a series expansion:

a00= a10= a01= 0 because of the choice 
of origin 
j = even if the xy plane is a symmetry 

plane

Giving suitable values to the coefficients aij’s we obtain the expressions for 
the various geometrical surfaces. 
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aij coefficients (1)
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aij coefficients (2)
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Optical path function (1)
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Optical path function (2)
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Perfect focus condition (3)
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Fijk coefficients (1)
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Fijk coefficients (2)
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Fijk coefficients (3)
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Gaussian image point (1)
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Gaussian image point (2)
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Sagittal focusing

0020 =F sagittal focusing( ) 0coscos211
02 =+−

′
+ βαa

rr

While the second order aberration term F200 governs the tangential focusing, 
the second order term F020 governs the sagittal focusing:
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Aberrations terms

Most important imaging errors: 

F200 defocus
F020 astigmatism
F300 primary coma (aperture defect)
F120 astigmatic coma
F400 F220 F040 spherical aberration

There is an ambiguity in the naming of the aberrations in the grazing incidence case!



Ray aberrations (1)

The generic ray starting from A will arrive at the focal plane at a point B displaced 
from the Gaussian image point B0 by the ray aberrations ∆yb and ∆zb:
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Ray aberrations (2)
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Substituting the expansion of F , the ray aberrations for each aberration type 
can be calculated separately:

Provided the aberrations are not too large, they are additive: they may either 
reinforce or cancel.
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Aberrated image

Substituting y=±w and z=±l in the ray aberrations ∆yb
ijk and ∆zb

ijk , we 
evaluate the contributions of the rays which are more distant from the 
pole of the grating

size (∆yb * ∆zb) of the resulting aberrated image

Example of footprint on the grating:

2l=2mm

2w=44mm

y

z



Defocus and coma contributions
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The defocus contribution is linear in the ruled length (± w) of the grating, the error 
in the dispersive direction is symmetric about the Gaussian image point:
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The coma contribution is proportional to w2 giving a dispersive error which only 
occurs on one side of the Gaussian image point for rays from both the top and the 
bottom of the grating (y=±w):



Comparison ray trace - aberration calculations

Example

F200 F300

F040

F020B0
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Ray trace simple tells us that the 
ray arrives in a certain point

Aberration-based calculations 
specify the different contributions
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Aberrations contribution to resolution
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Aberration theory: conclusions 

• Perfect focus condition:                                for each pair (y,z) 
all the coefficients Fijk must be zero

• Non-zero values for the coefficients Fijk lead to displacements of the rays 
arriving in the image plane from the ideal Gaussian image point.

• We have found the expressions for these rays displacements and the 
corresponding contributions to wavelength resolution. In this way the impact 
on the imaging and energy resolution properties of a given grating can be 
evaluated. 

• By a proper choice of the grating shape, groove density, object and image 
distances, the sum of the aberrations may be reduced to a minimum. 
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