

	_	Young's modulus	Thermal	Thermal	Figure of
	amlaa	CDo	expansion	conductivity	merit
used silica	2 10	73			28
erodur	2.19	97	0.50	1.4	32
ilicon	2.33	131	2.60	156	60
IC CVD	3.21	461	2.40	198	82
luminum	2.70	68	22.5	167	7.42
opper	8.94	117	16.5	391	23.7
Hidcop	8.84	130	16.6	365	22
lolybdenum	10.22	324.8	4.80	142	29.6

gm/cc GPa con 2.33 131 CVD 3.21 461 minum 2.70 68 oper 8.94 117 icop 8.84 130 lybdenum 10.22 324.8	(α) ppm ^o C 2.60 2.40 22.5 16.5 16.6	(k) W/m/°C 156 198 167 391	k/α 60 82 7.42
Con 2.33 131 CVD 3.21 461 minum 2.70 68 oper 8.94 117 dcop 8.84 130 lybdenum 10.22 324.8	2.60 2.40 22.5 16.5 16.6	156 198 167 391	60 82 7.42
CVD 3.21 461 minum 2.70 68 oper 8.94 117 dcop 8.84 130 lybdenum 10.22 324.8	2.40 22.5 16.5 16.6	198 167 391	82
minum 2.70 68 oper 8.94 117 dcop 8.84 130 lybdenum 10.22 324.8	22.5 16.5 16.6	<u>167</u> 391	7.42
oper 8.94 117 dcop 8.84 130 lybdenum 10.22 324.8	<u>16.5</u> 16.6	391	
lcop 8.84 130 lybdenum 10.22 324.8	16.6		23.7
lybdenum 10.22 324.8		365	22
Glidcop	_ Molybi	denum	

	Density	Young's modulus	Thermal expansion	Thermal conductivity	Figure of merit
	gm/cc	GPa	$(\alpha) \text{ ppm/}^{\circ}\text{C}$	(k) W/m/°C	k/α
Silicon	2.33	131	2.60	156	60
SiC CVD	3.21	461	2.40	198	82
Aluminum	2.70	68	22.5	167	7.42
Copper	8.94	117	16.5	391	23.7
Hidcop	8.84	130	16.6	365	22
Aolybdenum	10.22	324.8	4.80	142	29.6
nvar 36	9.05	141	0.5	10.4	20.8
uperInvar 👘	8.13	145	0.06	10.5	210
Carpo oy 36 iron-nicke manganes Supernvar: irou (0.02%), manga	INVAR® enter Techno el(36%) alloy se (0.35%), s n-nickel(32% anese (0.40% Cobalt (5.5%	logy Inc. with carbon (0.02%), Silicon (0.2%)) alloy with carbon 6), Silicon (0.25%), %)			

