abdus salam international centre for theoretical physics

School on Synchrotron Radiation 8 - 26 May 2006

Optical components for hard x-ray beamlines

Edoadro Busetto

Optical components for hard x-ray beamline

High brilliance and small electron beam emittance mean X-ray beams of high quality

Mirrors 1: total reflection

 $\begin{array}{ll} \mbox{For x-rays the refractive index is} & \mbox{$n=1-\delta$} \\ \mbox{with $0<\delta<<1$}, & \mbox{therefore is} & \mbox{$0<n<1$} \\ \end{array}$

If we consider ϑ as the angle that the incoming radiation does with the mirror surface (*grazing angle*), the photons will be totally reflected if $\vartheta < \vartheta_c$

 $\vartheta < \vartheta_c$

$$\vartheta = \vartheta$$

 $\vartheta > \vartheta_c$

Mirrors 2: focussing

In the ideal mirror device all rays from one particular **point** are reflected and focused into another **point** according to 1/q + 1/p = 1/f

* the bending magnet case* the extended source case

the optical prism is used to separate the components of the white visible light

sampling the out-coming light with a couple of slits it is possible to select a part of the spectrum with a spectral purity which depends on the slits distance and aperture.

the Bragg's law

Radiation of wavelength λ is reflected by the lattice plane. The outgoing waves interfere. The interference is constructive only if the difference of optical path is a multiple of λ :

 $2d\sin\theta = n\lambda$

from the Bragg law

therefore

and the Bragg angle is 90°

important properties for the x-ray monochromators

ENERGY RESOLUTION

 $\Delta \vartheta$ has two contribution :

- $\Delta \vartheta_{\scriptscriptstyle \text{beam}}$ beam angular spread (optics)
- ω_{crystal} intrinsic reflection width of the monochromator

Case of $\Delta \theta_{beam} >> \omega_{crystal}$

white beam with divergence in the plane of scattering

Dumond diagrams

Second crystal in <u>non dispersive</u> configuration

All rays accepted by the first crystal are accepted also at the second.

Second crystal in <u>dispersive</u> configuration

Rays incident at a lower angle than the central ray on the first crystal are incident at a higher angle on the second crystal.

energy resolution fintensity of the reflection

two models for the x-ray diffraction in single crystals

	kinematical model					
	apply this model for:					
	 thin perfect crystals distorted or mosaic crystals 					
_						
according with Darwin model (1922) the mosaic crystal is defined by two general conditions:						
-	crystallites have to be					

- **misoriented** more than the Darwin with of the perfect crystal (loss of the phase condition)
- their dimensions have to be smaller than the extintion length of the considered radiation (no second interaction)

dynamical model

apply this model for:

- thick and perfect crystal

- a) we can't longer consider single interaction. (extinction length)
- b) we can't neglect, as well as in the kinematical model, the effect of the radiation absorption

Hard-X Ray Optics Laboratory

the **b** parameter defined as :

$\boldsymbol{\alpha}$ is the angle between the Bragg plane and the crystal surface

T. Matsushita and H. Hashizume **X-Ray Monochromators** *Handbook on Synchrotron Radiation, Vol. 1*

Fig. 3. Geometry of X-ray reflection by a perfect single crystal. θ_0 : incidence angle; θ_h : reflection angle. For a non-zero asymmetry angle α ($0 < |\alpha| < \theta_B$), the angular width ω_0 for acceptance is not equal to the angular width ω_h for emergence. The figure is drawn for b < 1.0, where $\omega_0 > \omega_s > \omega_h$. Note also the change of beam cross sections, S_0 and S_h .

the angular acceptance as function of the intrinsic width and the **b** parameter:

Fig. 3. Geometry of X-ray reflection by a perfect single crystal. θ_0 : incidence angle; θ_h : reflection angle. For a non-zero asymmetry angle α ($0 < |\alpha| < \theta_B$), the angular width ω_0 for acceptance is not equal to the angular width ω_h for emergence. The figure is drawn for b < 1.0, where $\omega_0 > \omega_s > \omega_h$. Note also the change of beam cross sections, S_0 and S_h .

T. Matsushita and H. Hashizume **X-Ray Monochromators** Handbook on Synchrotron Radiation, Vol. 1

Bragg reflection width in case of asymmetric cut crystal is defined by:

the angular acceptance as function of the Bragg reflection width

also for the beams sections

combining the two formulas we have the well known Liouville's theorem

Fig. 4. Perfect-crystal reflection curves for the (111) reflection of silicon at 1.6 Å. $R(\theta_0)$ shows the reflectivity for the ideal plane wave as a function of the incidence angle θ_0 , while $R(\theta_h)$ represents the intensity reflected at a reflection angle θ_h for a plane wave incident at θ_0 , θ_0 and θ_h being related by $(\theta_h - \theta_B) = b(\theta_0 - \theta_B)$. The solid curves are calculated for an asymmetric case of b = 0.4, while the broken curves for the symmetric case (b = 1.0) where $R(\theta_0) \equiv R(\theta_h)$.

T. Matsushita and H. Hashizume X-Ray Monochromators Handbook on Synchrotron Radiation, Vol. 1, edited by E.E. Kock North-Holland Publishing Company, 1983

Crystal	hki	ω _s (second or arc)	Δ <i>E/E</i> (×10 ⁵)	I (×10 ⁶
Silicon	111	7.395	14.1	39.9
	220	5.459	6.04	29.7
	311	3.192	2.90	16.5
and a second second	400	3.603	2.53	19.3
	331	2.336	1.44	11.8
	422	2.925	1.47	15.5
	333 (511)	1.989	0.88	9.9
	440	2.675	0.96	14.0
	531	1.907	0.60	9.3
Germanium	111	16.338	32.64	85.9
• •	220	12.449	14.46	67.4
	311	7.230	6.92	37.1
	400	7.951	5.94	42.3
	331	5.076	3.34	25.4
	422	6.178	3.34	32.4
	333 (511)	4.127	2.00	20.2
	440	5.339	2.14	27.5
	531	3.719	1.33	17.7
α-quartz	100	3.798	10.00	18.8
	101	7.453	15.26	40.9
	110	2.512	3.69	12.2
	102	2.488	3.36	12.9
	200	2.252	2.81	11.5
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	112	2.927	3.03	15.5
	202	2.072	1.93	10.6
	212	2.042	1.47	10.7
	203	2.430	1.74	12.9
	301	2.368	1.69	12.6

Table 2 Intrinsic Bragg reflection widths ω_s , energy resolutions $\Delta E/E$ and integral reflecting powers I of perfect crystals of silicon, germanium and α -quartz at 1.54 Å.

T. Matsushita and H. Hashizume **X-Ray Monochromators** *Handbook on Synchrotron Radiation, Vol. 1*

Fig. 33. An off-set harmonics-rejection monochromator. (a) Geometry of the monochromator. (b) The principle of harmonics rejection. Perfect-crystal reflection curves for the fundamental (n = 1) and the harmonics (n = 2, 3) are approximated by rectangular boxes. ε : off-set or misalignment angle. The shaded area represents delivered X-rays (Hart and Rodrigues 1978).

T. Matsushita and H. Hashizume **X-Ray Monochromators** *Handbook on Synchrotron Radiation, Vol. 1*

Fig. 34. A monolithic harmonics-rejection monochromator. (a) Crystals I and II of unequal asymmetry factors are built as two outstanding parts of a perfect single crystal. (b) The principle of harmonics rejection. Perfect-crystal reflection curves for the fundamental (n = 1) and the harmonics (n = 2, 3) are approximated by rectangular boxes. The broken curves show the real reflection curves for the fundamental. The shaded area represents delivered X-rays.

T. Matsushita and H. Hashizume X-Ray Monochromators Handbook on Synchrotron Radiation, Vol. 1

T. Matsushita and H. Hashizume **X-Ray Monochromators** *Handbook on Synchrotron Radiation, Vol. 1*

Note as the refractive effect on the first crystal has been totally compensated by the second one

Double crystal monochromator

