Double crystal monochromator

Sincrotrone Trieste S.c.p.A. Hard-X Ray Optics Laboratory

Diffraction 1 57 poles wiggler source at ELETTRA 400mA, 1.6T and 2GeV total power: 8 kW

The double crystal monochromator at the **diffraction1** beamline

Diffraction 1: first optical element in the beam Si(111) internally water cooled

total power absorbed 0.5 kW*

* 1.5 x 0.28 mrad²

Conceptual design of an internally water cooled crystal

The two Si components before the Si-Si brazing

channels:

Electrici Sincrotrone Trieste S.c.p.A. Hard-X Ray Optics Laboratory thickness: 300µm depth: 2mm

3D picture of the double ϑ-2ϑ equipment

The double ϑ -2 ϑ test station at the Hard X-ray Laboratory

DISTRIBUZIONE DELL'AMPIEZZA DELLE ROCKING-CURVE VALUTATE MEDIANTE DIFFRAZIONE SUI PIANI Si-111

14.1	
13.6	
13.1	
12.6	
12.1	
11.6	
11.1	
10.7	
10.2	
9.7	
	_

Valori espressi in secondi di grado

Topography of the internal cooled Si-crystal with channels perpendicular to the scattering plane

Same topography but with channels in the same direction of the scattering plane

surface of a Si(111) crystal with a evident stressed structure induced by a back-side machining and not removed by chemical hatching

The inclined double crystal monochromator setup to reduce the power density

Si(111) inclined channel-cut crystal monochromator designed for the ALOISA beamline.

energy range: 2.8 to 8 KeV beam dimension: 3x3 mm source: wiggler-ondulator

E. Busetto et al.: "*The High Energy Monochromator for the ALOISA Beamline*". Rev. Sci. Instrum. **66** (2), February 1995

A new prototype of monochromator under test with x-rays

- Single counters :
- These systems allow to collect all the electrons produced by the absorption of an x-ray.
- The mean number of electrons produced during the absorption process is proportional to energy of the single x-ray.

Shintillators

These kind of detectors are the result of the coupling between a doped crystal (i.e. NaI:Ta) and a photo-multiplier tube

Integrators

- They are systems that integrates the charge. They generally lose the direct correlation between electrons produced and energy of the absorbed photon.
- The signal local intensity has to be proportional to the number of photons absorbed in the same region.

The radiographic film

It is still one of the most used detector.

Due to the photocemical reaction $AgBr \rightarrow Ag^+$ with a density of Ag^+ that is proportional to the absorbed radiation. The developer bath reduces $Ag^+ \rightarrow Ag$ with the tipical gray scale we are used to see .

Characteristic curve of the film density against the time esposure (log/log)

2Ddigital integrator detectors

A commercial CCD detector

Comparison between linearity, dynamic range and efficiency

Physic of the Imaging Plate.....an analogical detector with digital readout

Gas detector : how does they work ?

