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Introduction 

Ray tracing is a powerful tool to estimate and understand the behaviour of a complicated object. When in 

optic one have to deal with a lot of elements (may be lenses, mirrors, diffractive objects and so on) it’s surely 

possible to estimate the final behaviour of the system by first principle (i.e. simply satisfy complicated 

equations) but... 

There are so many parameter to take into consideration, misalignment, slope errors, high order aberrations, 

residual astigmatism and many other and, practically, it’s impossible to estimate carefully the final system 

performances. 

On the other hand, a ray-tracing program, even if it is a very good program, is not able to substitute an 

optical designer in the definition of the parameter of a beamline. 

For this reason, the equations at the basis of the optics for synchrotron radiation must not be forgotten but 

perfectly understood. 

In particular, in the case of the synchrotron radiation, the following statements must be recorded. Since we 

have to deal with soft or hard x-ray, the transmission of the elements is negligible or useless, so, no lenses can 

be used. Nevertheless, the reflectivity of every material in both these ranges drop down faster with the 

increasing of the grazing angle of incidence. Therefore, very grazing angle is necessary. Typical values could 

be 1-20 for the soft X-ray range and 0.2-0.30 for the hard X-ray radiation. This introduces further problems. The 

radiation becomes “sensible”  to any surface imperfection. For this reason acceptable difference between the 

real and desired slope could not exceed few µrad RMS on a 1-m length mirror. 

Another problem is the high power radiation impinging on the mirrors. This causes an unavoidable heat 

load that increases the deformation of the mirrors. 

All this problems and boundaries condition must be strictly taken into consideration before run a ray tracing 

program, because great difference between simulated and real value are easy to be obtained. 

So, we can conclude saying that ray tracing is fundamental for a good design of a beamline but is not only 

useless, but also dangerous, if is not used properly. 

 

How a ray-tracing program works 

As mentioned above, the ray-tracing program must “simulate”  the behaviour of a photon during its travel. 

Even if a rigorous quantistic description (involving wave functions) should be used, we can approximate the 

photons as object travelling along a straight line (exactly as made in the geometrical optics). The only thing to 

take into consideration is the effect on the trajectory of the optical elements. In fact, a mirror can be perfectly 

simulated by this representation. The photons arrive on the surface, the surface is locally simulated as a plane 

mirror and a specular reflection takes part. This is exactly what a ray-tracing program does, even if the physic 

behind this simple process is quite complicated. Another story is the problem of the efficiency (i.e. how many 

photons are reflected by the mirror and how many are adsorbed) but this is out of the scope of these notes. 
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Therefore, we now can simulate the behaviour of a photon on a mirror, but, following it step by step, we 

must start from the source. First, we need to know the characteristic of the source. The programs, typically, are 

able to simulate point sources, rectangular sources, gaussian (both in angular and spatial), monochromatic, 

polychromatic (some different line of energy), continuous energy range, and sometimes also to simulate a real 

synchrotron source, a bending magnet, an undulator or a wiggler. Practically it generates a series of photons 

any one with a defined position in the space, a trajectory, energy, and in some cases the polarisation degree (a 

value useless and meaningless for single photons). 

To generate real synchrotron sources some complicated equation must be solved or, alternatively, the 

electron trajectory and the emission from any electron must be simulated. This procedure is quite complicated 

and in most of the cases is not necessary. For instance, to simulate an undulator source without the aid of 

external programs, a gaussian distribution is a good approximation. The gaussian shape should be defined by 

the following equations: 

(1)    Σx=( σx
 2+σR

2)1/2 Σy=(σy
2+σR

2)1/2 

(2)    Σ'x=(σ'x
2+σ'R

2)1/2 Σ'y=(σ'y
2+σ'R

2)1/2 

where Σx Σy Σ'x Σ'y are the spatial and angular divergence of the photon beam, σx is the nominal electron beam 

size in the horizontal direction (Elettra case is typically 0.24 mm), σy is the nominal electron beam size in the 

vertical direction (Elettra case is 0.04 mm), σ'x is the nominal electron beam divergence in the horizontal 

direction (Elettra case is 0.03 mrad), σ'y is the nominal electron beam divergence in the vertical direction 

(Elettra case is 0.017 mrad). The dependence of the emitted radiation from the energy is related to following 

relations: 

(3)    σR =0.15 (λL)1/2 and σ'R =1.30 (λ/L)1/2     

L is the undulator total length and λ is the selected photon wavelength. 

The energy distribution of the source is fundamental to understand the behaviour of the beamline. The first 

step is the simulation of a perfect monochromatic source. In this way one have the exact idea of what happen at 

the selected energy. Another important parameter is the divergence. The ideal divergence of a synchrotron 

source is quite small. Nevertheless, the angular distribution is big enough to light the full optics and to 

introduce errors induced by the divergence (i.e. non-paraxial approximation necessary). For this reason, a real 

beamline and also a simulated one should have a pinhole some meter after the source to adsorb all the radiation 

out of a specified distribution cone (typical divergence accepted by a beamline is less then 0.05 mrad2 for the 

Fig. 1 Random box distribution. 
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soft x-ray beamline and some mrad2 for the HXR ones). In any case, also a gaussian distribution could not be 

so easy to be simulated. Let us consider the possibility to write a program by ourselves. In this case, a standard 

programming language gives a random distribution inside a box (typically 0-1). It is necessary to use a random 

distribution because the number of photons used in a simulation could not be too high. The use of 5000-10000 

ray is already a number great enough, but only if the rays are randomly distributed. The box distribution (R(x)) 

is easily defined as a function that is equal to 1 inside the range 0-1 and is zero outside, i.e. as shown in fig.1.  

Vice versa, the Gaussian distribution is defined by the equation in fig. 2 

 

Fig. 2 Gaussian distribution with the equation that define it. 

 

Now, the probability to found a photon (or whatever) gaussian distributed in the interval between -∞ and x1 

is: 

(4)     P(x)[−∞; x1] = G(x)dx
−∞

x1

�  

Since the probability to found a value between -∞ and +∞ for a gaussian distribution is 1, the easiest way to 

random distribute elements with gaussian shape is the following. First, found a value V between 0 and 1 for the 

equation R(x) and impose this value to the probability distribution P(x) i.e. 

(5)    R(x) = V[0 −1] = P(x)[−∞; x1] = G(x)dx
−∞

x1

�  

Now, the value x1 is the value assigned to our photons. Following this procedure for every photon, one 

defines exactly a gaussian distribution. 

Let us now spend some more words about the mirrors. Every program has a collection of shapes available. 

Typical shapes are Plane, Spherical, Elliptical, Cylindrical, Toroidal, Parabolic, and so on. All these shapes 

have to be defined (by the programmer) with his geometrical equation typically quite complicated.  

Once the rays are defined, everyone with its direction and position in the space, it could be traced up to 

meet the following mirror surface. Practically, the only equation to solve is the intersection between a line (the 

ray path) and a geometrical function describing the optical surface of the mirror. At the intersection point, one 

should calculate the normal at the optical surface, and reflect the ray respect it. In this way the mirror, locally, 

can be approximated with a plane surface, and the result is just a simple reflection (easy to treat).  
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In this way, every aberration introduced by the optics, every error of focus will be shown in the final image 

obtained. It is easy to introduce slope errors (just modifying the geometrical equation describing the optical 

surface); it is easy to simulate misalignment (just moving the pole of the optical surface) and so on. 

In reality, behind this simple concept of reflection, some complicate equations take into consideration the 

aberrations, the focal property and so on. However, instead of treat its as the “case of the mirrors” , we will treat 

as a simplifications of the more general case of the grating. 

The grating, as a prism or a crystal, is a dispersive object. We will consider only the grating. The case of the 

crystal will be discussed in another section of this school. The basic equations for gratings is: 

(6)     d(sinα-sinβ)=nλ 

 

Where the following reference system was adopted. 
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But, to have a deep knowledge of the property of a grating/mirror, the Fermat’s principle must be applied. 

This principle, widely used in optics, can be summarised as follow: the light travel between two different points 

in the shortest possible time. Therefore, it is necessary to recover the optical path F of a ray passing trough a 

grating (the case of the mirror is a sub-case) and then derives this path respect the time t. The minimum time 

condition is fulfilled when: 

(7)      
∂F

∂t
= 0  

Any deviation from this condition can be called “aberration” , i.e. distortion from the ideal value. 

To found the minimum time path is equal to found the minimum distance path, since the photon travels 

always in the same medium (i.e. vacuum). One must therefore define the optical path F of a ray passing trough 

a general point P  (of co-ordinate w, k, l) on the grating as a function of w, k, and l and found the minimum 

distance path respect these co-ordinates. The general optical path can be written as: 

 (8)     F = AP + PB +
nλ
d

 

Where the dispersive term is introduced to take into account the dispersive property of the grating.  

The co-ordinate of the point A and B will be respectively (x,y,z  and x’ ,y’ ,z’  ) and thus the distance AP and 

PB could be re-written as follow: 

(9)     AP = (x − w)2 + (y − k)2 + (z − l)2
 

(10)     PB = ( ′ x − w)2 + ( ′ y − k)2 + ( ′ z − l )2
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Now, the co-ordinate x,y  and z  (as x’ ,y’ ,z’  ) can be re-written as a function of r  (distance source-pole of 

the grating), r’   (distance pole of the grating-image) and of the angles α and β, i.e.: 

(11)     x = −r ⋅ cosα  

(12)     y = r ⋅sinα  

(13)     ′ x = ′ r cosβ  

(14)     ′ y = ′ r sinβ      

(15)     ′ z = −z
′ r 

r
 

The last point to know is the relation between k, w and l.  Practically it is necessary to know the geometrical 

equation describing k as a function of w and l. This equation should be written in the following form: 

(16)     k = Kijw
i

i , j
� l j

 

Of course, this equation is different for the different geometrical shapes. Nevertheless, there is a case, the 

toroidal, which describe more than 90% of the cases of mirror and gratings (probably 100% of the gratings). 

For this case, of a toroidal grating, this relation is: 

(17)   k =
1

2R
w2 +

1

2ρ
l 2 +

1

4R2ρ
w2l 2 +

1

8R3 w4 +
1

8ρ3 l 4
 

Where R is the major radius of curvature of the toroidal shape and ρ the minor radius of curvature. 

With the previous relations (8-15) it is easy to re-write the equation 8 as a polynomial series, still as a 

function of w and l, i.e.: 

(18)     F = Fij w
i l j

i, j
�  

Each term of the equation 18 can be obtained from equation 8 simply by deriving it: 

(19)     
( )

0,

, )!(

1

=

+

��
���

�
+

=
lw

ji

ji

ji
lw

F

ji
F

∂∂
∂

 

In principle, one must satisfy the following two equations to found the “no aberration”  condition for a 

grating: 

(20)     
∂F

∂w
= 0 ;

∂F

∂l
= 0  

Nevertheless, practically, this condition is more or less impossible to found for a general grating shape. The 

operative approach is to set independently to zero as much terms as possible of the equation 18. In this way, 

even if are not equal to zero, the equations 20 become small enough. The word «enough» depends on a lot of 

parameter, the shape, the divergence of the incoming radiation, the illuminated area of the grating and so on. 

For this reason is important to know the influence of each term to final image shape, to set to zero the most 

important ones and minimise the others. For instance, the term F00  (which can be set at any value because his 

derivative respect w and l is always zero) is simply the amount of path travelled (r+r’ ). F10 take into account 

the dispersive property of the grating, i.e. the equation 6. 

The high order terms, vice-versa, describe the focal property as the residual aberration introduced by the 

optical component. 
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Let us consider, for instance, the terms F20. This terms is the second derivative of the optical path function 

F, i.e. from equation 19: 

(21)     F2,0 =
1

2

∂ 2( )F

∂w2

� 
� � 

� 
� � w,l = 0

 

Since the first derivative is zero (as a boundary condition to have diffraction), this terms is an indicator of 

how much the optical path function differ from zero moving out from the ideal working condition, i.e. out from 

the centre of the grating. If this term is set to zero, this mean that every ray, even if do not hit the grating in its 

pole, still satisfy the minimum time path (at least in the second order approximation). This is exactly the focal 

condition of an object, i.e. the main term that contribute to the presence or not of aberration. 

The same consideration can be made for the term F02. Nevertheless, since F20 describe the focal condition in 

the “ tangential plane”  (the plane defined by the outgoing ray and the normal to the grating surface), the term F20 

describes the focal condition in the orthogonal plane, the sagittal one (described by the outgoing radiation 

direction and the groove direction (for a grating)). 

Let us see the form of these terms, always in the case of a toroidal grating: 

(22)   F2,0 =
cos2α

r
−

cosα
R

� 
� � 

� 
� � +

cos2 β
′ r 

−
cosβ

R

� 
� � 

� 
� �  

(23)    F0,2 =
1

r
+

1

′ r 
−

cosα − cosβ
ρ

 

The further terms will describe the residual (or absence of) aberrations. Of course higher is the order of the 

aberration lower is the influence of this on the final image. So, for practical reason, only the term F30 will be 

considered. 

(24)   F3,0 =
cos2 α

r
−

cosα
R

� 
� � 

� 
� � 

sinα
r

+
cos2 β

′ r 
−

cosβ
R

� 
� � 

� 
� � 

sinβ
′ r 

 

 

Let us now see how can we estimate the effect of these terms in the final image. As explained above, the 

optical path function describes the optical characteristics of the final image. So, with the knowledge of the 

terms Fi,j, one can write the optical path function as a function of w and l, when w and l are, this time, the half 

dimension of the photon spot on the grating surface. This will give an estimation of the contribution at the final 

image of the most distant rays from the pole of the grating, i.e. the rays that mostly contribute to the final 

imperfection of the image. Therefore,  

(25)     
∂F

∂w

� 
� � 

� 
� � w =l = 0

⋅ W =
3

2
W3F30 + ⋅⋅ ⋅  

will give an idea of the enlargement of the final image due to the F30 contribution. The aberration due to this 

term is called “primary coma”. Typically, it is quite difficult or impossible to set to zero the term F30. 

Therefore, one must try to minimise it considering that the equations 6 and 22 must be absolutely by set to zero. 

Nevertheless, at the end, to have a more evident (and precise) view of the effect of the residual slope errors, ray 

tracing is the ideal solution. 

Let us see now which information we can obtain. Other then the shape of the final image, another important 

information could be the number of rays lost or, alternatively the dimension of the optics required. In fact, one 
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can also have a look at the spot on the mirror surface. If one want to have a particular divergence accepted by 

the beamline, should have the optics big enough to accept it. Very important is also the resolving power of a 

beamline. There is different method to estimate it. Let us consider two. 

In the first case, one can define a source with an energy distribution made by two single lines. The source 

will pass the optics, (mirrors and the grating) and arrive in the plane where there will be the exit slit. Evidently 

the two line are resolved when are visible and the resolving power will be defined by the energy separation 

between the two lines, i.e. as in the following picture: 

339.9855eV

340.0145eV

∆E=0.029eV

 

In this case, the resolving power will be 12000 (340/0.029) with an exit slit of 20µm (the separation 

between centre of the two image, i.e. the dimension of the monochromatic spot). 

A different approach can be adopted introducing a real exit slit. The source now should be defined as a 

continuos energy distribution. In particular, one should define an energy interval great enough to have an 

∆E=0.03eV
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energy distribution well defined after the exit slit, but small enough to do not loose too much ray in the slits. 

One should now be able to plot the energy distribution after the slit and the result, for the same system above is: 

Another information that one can obtain is the effect of the slope errors on the focal property of an element. 

One can introduce the slope errors in one or more optics and compare the result with the ideal case. 

Alternatively, one can simulate different mirror shape to found the best solution for his purpose. 

 

Two examples 

 1) Demagnification with a single mir ror  

In the first example, let us consider the case of the demagnification of a square source (50X50 µm2). We 

will use a single mirror, focusing only in the vertical direction. There are numerous possible choices. We will 

limit at the cases of spherical, cylindrical and elliptical mirror. 

The divergence of the source is 0.5X0.5 mrad. This is a typical value for a synchrotron radiation beamline. 

The idea is to create a 10 µm vertical dimension spot.  Another constrain is the incidence angle. Above 2o 

grazing incidence (88o normal) the reflectivity drop down rapidly. Therefore, 2o will be our choice. 

The Program used is SHADOW, later described. In the first case, the mirror is spherical; the radius (that 

can be calculated by the program) is defined by the equation 

(26)     
1

r
+

1

′ r 
� 
� � 

� 
� � 

cosϑ
2

=
1

R
 

Where the angle θ is respect the normal to the surface. 

In this case r=500cm, r’=100cm and R=4775cm. A demagnification 5:1 should give us a 10µm vertical 

dimension, but the result is the following: 
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The units are cm. As can be seen, the final spot is not a stripe of 10 µm but has a big tail due to a lot of 

aberration, induced by the combination of the strong demagnification and the high divergence of the beam. 

The second case is identical to the first except for the distances that are doubled, i.e. r=1000cm r’=200cm. 

The final image is: 

 

The width of the graph is always the same. It is evident that there is an enlargement of the tail. This is due 

to the increasing of the lightened part of the mirror, i.e. the parameter W of the aberration theory. As explained 

the aberration is proportional to the same power of W and this explain the enlargement of the image aberration. 

The third case is no more a 5:1 demagnification but a 3:1. Even in this case we will use a spherical mirror 

but with r=600, r’=200. The expected image height is about 15 µm, but, considering the reduced 

demagnification, i.e. the reduction of aberrations, the result is better than the first case. The spot become: 



 10

Up to now, the mirror(s) was placed with the reflecting surface faced up, i.e. in tangential focusing mode 

(see next picture). Now, let us consider a sagittal cylinder. This is a cylinder with the reflecting surface face left 

(or right) focusing still in the vertical direction (see figure).  

Object

Image

Tangential focusing

Sagital focusing

ImageObject

 

From the geometrical theory of aberration it come out that there is an enlargement of the final spot 

dimension. Always considering an entrance arm r=500 cm and r’=100, with the radius of curvature ρ calculated 

(from eq. 23) as: 

(27)     
1

r
+

1

′ r 
� 
� � 

� 
� � 

1

2cosϑ
=

1

ρ
 

The final image will be: 
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The final case is the case of a plane-elliptical mirror. This is a mirror with elliptical shape in the tangential 

direction and plane in the sagittal. This still focus in tangential direction and the great advantage is the absence 

of aberration due to the width of the spot. This is because the ellipsoid always focuses a point in a point even if 

the divergence is quite large. Of course, this is true if the aberrations are not considered. Without aberrations 

the final image is: 

 

Therefore, in principle, the elliptical shape is the best choice. 

 

  2) Spher ical grating 

This second example will introduce the use of the program SHADOW. We will consider a spherical grating 

again working in tangential mode. The grating will have a radius of curvature R= 2000 cm. The groove density 

is 6000 l/cm, the distance source grating is 400 cm and the distance grating-image (grating-exit slit) is 150 cm. 

By satisfying eq. 22, i.e. F20=0 a table of energy and angle of the grating is: 

Photon energy (eV) Incident angle Diffraction angle 

500 83.04834 83.79230 

300 82.63818 83.84556 

100 80.94452 84.25400 

50 79.01137 85.23461 
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In this case, we are working with the external orders, for SHADOW the positives. 

Before creating the grating, we must create the source. Both source and optical elements must be crate in 

window mode. 

The source must be described carefully, trying to avoid forgetting some parameters. We will simulate a 

source of 240x10µm2 (see the first of the 3 figures appended to this notes). 

The energy distribution should be a multi-line or continuous introducing an exit slit to define the resolution. 

Once al the parameters are defined, we can define the optical element, the grating. 

We use now the photon energy of 100 eV. Even in this case, the window mode is quite easy to be used. One 

must insert the right parameter, in the main menu and in the sub menu. Once that everything is defined, the 

program should trace the rays (processing the data) and to visualise the results is possible to use both the 

internal plot system (pressing on the button plot) or using the post-processor (under the menu tools). 

Briefly, SHADOW defines as STAR.XX the image of the element XX (01,02 etc...). The image in the 

mirror surface is defined as: M IRR.XX and, if a screen is defined, the image on the screen is SCREEN.XXYY 

where XX is related to the optical element on which the screen is appended and YY is the number of the 

screen. Vice-versa the source is recorded in the file BEGIN.DAT.  

The post-processors are sub-programs useful to analyse the data. They work in prompt mode; i.e. an answer 

is expected for any question the program formulates. In particular, histo1 generate a histogram to see the 

mono-dimensional distribution of photons (in space or energy). Remember that the column for SHADOW are 

defined as follow: 

1 X 
2 Y 
3 Z 
4 X’  
5 Y’  
6 Z’  
11 Energy 

 

In addition, the reference system is the following: 
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