REVIEW OF QUANTUM MECHANICS AND ATOMIC PHYSICS

M. ALTARELLI

12.05.2006

REVIEW OF QUANTUM MECHANICS AND ATOMIC PHYSICS

- 1. Who needs Quantum Mechanics?
- 2. The basic formalism: wave functions, operators
- 3. Energy, position, momentum, angular momentum, and their measurements.
- 4. The Schrödinger Equation, harmonic oscillator, hydrogen atom
- 5. Atomic Structure

1. Who needs Quantum Mechanics?

Blackbody radiation

Classical physics: at temperature T every mode has average energy (1/2) k_BT Number of modes between ν , ν +d ν with k_x=2n π /L, etc.

 $(V/c^3) 8\pi v^2 dv$

Total Energy at temp. T ~ T
$$\int_{0}^{\infty} v^2 dv = \infty$$
 !!

Planck's constant:

 $h = 6.6252 \cdot 10^{-27} erg \cdot s$ $\hbar = h/2\pi = 1.0544 \cdot 10^{-27} erg \cdot s$

Einstein (1905): E = hv

STABILITY OF "PLANETARY" ATOMS

Rutherford's α**-particles scattering experiments** show:

Electrons are waves, because they are diffracted by crystals and crystal surfaces!

Ag 100

Si 111 7X7

The basic formalism: wave functions, operators.

In *classical* physics the state of a particle at a given time is specified by the value of its position r(t) and its velocity v(t) (or momentum p(t)).

More generally for a system of N particles the state is identified by giving $r_i(t)$, $p_i(t)$, with i =1,2,...N.

In *quantum* physics the state of a particle at a given time is specified by a complex wavefunction of its coordinates,

 $\psi(x,y,z,t).$

Physical interpretation: $|\psi(x,y,z,t)|^2 dxdydz$ proportional to probability that a measurement at time t will find particle between x,y,z, and x+dx,y+dy, z+dz.

 The basic formalism: wave functions, operators, measurement

Note that $|\psi(x,y,z,t)|^2 dxdydz$ is equal - and not just proportional to the probability if:

$$\int |\psi(x, y, z, t)|^2 dx dy dz = 1$$

For a system of N particles, generalize:

 $\psi(x,y,z,t) \implies \psi(x_1,y_1,z_1;x_2,y_2,z_2;...;x_N,y_N,z_N;t)$

Related to prob. of finding one particle between r_1 and r_1+dr_1 , one between r_2 and r_2+dr_2 , etc.

Observable physical quantites:

e.g. the *position* x,y,z of a particle;

the momentum p_x , p_y , p_z , of a particle ; the *z* component of its angular momentum l_z ; its energy E the total momentum $\mathbf{P} = \Sigma \mathbf{p}_i$ of a system of particles.

In Quantum Mechanics observables correspond to *linear*, *self-adjoint* (or *hermitian*) operators in the vector space of wavefunctions

Definition:

<u>Operator Ô</u>: Ô $\psi(x,y,z) = \psi_1(x,y,z)$; it operates (performs an operation) on the wavefunction $\psi(x,y,z)$ that transforms it into a different function $\psi_1(x,y,z)$.

Examples of Operators:

$$\frac{\partial}{\partial x} : \hat{\mathbf{O}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{\partial}{\partial x} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$$
$$e^{i\varphi} : \hat{\mathbf{O}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = e^{i\varphi} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$$
$$x \frac{\partial}{\partial y} : \hat{\mathbf{O}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = x \frac{\partial}{\partial y} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$$

Definitions:

Linear operator:

 $\hat{O} [c_1 \psi_1(x,y,z) + c_2 \psi_2(x,y,z)] = c_1 \hat{O} \psi_1(x,y,z) + c_2 \hat{O} \psi_2(x,y,z)$

Scalar product of two wavefunctions:

$$\langle \psi_1 | \psi_2 \rangle = \int \psi_1^*(x, y, z) \psi_2(x, y, z) dx dy dz$$

Self-adjoint or hermitian operator :

An operator $\hat{\mathbf{O}}$ such that for two arbitrary functions $\langle \psi_1 | \hat{O} \psi_2 \rangle = \langle \hat{O} \psi_1 | \psi_2 \rangle = \langle \psi_1 | \hat{O} | \psi_2 \rangle$ $\int \psi_1^*(x, y, z) \{ \hat{O} \psi_2(x, y, z) \} dxdydz = \int \{ \hat{O} \psi_1(x, y, z) \}^* \psi_2(x, y, z) dxdydz$

Examples of hermitian operators:

 $\hat{O} = x_0$ (a real multiplicative constant)

 $\hat{O} = x$ (the operator that transforms ψ into $x\psi$).

 $\hat{O} = i \frac{\partial}{\partial x}$ (For functions that vanish at infinity, proof uses integration by parts)

3. Energy, position, momentum, angular
momentum,...and
their measurement
Examples of correspondence between
observables and operators:
Position along x [or y, z]
$$\hat{O} \psi(x, y, z) = x \psi(x, y, z)$$
 [or $y\psi, z\psi$]
Momentum component p_x : $\hat{O}\psi(x, y, z) = -i\hbar \frac{\partial}{\partial x}\psi(x, y, z)$

Kinetic energy of a particle with mass *m* , $T = (p_x^2 + p_y^2 + p_x^2)/2m$:

$$\hat{O}\psi(x, y, z) = \frac{-\hbar^2}{2m} \nabla^2 \psi(x, y, z)$$
$$\nabla^2 \psi(x, y, z) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\psi(x, y, z)$$

Examples of correspondence between observables and operators

Angular momentum of a particle, $l = r \times p$:

$$L_{x} = (yp_{z} - zp_{y}) : -i\hbar(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y})\psi(x, y, z)$$
$$L_{y} = (zp_{x} - xp_{z}) : -i\hbar(z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z})\psi(x, y, z)$$
$$L_{z} = (xp_{y} - yp_{x}) : -i\hbar(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x})\psi(x, y, z)$$

Remarks on products of operators and commutation

$$\boldsymbol{L}_{\boldsymbol{x}} = (\boldsymbol{y}\boldsymbol{p}_{\boldsymbol{z}} - \boldsymbol{z}\boldsymbol{p}_{\boldsymbol{y}}) \quad \longrightarrow \quad -i\hbar(\boldsymbol{y}\frac{\partial}{\partial \boldsymbol{z}} - \boldsymbol{z}\frac{\partial}{\partial \boldsymbol{y}})\psi(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$$

We implicitly used the notion of operator product, e.g. yp_z as the operator that first applies p_z to ψ , than applies (i.e. multiplies by) y to the resulting function.

Operator product is non-commutative, in general:

$$\hat{A}\hat{B}\psi(x,y,z)\neq\hat{B}\hat{A}\psi(x,y,z)$$

Example:

$$xp_{x}\psi = x(-i\hbar\frac{\partial}{\partial x}\psi) = -i\hbar x \frac{\partial}{\partial x}\psi$$

$$p_{x}x\psi = -i\hbar\frac{\partial}{\partial x}(x\psi) = -i\hbar\psi - i\hbar x \frac{\partial}{\partial x}\psi$$

Commutator: $[x, p_x] = xp_x - p_x x = i\hbar$

Eigenvalues and eigenvectors of linear operators <u>*Definition:*</u>

 $\psi_n(x,y,z)$ is an *eigenvector* (eigenfunction) of linear operator \hat{O} with eigenvalue e_n (e_n is a number) if, for all x,y,z: $\hat{O} \psi_n(x,y,z) = e_n \psi_n(x,y,z)$

Example:

$$\hat{O} = p_z = -i\hbar \frac{\partial}{\partial z}$$
Eigenvector

$$\psi(x, y, z) = \varphi(x, y)e^{ik_z z}$$

$$\hat{p}_z \varphi(x, y)e^{ik_z z} = \hbar k_z \varphi(x, y)e^{ik_z z}$$

Generalization: $e^{i\vec{k}\cdot\vec{r}} = e^{ik_x x} e^{ik_y y} e^{ik_z z}$

Is an eigenvector of: p_x, p_y, p_z with eigenvalues respectively: $\hbar k_x, \hbar k_y, \hbar k_z$

The spherical harmonics (l=0,1,2)

$$\ell \qquad m_\ell \qquad Y_{\ell m_l}(\theta,\phi) = \Theta_{\ell m_l}(\theta) \Phi_{m_l}(\phi)$$

0 0
$$(1/4\pi)^{1/2}$$

1 0
$$(3/4\pi)^{1/2}\cos\theta$$

- $1 \quad \pm 1 \quad \mp (3/8\pi)^{1/2} \sin \theta e^{\pm i\phi}$
- 2 0 $(5/16\pi)^{1/2}(3\cos^2\theta 1)$
- 2 ± 1 $\mp (15 / 8\pi)^{1/2} \sin \theta \cos \theta e^{\pm i\phi}$

2
$$\pm 2$$
 $(15/32\pi)^{1/2} \sin^2 \theta e^{\pm 2i\phi}$

$$\begin{split} \Phi_{m\ell}(\phi) &= \frac{1}{\sqrt{2\pi}} e^{im_{\ell}\phi} \\ \Theta_{\ell m_{\ell}}(\theta) &= \left[\frac{2\ell+1}{2} \frac{(\ell-m_{\ell})!}{(\ell+m_{\ell})!} \right]^{1/2} P_{\ell}^{m_{\ell}}(\theta) \\ P_{\ell}^{m_{\ell}}(\theta) &= associated \ Legendre \ polynomial \end{split}$$

Measurements of Observables in QM

If a system is in a state described by a wavefunction which is an eigenfunction of an operator \hat{O} , with eigenvalue *e*, then measurements of the observable shall always produce the value *e*.

If on the other hand the system is in a state described as a linear superposition of the eigenfunctions of \hat{O} , $\psi_n(x,y,z)$ with eigenvalues e_n , i.e.:

$$\psi(x,y,z) = \sum_{n} c_{n} \psi_{n}(x,y,z)$$

Then the measurement of \hat{O} can produce any of the e_n values, with a probability equal to:

$$P(e_{n}) = \frac{|c_{n}|^{2}}{\sum_{n'} |c_{n'}|^{2}}$$

Measurements of Observables in QM

Before the measurement the wavefunction is:

$$\psi(x,y,z) = \sum_{n} c_{n} \psi_{n}(x,y,z)$$

After the measurement, with result e_n it becomes:

 $\psi_n(x,y,z)$

Three Important Theorems

Theorem 1. All eigenvalues of a hermitian operator are real

Theorem 2. *Eigenfunctions of the same operator corresponding to two different eigenvalues are orthogonal, i.e.*

$$\hat{O}\psi_{1} = e_{1}\psi_{1}, \hat{O}\psi_{2} = e_{2}\psi_{2}$$
$$e_{1} \neq e_{2}$$
imply: $\langle \psi_{1} | \psi_{2} \rangle = 0$

Theorem 3. Eigenfunctions ψ_n of a hermitian operator are a complete set, i.e. an arbitrary function $\psi(x,y,z)$ can be written as:

$$\psi(x,y,z) = \sum_{n} c_{n} \psi_{n}(x,y,z)$$

4. The Schrödinger Equation and the Role of Energy

In *classical* physics a particle moving in an external potential V(x,y,z) has a Hamiltonian (energy written as a function of position and momentum) given by:

$$H = \frac{p^2}{2m} + V(x, y, z)$$

The corresponding quantum mechanical operator is:

where
$$\hat{H} = \hat{T} + \hat{V} = \frac{-\hbar^2 \nabla^2}{2m} + V(x, y, z),$$
$$\hat{V} \psi(x, y, z) = V(x, y, z) \psi(x, y, z), \text{ (a multiplicative op.)}$$

Energy plays a very important role: it determines the time evolution of systems.

(Time-dependent) Schrödinger Equation:

$$i\hbar \frac{\partial}{\partial t}\psi(x, y, z, t) = \hat{H}\psi(x, y, z, t)$$

Suppose that at t=0 (x,y,z,0) is an eigenvector of H^:

$$H\psi(x, y, z, 0) = E_n \psi(x, y, z, 0)$$

(Time independent) Schrödinger Equation

Then, at t=0:

$$i\hbar[\frac{\partial}{\partial t}\psi(x,y,z,t)]_{t=0} = \dot{H}\psi(x,y,z,0) = E_n\psi(x,y,z,0)$$

$$\psi(x,y,z,t) = \psi(x,y,z,0)e^{-i(E_n/\hbar)t}$$

Consequence: for energy eigenfunctions, time dependence is just a *phase factor*, and:

$$|\psi(x, y, z, t)|^2 = |\psi(x, y, z, 0)|^2$$

Probability distribution is <u>constant</u> in time: energy eigenfunctions are called <u>"stationary states".</u>

Time-independent Schrödinger Equation for Central Potentials

General motion of a particle in 3-dim. potential: $\hat{H}\psi(x,y,z) = \left[-\frac{\hbar^2 \nabla^2}{2m} + V(x,y,z)\right]\psi(x,y,z) = E\psi(x,y,z)$

Important class of potentials are those with with rotation invariance, i.e. depending only on distance from a centre:

$$V(x, y, z) = V(\sqrt{x^2 + y^2 + z^2}) = V(r)$$

Examples:Coulomb potential $V(r) = -Z e^2/r$ 3-dim. isotropic harmonic oscillator $V(r) = (1/2) m \omega^2 r^2$

General Structure of Solutions for Central Potentials

Solutions labelled by 3 numbers n,1,m:

$$\hat{H}\psi_{nlm} = E\psi_{nlm}$$

To describe ψ_{nlm} (x,y,z) use spherical coordinates ψ_{nlm} (r, θ , ϕ):

A two-body central force problem: the H atom

A two-body central force problem: the H atom

$$(\hat{H}_{R} + \hat{H}_{r})\Psi(\vec{R},\vec{r}) = E\Psi(\vec{R},\vec{r})$$
$$\Psi(\vec{R},\vec{r}) = \Phi(\vec{R})\psi(\vec{r})$$

Φ: Free particle motion of the whole atom:

$$\Phi(\vec{R}) = e^{i\vec{K}\cdot\vec{R}}; E_R = \frac{\hbar^2}{2(M+m)}K^2$$

ψ: Relative motion around the c. of m.:

$$\psi(\vec{r}) = \psi_{nlm}(\vec{r}) = f_{nl}(r)Y_{l,m}(\theta,\varphi)$$

A two-body central force problem: the H atom

Quantum Numbers and Orbitals

n	1	Orbital	m	# of Orb.
1	0	1s	0	1
2	0	2s	0	1
2	1	2p	-1, 0, 1	3
3	0	3s	0	1
3	1	3p	-1, 0, 1	3
3	2	3d	-2, -1, 0, 1, 2	5
	I			

• the "ground" or lowest energy orbital is the 1s.

Fig 1. A few electronic energy levels of the hydrogen atom. As n increases the energy levels converge to a limit, and above this limit (the shaded area) there are a continuum of levels corresponding to complete separation of proton and electron with kinetic energy > 0

Orbital Shapes

• Note that the "1s" wavefunction has no angular dependence (i.e., θ and ϕ do not appear).

P

$$\psi_{1s} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_o} \right)^{3/2} e^{-\frac{Z}{a_0}r} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_o} \right)^{3/2} e^{-\sigma}$$
Bohr
$$a_0 = \frac{\hbar^2}{me^2} = 0.539 \cdot 10^{-8} \, cm$$
radius

Probability =
$$\psi^* \psi$$

• Probability is spherical

2p (l = 1) orbitals

• labeled with respect to orientation along x, y, and z.

3p orbitals

- more nodes as compared to 2p (expected.).
- still can be represented by a "dumbbell" contour.

3d(l=2) orbitals

• labeled as d_{xz} , d_{yz} , d_{xy} , d_{x2-y2} and d_{z2} .

4f(l = 3) orbitals

• exceedingly complex probability distributions.