REVIEW OF QUANTUM MECHANICS AND ATOMIC PHYSICS

12.05.2006

REVIEW OF QUANTUM MECHANICS AND ATOMIC PHYSICS

1. Who needs Quantum Mechanics?
2. The basic formalism: wave functions, operators
3. Energy, position, momentum, angular momentum, and their measurements.
4. The Schrödinger Equation, harmonic oscillator, hydrogen atom
5. Atomic Structure

1. Who needs Quantum Mechanics?

Blackbody radiation

Classical physics: at temperature T every mode has average energy $(1 / 2) k_{B} T$

Number of modes between $v, v+\mathrm{d} v$ with $\mathrm{k}_{\mathrm{x}}=2 \mathrm{n} \pi / \mathrm{L}$, etc.

$$
\left(\mathrm{V} / \mathrm{c}^{3}\right) 8 \pi v^{2} \mathrm{~d} v
$$

Total Energy at temp. $\mathrm{T} \sim \mathrm{T} \int_{0}^{\infty} v^{2} d v=\infty \quad!!$

Blackbody radiation

> Planck: Walls exchange energy with field at frequency v only in quanta:
> $\mathrm{h} \nu, 2 \mathrm{~h} \nu, 3 \mathrm{~h} \nu, 4 \mathrm{~h} \nu, \ldots$

Planck's constant:

$$
\begin{aligned}
& h=6.6252 \cdot 10^{-27} \mathrm{erg} \cdot \mathrm{~s} \\
& \hbar=h / 2 \pi=1.0544 \cdot 10^{-27} \mathrm{erg} \cdot \mathrm{~s}
\end{aligned}
$$

Einstein (1905): E = hv

STABILITY OF "PLANETARY" ATOMS

Rutherford's α-particles scattering experiments show:

" Planetary" model of the atom
Why electrons do not radiate and fall into the nucleus??

Electrons are waves, because they are diffracted by crystals and crystal surfaces!

Ag 100
Si 111 7X7

2. The basic formalism: wave functions,

operators.

In classical physics the state of a particle at a given time is specified by the value of its position $r(t)$ and its velocity $v(t)$ (or momentum $p(t)$).

More generally for a system of \mathbf{N} particles the state is identified by giving $r_{i}(t), p_{i}(t)$, with $i=1,2, \ldots N$.

In quantum physics the state of a particle at a given time is specified by a complex wavefunction of its coordinates,
$\psi(\mathbf{x}, \mathbf{y}, \mathrm{z}, \mathrm{t})$.
Physical interpretation: $|\psi(x, y, z, t)|^{2}$ dxdydz proportional to probability that a measurement at time t will find particle between x, y, z, and $x+d x, y+d y, z+d z$.
2. The basic formalism: wave functions,

operators, measurement

Note that $|\psi(x, y, z, t)|^{2}$ dxdydz is equal - and not just proportional to the probability if:

$$
\int|\psi(x, y, z, t)|^{2} d x d y d z=1
$$

For a system of \mathbf{N} particles, generalize:

$$
\psi(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t})=>\psi\left(\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{z}_{1} ; \mathbf{x}_{2}, \mathbf{y}_{2}, \mathbf{z}_{2} ; \ldots ; \mathbf{x}_{\mathrm{N}}, \mathbf{y}_{\mathrm{N}}, \mathbf{z}_{\mathrm{N}} ; \mathbf{t}\right)
$$

Related to prob. of finding one particle between r_{1} and $r_{1}+d r_{1}$, one between r_{2} and $r_{2}+d r_{2}$, etc.

Observable physical quantites:

e.g. the position $\mathrm{x}, \mathrm{y}, \mathrm{z}$ of a particle;
the momentum $\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}$, of a particle ;
the z component of its angular momentum 1_{z};
its energy E
the total momentum $\mathbf{P}=\Sigma \mathbf{p}_{\mathrm{i}}$ of a system of particles.

In Quantum Mechanics observables correspond to linear, selfadjoint (or hermitian) operators in the vector space of wavefunctions

Definition:

Operator $\hat{\boldsymbol{O}}: \quad \hat{\mathbf{O}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})=\psi_{1}(\mathbf{x}, \mathbf{y}, \mathbf{z})$; it operates (performs an operation) on the wavefunction $\psi(x, y, z)$ that transforms it into a different function $\psi_{1}(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

Examples of Operators:

$$
\begin{aligned}
& \frac{\partial}{\partial x}: \hat{\mathbf{o}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})=\frac{\partial}{\partial x} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) \\
& e^{i \varphi}: \hat{\mathbf{o}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})=e^{i \varphi} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z}) \\
& x \frac{\partial}{\partial y}: \hat{\mathbf{O}} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})=x \frac{\partial}{\partial y} \psi(\mathbf{x}, \mathbf{y}, \mathbf{z})
\end{aligned}
$$

Definitions:

Linear operator:
$\hat{\mathbf{O}}\left[\mathrm{c}_{1} \psi_{1}(\mathrm{x}, \mathrm{y}, \mathrm{z})+\mathrm{c}_{2} \psi_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z})\right]=\mathbf{c}_{1} \hat{\mathbf{O}} \psi_{1}(\mathrm{x}, \mathrm{y}, \mathrm{z})+\mathrm{c}_{2} \hat{\mathbf{O}} \psi_{2}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Scalar product of two wavefunctions:
$\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\int \psi_{1}^{*}(x, y, z) \psi_{2}(x, y, z) d x d y d z$

Self-adjoint or hermitian operator :
An operator \hat{O} such that for two arbitrary functions

$$
\begin{aligned}
& \left\langle\psi_{1} \mid \hat{O} \psi_{2}\right\rangle=\left\langle\hat{O} \psi_{1} \mid \psi_{2}\right\rangle=\left\langle\psi_{1}\right| \hat{O}\left|\psi_{2}\right\rangle \\
& \int \psi_{1}^{*}(x, y, z)\left\{\hat{O} \psi_{2}(x, y, z)\right\} d x d y d z=\int\left\{\hat{O} \psi_{1}(x, y, z)\right\}^{*} \psi_{2}(x, y, z) d x d y d z
\end{aligned}
$$

Examples of hermitian operators:

$\hat{O}=\mathrm{x}_{0}$ (a real multiplicative constant)
$\hat{O}=\mathrm{x}$ (the operator that transforms ψ into $\mathrm{x} \psi)$.
$\hat{O}=i \frac{\partial}{\partial x} \quad \begin{gathered}\text { (For functions that vanish at infinity, proof uses } \\ \text { integration by parts) }\end{gathered}$
3. Energy, position, momentum, angular momentum,...and

their meacurement

Examples of correspondence between observables and operators:

Position along $\mathrm{x}[\mathrm{or} \mathrm{y}, \mathrm{z}] \quad \hat{O} \psi(x, y, z)=x \psi(x, y, z) \quad[$ or $y \psi, z \psi]$
Momentum component $\mathbf{p}_{\mathrm{x}}: \hat{O} \psi(x, y, z)=-i \hbar \frac{\partial}{\partial x} \psi(x, y, z)$
Kinetic energy of a particle with mass $m, T=\left(p_{x}{ }^{2}+p_{y}{ }^{2}+p_{x}{ }^{2}\right) / 2 m$:

$$
\begin{aligned}
& \hat{O} \psi(x, y, z)=\frac{-\hbar^{2}}{2 m} \nabla^{2} \psi(x, y, z) \\
& \nabla^{2} \psi(x, y, z)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi(x, y, z)
\end{aligned}
$$

Examples of correspondence between

 observables and operatorsAngular momentum of a particle, $\boldsymbol{l}=\boldsymbol{r} \boldsymbol{x} \boldsymbol{p}$:

$$
\begin{aligned}
& L_{x}=\left(y p_{z}-z p_{y}\right):-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \psi(x, y, z) \\
& L_{y}=\left(z p_{x}-x p_{z}\right):-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \psi(x, y, z) \\
& L_{z}=\left(x p_{y}-y p_{x}\right):-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \psi(x, y, z)
\end{aligned}
$$

Remarks on products of operators and commutation

$$
L_{x}=\left(y p_{z}-z p_{y}\right) \rightarrow-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \psi(x, y, z)
$$

We implicitly used the notion of operator product, e.g. $y p_{z}$ as the operator that first applies $\boldsymbol{p}_{\boldsymbol{z}}$ to ψ, than applies (i.e. multiplies by) y to the resulting function.
Operator product is non-commutative, in general:

$$
\hat{A} \hat{B} \psi(x, y, z) \neq \hat{B} \hat{A} \psi(x, y, z)
$$

$$
x p_{x} \psi=x\left(-i \hbar \frac{\partial}{\partial x} \psi\right)=-i \hbar x \frac{\partial}{\partial x} \psi
$$

Example:

$$
p_{x} x \psi=-i h \frac{\partial}{\partial x}(x \psi)=-i \hbar \psi-i \hbar x \frac{\partial}{\partial x} \psi
$$

Commutator: $\quad\left[x, p_{x}\right]=x p_{x}-p_{x} x=i \hbar$

Eigenvalues and eigenvectors of linear operators

Definition:

$\psi_{\mathrm{n}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is an eigenvector (eigenfunction) of linear operator $\hat{\boldsymbol{O}}$ with eigenvalue e_{n} (e_{n} is a number) if, for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$:

$$
\hat{O} \psi_{\mathrm{n}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{e}_{\mathrm{n}} \psi_{\mathrm{n}}(\mathrm{x}, \mathrm{y}, \mathrm{z})
$$

Example:

$$
\hat{O}=p_{z}=-i \hbar \frac{\partial}{\partial z}
$$

Eigenvector

$$
\psi(x, y, z)=\varphi(x, y) e^{i k_{z} z}
$$

Eigenvalue

$$
p_{z} \varphi(x, y) e^{i k_{z} z}=\hbar k_{z} \varphi(x, y) e^{i k_{z} z}
$$

Generalization: $e^{i \vec{k} \cdot \vec{r}}=e^{i k_{x} x} e^{i k_{y} y} e^{i k_{z} z}$

Is an eigenvector of:

$$
\mathbf{p}_{\mathrm{x}}, \mathbf{p}_{\mathrm{y}}, \mathbf{p}_{\mathrm{z}}
$$

with eigenvalues respectively: $\hbar k_{x}, \hbar k_{y}, \hbar k_{z}$
....and also of: $\quad \hat{T}=\frac{p^{2}}{2 m}=\frac{-\hbar^{2} \nabla^{2}}{2 m}$
With eigenvalue: $\quad \frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)$

The same $C(r) Y_{\ell, m}(\theta, \phi)$ are also eigenfunctions of L_{z} :

$$
L_{z} \chi(r) Y_{l, m}(\theta, \varphi)=m \hbar \chi(r) Y_{l, m}(\theta, \varphi)
$$

Operators that commute have common eigenfunctions!

$$
\left[L^{2}, L_{z}\right]=0
$$

The spherical harmonics ($\mathrm{l}=0,1,2$)
$\ell \quad m_{\ell} \quad Y_{\ell m_{l}}(\theta, \phi)=\Theta_{\ell m_{l}}(\theta) \Phi_{m_{l}}(\phi)$
$0 \quad 0 \quad(1 / 4 \pi)^{1 / 2}$
$10(3 / 4 \pi)^{1 / 2} \cos \theta$
$1 \pm 1 \quad \mp(3 / 8 \pi)^{1 / 2} \sin \theta e^{ \pm i \phi}$
$20 \quad(5 / 16 \pi)^{1 / 2}\left(3 \cos ^{2} \theta-1\right)$
$2 \pm 1 \quad \mp(15 / 8 \pi)^{1 / 2} \sin \theta \cos \theta e^{ \pm i \phi}$
$2 \pm 2(15 / 32 \pi)^{1 / 2} \sin ^{2} \theta e^{ \pm 2 i \phi}$
$\Phi_{m_{\ell}}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m_{\ell} \phi}$
$\Theta_{\ell m_{\ell}}(\theta)=\left[\frac{2 \ell+1}{2} \frac{\left(\ell-m_{\ell}\right)!}{\left(\ell+m_{\ell}\right)!}\right]^{1 / 2} P_{\ell}^{m_{\ell}}(\theta)$
$P_{\ell}^{m_{\ell}}(\theta)=$ associated Legendre polynomial

Measurements of Observables in QM

If a system is in a state described by a wavefunction which is an eigenfunction of an operator \hat{O}, with eigenvalue e, then measurements of the observable shall always produce the value e.

If on the other hand the system is in a state described as a linear superposition of the eigenfunctions of $\hat{O}, \psi_{\mathrm{n}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ with eigenvalues e_{n}, i.e.:

$$
\psi(x, y, z)=\sum_{n} c_{n} \psi_{n}(x, y, z)
$$

Then the measurement of \hat{O} can produce any of the e_{n} values, with a probability equal to:

$$
P\left(e_{n}\right)=\frac{\left|c_{n}\right|^{2}}{\sum_{n^{\prime}}\left|c_{n^{\prime}}\right|^{2}}
$$

Measurements of Observables in QM

Before the measurement the wavefunction is:

$$
\psi(x, y, z)=\sum_{n} c_{n} \psi_{n}(x, y, z)
$$

After the measurement, with result e_{n} it becomes:

$$
\psi_{n}(x, y, z)
$$

Three Important Theorems

Theorem 1. All eigenvalues of a hermitian operator are real
Theorem 2. Eigenfunctions of the same operator corresponding to two different eigenvalues are orthogonal, i.e.

$$
\begin{aligned}
& \hat{O} \psi_{1}=e_{1} \psi_{1}, \hat{O} \psi_{2}=e_{2} \psi_{\curlyvee_{2}} \\
& e_{1} \neq e_{2} \\
& \text { imply: } \quad\left\langle\psi_{1} \mid \psi_{2}\right\rangle=0
\end{aligned}
$$

Theorem 3. Eigenfunctions ψ_{n} of a hermitian operator are a complete set, i.e. an arbitrary function $\psi(x, y, z)$ can be written as:

$$
\psi(x, y, z)=\sum_{n} c_{n} \psi_{n}(x, y, z)
$$

4. The Schrödinger Equation and the Role of Energy

In classical physics a particle moving in an external potential $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ has a Hamiltonian (energy written as a function of position and momentum) given by:

$$
H=\frac{p^{2}}{2 m}+V(x, y, z)
$$

The corresponding quantum mechanical operator is:

$$
\hat{H}=\hat{T}+\hat{V}=\frac{-\hbar^{2} \nabla^{2}}{2 m}+V(x, y, z)
$$

where $\quad V \psi(x, y, z)=V(x, y, z) \psi(x, y, z)$, (a multiplicative op.)

Energy plays a very important role: it determines the time evolution of systems.
(Time-dependent) Schrödinger Equation:

$$
i \hbar \frac{\partial}{\partial t} \psi(x, y, z, t)=\hat{H} \psi(x, y, z, t)
$$

Suppose that at $\mathrm{t}=0(\mathrm{x}, \mathrm{y}, \mathrm{z}, 0)$ is an eigenvector of H^{\wedge} :

$$
H \psi(x, y, z, 0)=E_{n} \psi(x, y, z, 0)
$$

(Time independent) Schrödinger Equation

Then, at $\mathrm{t}=0$:

$$
i \hbar\left[\frac{\partial}{\partial t} \psi(x, y, z, t)\right]_{t=0}=\hat{H} \psi(x, y, z, 0)=E_{n} \psi(x, y, z, 0)
$$

Solution:

$$
\psi(x, y, z, t)=\psi(x, y, z, 0) e^{-i\left(E_{n} / \hbar\right) t}
$$

Consequence: for energy eigenfunctions, time dependence is just a phase factor, and:

$$
|\psi(x, y, z, t)|^{2}=|\psi(x, y, z, 0)|^{2}
$$

Probability distribution is constant in time: energy eigenfunctions are called "stationary states".

Time-independent Schrödinger Equation for Central Potentials

General motion of a particle in 3-dim. potential:
$\hat{H} \psi(x, y, z)=\left[-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(x, y, z)\right] \psi(x, y, z)=E \psi(x, y, z)$
Important class of potentials are those with with rotation invariance, i.e. depending only on distance from a centre:

$$
V(x, y, z)=V\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)=V(r)
$$

Examples:

Coulomb potential

$$
\mathrm{V}(\mathrm{r})=-\mathrm{Z} \mathrm{e}^{2 / r}
$$

3-dim. isotropic harmonic oscillator

$$
V(r)=(1 / 2) m \omega^{2} r^{2}
$$

General Structure of Solutions for Central Potentials

Solutions labelled by 3 numbers $\mathrm{n}, 1, \mathrm{~m}$: $\quad \hat{H} \psi_{n l m}=E \psi_{n l m}$
To describe $\psi_{\text {nlm }}(\mathbf{x}, \mathrm{y}, \mathrm{z})$ use spherical coordinates $\psi_{\mathrm{nlm}}(\mathrm{r}, \theta, \phi)$:

$$
\text { Then: } \psi_{\mathrm{nlm}}(\mathrm{r}, \theta, \phi)=\mathrm{f}_{\mathrm{nl}}(\mathrm{r}) \mathrm{Y}_{\mathrm{lm}}(\theta, \phi)
$$

"Radial Equation": $\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+V(r)+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] r f_{n l}(r)=E_{n l} r f_{n l}(r)$

A two-body central force problem: the H atom

$$
\begin{array}{cc}
\text { Proton } & \text { electron } \\
\mathbf{M},+\mathrm{e} & 0 \\
\mathbf{m},-\mathrm{e} & \mathbf{M} \sim \mathbf{1 8 5 0} \mathrm{~m} \\
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla_{P}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{e}^{2}-\frac{e^{2}}{\left|\vec{r}_{P}-\vec{r}_{e}\right|} &
\end{array}
$$

Centre of Mass and Relative Coordinates:
Free particle motion of the whole atom

$$
\begin{aligned}
& \frac{M \vec{r}_{P}+m \vec{r}_{e}}{M+m} ; \vec{r}=\vec{r}_{P}-\vec{r}_{e} ; \frac{1}{m^{*}}=\frac{1}{M}+\frac{1}{m} \approx \frac{1}{m} \\
& H=-\frac{\hbar^{2}}{2(M+m)} \nabla_{R}^{2}-\frac{\hbar^{2}}{2 m^{*}} \nabla_{r}^{2}-\frac{e^{2}}{r}=\hat{H}_{R}+\hat{H}_{r}
\end{aligned}
$$

A two-body central force problem: the H atom

$$
\begin{aligned}
& \left(\hat{H}_{R}+\hat{H}_{r}\right) \Psi(\vec{R}, \vec{r})=E \Psi(\vec{R}, \vec{r}) \\
& \Psi(\vec{R}, \vec{r})=\Phi(\vec{R}) \psi(\vec{r})
\end{aligned}
$$

Φ : Free particle motion of the whole atom:

$$
\Phi(\vec{R})=e^{i \vec{k} \cdot \vec{R}} ; E_{R}=\frac{\hbar^{2}}{2(M+m)} K^{2}
$$

ψ : Relative motion around the c. of m.:

$$
\psi(\vec{r})=\psi_{n l m}(\vec{r})=f_{n l}(r) Y_{l, m}(\theta, \varphi)
$$

A two-body central force problem: the H atom

Energy levels:
$\mathbf{E}<0$

$$
\mathrm{n}=1,2,3, \ldots
$$

(bound) $\mathrm{l}=0,1,2 \ldots \mathrm{n}-1$

$$
\begin{aligned}
& \text { Rydberg Constant, } 13.6 \mathrm{eV} \\
& E=-\frac{m e^{4}}{2 \hbar^{2}} \frac{1}{n^{2}}
\end{aligned}
$$

$$
m=-1,-(1-1) \ldots, \ldots, 1
$$

$\mathbf{E}>0 \quad n=i k$
(ionized) $\quad \mathrm{l}=0,1,2 \ldots$

$$
\mathrm{m}=-\mathrm{l},-(\mathrm{l}-1) . \ldots, \mathrm{l}
$$

$$
E=\frac{\hbar^{2} k^{2}}{2 m^{*}}
$$

Quantum Numbers and Orbitals

n	l	Orbital	m	\# of Orb.
	0	1 s	0	
1	0	1 s	0	1
2	0	2 s	$-1,0,1$	3
2	1	2 p	0	3
3	0	3 s	$-1,0,1$	1
3	1	3 p	$-2,-1,0,1,2$	3
3	2	3 d		5

Orbital Energies

Fig 1. A few electronic energy levels of the hydrogen atom. As n increases the energy levels converge to a limit, and above this limit (the shaded area) there are a continuum of levels corresponding to complete separation of proton and electron with kinetic energy >0

Orbital Shapes

- Note that the " 1 s " wavefunction has no angular dependence (i.e., θ and ϕ do not appear).

$$
\psi_{1 s}=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{o}}\right)^{3 / 2} e^{-\frac{Z}{a_{0} r}}=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{o}}\right)^{3 / 2} e^{-\sigma}
$$

(b)

Bohr

$$
a_{0}=\frac{\hbar^{2}}{m e^{2}}=0.539 \cdot 10^{-8} \mathrm{~cm}
$$

$$
\text { Probability }=\psi^{*} \psi
$$

- Probability is spherical

Orbital Shapes (cont)

$$
\mathrm{s}(1=0) \text { orbitals }
$$

- r dependence only
- as n increases, orbitals demonstrate $\mathrm{n}-1$ nodes.

Orbital Shapes (cont.)

$$
2 \mathrm{p}(1=1) \text { orbitals }
$$

(b)

$\psi_{2 p_{z}}=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{Z}{a_{o}}\right)^{3 / 2} \sigma e^{-\sigma / 2} \cos \theta$

- labeled with respect to orientation along x, y, and z .

Orbital Shapes (cont.)

$3 p$ orbitals

- more nodes as compared to 2 p (expected.).
- still can be represented by a "dumbbell" contour.

Orbital Shapes (cont.)

$3 \mathrm{~d}(\mathrm{l}=2)$ orbitals

(a)

(b)

- labeled as $d_{x z}, d_{y z}, d_{x y}, d_{x 2-y 2}$ and $d_{\mathrm{z} 2}$.

Orbital Shapes (cont.)

$$
4 f(l=3) \text { orbitals }
$$

- exceedingly complex probability distributions.

