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deformed materials

Part I

Part II
• Applications of powder diffraction:
a survey

Part III



3ICTP School - Trieste, May 2006        - © Do not copy – Do not reproduce

A vector drawn from the origin of the reciprocal lattice to the point (hkl), 
where h, k, l are the Miller indices (integer numbers) is given by:

The vector modulus is the inverse 
of the interplanar distance for
the planes with indices (hkl): 

hkld ha kb lc∗ ∗ ∗ ∗= + +
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000
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DIFFRACTION AND RECIPROCAL SPACE

where a*, b*, c* are the reciprocal
space vectors
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The  reciprocal lattice is made  of
(infinitely small) points representing
sets of planes of  Miller indices  hkl

000        001        002

001        101        201

002        102        202

For a perfect           crystal(infinite)

DIFFRACTION AND RECIPROCAL SPACE
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For  a  perfect  (infinite)  crystal 
the peak width is determined by 
the instrumental resolution only:
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DIFFRACTION AND RECIPROCAL SPACE
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For a finite crystal  (D<1µm)

D=Na

a

DIFFRACTION AND RECIPROCAL SPACE

Reciprocal lattice points have finite
extension.  The  shape is  related to 
the crystal shape .
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(Scherrer formula)

D=Na
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DIFFRACTION AND RECIPROCAL SPACE
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Effect of instrument, domains with different shape/size
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For a given wavelenght, the 
Bragg law sets a limit to the 
interplanar distances for
which diffraction is observed:

sin 2 1dθ λ= ≤

2d
λ

∗ ≤

All points representing planes
that can diffract are inside a 
sphere of finite radius, 2/λ

(limiting sphere)

(000)

2 λ

(000)

RECIPROCAL LATTICE: DIFFRACTION CONDITIONS
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The diffraction condition
occurs when the tip of the 
scattering vector d* falls on a 
point of the reciprocal space. 

The condition is fulfilled by all
points on the Ewald sphere, a 
sphere of radius 1/λ, tangent
to the origin and to the 2/λ
sphere. 

2θ

(000)

Ewald sphere

0s λ

s λ
d ∗

2θ

2 λ

(000)

RECIPROCAL LATTICE: DIFFRACTION CONDITIONS

In a powder diffraction measu-
rement, the Ewald sphere can 
be thought as rotating inside 
the 2/λ sphere.



11ICTP School - Trieste, May 2006        - © Do not copy – Do not reproduce

During a powder diffraction
measurement, the sphere of 
radius d* swells (for increasing
2θ) and sweeps the reciprocal
space within the limits:

(000)
0s λ

s λ d ∗
2θ

2 λ

(000)

20 d
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As a consequence, the tip of 
the scattering vector ‘sweeps’
the surface of a sphere of 
radius d*

( )0 2 180θ≤ ≤ °

RECIPROCAL LATTICE: DIFFRACTION CONDITIONS

Limiting sphere
d*≤2/λ

Ewald
sphere

Powder Diffraction
sphere
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Ewald
sphere

0s λ

s λ d ∗
2θ

(000)

2 λ

RECIPROCAL LATTICE: MULTIPLICITY

In a powder (polycrysta lline materials) 
measuremnt more than one point can be
in diffraction condition simultaneously, 
i.e., for the same 2θ.

This property leads to the 
concept of multiplicity of a 
reflection, that is the number of 
equivalent planes.

Miller indices hkl hhk 0kl 0kk hhh 00l 

Multiplicity 48 24 24 12 8 6 
 

In cubic structures:
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The concept of ‘Powder’
An ideal powder is a polycrystalline sample (a true powder or a bulk 
specimen) such that for every possible orientation a sufficiently
high number of grains (à grain statistics) has atomic planes in 
Bragg condition (random orientation).

DIFFRACTION FROM POWDER AND POLYCRYSTALLINE

θθ

Random orientation

θθ

Preferred orientation

If preferred orientation (texture) is present, suitable models are 
necessary to account for the ‘non-ideal’ conditions. 
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Integrated intensity
Intrinsic features of the sample, instrument and measurement
geometry cause a dispersion of the scattered intensity across a 
finite angular range (a peak). The range (width) changes with 2θ.

2 0 3 0 4 0 5 0 6 0
2 θ   ( d e g r e e s )

The diffracted signal is better represented by the area of the 
diffraction peak (integrated intensity) than by maximum intensity.

DIFFRACTION FROM POWDER AND POLYCRYSTALLINE
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The integrated intensity of a powder diffraction peak is given by:

( ) ( )
( ) ( )

2
2 1 cos 2

2 '
sin sin 2TI k F p

θ
θ

θ θ

 +
=   

 

INTEGRATED INTENSITY

Structure
factor Lorentz-Polarization

factor
Molteplicity
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The integrated intensity of a powder diffraction peak is given by:

( ) ( )
( ) ( )
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θ θ
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INTEGRATED INTENSITY

Structure
factor
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SCATTERING FROM A UNIT CELL: STRUCTURE FACTOR

The instant electric field scattered by a unit cell with N atoms is
proportional to the
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scattering factor

( )02

1

nr s sN i

hkl n
n

F f e
π

λ
⋅ −

=

= ∑
( ) ( )2

1

n n n
N i u a v b w c ha kb l c

n
n

f e
π ∗ ∗ ∗+ + ⋅ + +

=

= ∑ ( )2

1

n n n
N

i u h v k w l
n

n
f e π + +

=

= ∑



19ICTP School - Trieste, May 2006        - © Do not copy – Do not reproduce

COHERENT AND INCOHERENT SCATTERING

Istantant electric field
scattered by a unit cell

2F FF ∗=The diffracted intensity is proportional to:    

• For a totally constructive interference, the square
of the sum of the amplitudes is considered:

• In absence of phase relation, the sum of the
squared amplitudes (intensities) is considered: ( )2

PI N F∝

Given the large number of unit cells in a crystal, 
the difference between coherent and incoherent signal is huge

( )2
PI NF∝

( )2

1

n n n
N

i u h v k w l
n

n
F f e π + +

=

∝  = ∑

Phase problem 
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For more precise calculations it is necessary to
consider that: 

• The charge distribution is not radially symmetric
• Anomalous absorption effects take place in the

vicinity of atomic absorption edges
(à fluorescence edges)

ATOMIC SCATTERING FACTOR 
AND DISPERSION CORRECTIONS
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THERMAL VIBRATIONS: DEBYE-WALLER FACTOR

U

r
U(T)

rm δm

rn

Owing to thermal vibrations, atoms and molecules oscillate 
about an equilibrium position. The instant position can be
written as:                   (average pos. + instant displacement)n m mr r δ= +

Thermal vibrations reduce the 
diffracted intensity by a factor

( )2
2 2

2
sin

16 sm
e

θ
π δ

λ
−

( )2

2
sin

2B
e

θ

λ
−

= 2 mMe−=
B – Debye-Waller factor

2
smδ

projected along
the   scattering 
vector direction

instant displacement
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THERMAL VIBRATIONS: DEBYE-WALLER FACTOR

The effect on the Bragg component (coherent diffraction), for
one atomic species only, assuming isotropic oscillations
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M is related to the  elastic/ 
thermal properties of  the 
material (atomic vibrations):
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The integrated intensity of a powder diffraction peak is given by:

( ) ( )
( ) ( )
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INTEGRATED INTENSITY

Molteplicity
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MULTIPLICITY

Multiplicity (p) :  number of equivalent planes.

Miller indices hkl  hhk  0kl  0kk  hhh  00l  

Multiplicity 48 24 24 12 8 6 
 

Multiplicity for cubic structure powder specimens
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The integrated intensity of a powder diffraction peak is given by:

( ) ( )
( ) ( )
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2 1 cos 2
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θ θ
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INTEGRATED INTENSITY

Lorentz-Polarization
factor
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Mean square field:

X-RAY ELASTIC SCATTERING AND POLARIZATION
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Scattered intensity:
7.94x10-26 cm2
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A diffraction measurement basically consists in a cross section
through one or more reciprocal space (RS) points. 

001

002

0s s
θ θ

*
001d

L=Na

a

h
( )2

2

sin
( )

Nh
h
π

π

The measured intensity depends on:
a) The way RS points are crossed;
b) The sampling in RS (considering measurements are in 2θ space);
c) The fraction of diffracted signal collected by the detector.

THE LORENTZ FACTOR
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Putting together the trigonometric terms for the various
contributions, the Lorentz Factor for the powder geometry is:
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THE LORENTZ FACTOR
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THE LORENTZ-POLARIZATION FACTOR

PF= ( )21 cos 2 2θ + 

The Lorentz and Polarization factors can be combined in a single 
trigonometric term: the Lorentz-Polarization factor:

2

cos
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LF θ
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Beam cross section A0, intensity I0 impinging with angle θ1. A small
volume dV (thickness dx, surface )diffracts at the angle θ2( )0 1sinA θ

A0

x

dx

θ1
θ2

( ) ( )1 2 1 21 sin 1 sin 1 sin 1 sin0 0
0

1sin
x xI AdI I e dV e dxµ θ θ µ θ θ

θ
− + − += =

ABSORPTION

An advantage of the traditional Bragg-Brentano powder diffraction
geometry: no need for θ-dependent correction terms for absorption
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A0

x
dx

θ1
θ2

In the traditional powder geometry: 1 2θ θ θ= =

2 sin0 0 0 0

0sin 2
xI A I AI e dxµ θ

θ µ

∞
−= =∫By integrating on the sample thickness:

Indipendent
of θ

ABSORPTION

( ) ( )1 2 1 21 sin 1 sin 1 sin 1 sin0 0
0

1sin
x xI AdI I e dV e dxµ θ θ µ θ θ

θ
− + − += =
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The integrated intensity of a powder diffraction peak is given by:

INTEGRATED INTENSITY

Structure
factor Lorentz-Polarization

factor
Molteplicity

If terms for absorption (µ), cell volume (va), goniometer radius (r) 
and wavelenght (λ) are written explicitly,

( ) ( )
( ) ( )

23
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2

1 cos 2
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sin sin 2T
a

I k F p
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θλ
θ

µ θ θ

 +
=   

 

Absorption
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If the secondary circle of a crystal monochromator (analyzer) is
present at θm, the polarization factor must be written as:

( ) ( ) ( )
( ) ( )

2 3 2 2

2

1 cos 2 cos 2
2

sin sin 2
T m

a

F p
I k

rv
λ θ θ

θ
µ θ θ

 +
′=   

 

INTEGRATED INTENSITY

2θ

2θm

2θ

2θm

Structure
factor

Lorentz-Polarization
factorMolteplicity

Absorption
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STRUCTURE FACTOR CALCULATION

Primitive unit cell (P) (Z=1) with one atomic species

(0,0,0)

( )2 0 0 0i h k lF fe fπ ⋅ + ⋅ + ⋅= =

2 2I F f∝ =

The structure factor is the same for all (hkl) reflections
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STRUCTURE FACTOR CALCULATION

Body centred lattice (I) (Z=2) 
with one atomic species in 
(0,0,0) and (½,½,½)

( ) ( )2 0 2 2 2 2i i h k lF fe feπ π + += +

The intensity is proportional to for reflections with
whose indices have sum even, and it is zero for sum odd

24 f

( )1 i h k lf eπ + + = +  2
0

f h k
h k

l eve
l

n
odd

+ +
+

=
+




(½,½,½)

(0,0,0)
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STRUCTURE FACTOR CALCULATION

Face centred lattice (F) (Z=4) 
with one atomic species in 
(0,0,0), (0,½,½), (½,0,½) e (½,½,0)

The intensity is proportional to for reflections with
unmixed indices and is zero for mixed indices

216 f

4
0

,
,
,

,
f h k l un

h k l mixed
mixed


= 



( ) ( ) ( ) ( )2 0 2 0 2 2 2 2 0 2 2 2 2 0i i k l i h l i h kF fe fe fe feπ π π π+ + + + + += + + +

( ) ( ) ( )1 i k l i h l i h kf e e eπ π π+ + + = + + + 

(0,½,½)

(½,½,0)

(½,0,½)

(0,0,0)
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STRUCTURE FACTOR CALCULATION

P I F
(100) - -

(110) (110) -

(111) - (111)

(200) (200) (200)

(210) - -

(211) (211) -

(220) (220) (220)

(300)/(221) - -

(310) (310) -

(311) - (311)

(222) (222 (222)

(320) - -

(321) (321) -

(400) (400) (400)

The structure factor is
independent of shape
and size of the unit cell. 

Rules derived in previous
examples hold for any P,
I or F unit cell. 
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Calculated integrated intensity
for the reflections of Fluorite

EXAMPLE

POWDER DIFFRACTION
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Fluorite (CaF2):  fcc (Z=4) unit cell. 
Cations (Ca+2, r=0.99 Å) in the origin and positions equivalent by
fcc Translations. 
Anions (F-1, R=1.33 Å) in (¼,¼,¼), (¼,¼,¾) and positions equivalent
by fcc Translations.

FLUORITE POWDER PATTERN

0,0,0

¼,¼,¼

¼,¼,¾
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( ) ( ) ( ) ( )3
2 2 2 24 4
i i i ih k l h k l h k l h k l

Ca F F Ca FF f f e f e f f e e
π π π π+ + + + + + + −    

= + + = + + =   
     

( )
24 2 cos

2

i h k

Ca F
lf f e

π π+  = +  
  

( ) ( )2 2 2 2 2 216 4 cos 2 cos
2 2

i ih k h k

Ca F Ca F
l lF f f f f e e

π ππ π+ − +      = + + + =     
      

Ca+2 (0,0,0) + fcc
F-1     (¼,¼,¼), (¼,¼,¾) + fcc.

( )2 2 216 4 cos 4 cos cos
2 2 2Ca F Ca F
l lf f f f h kπ π π      = + + +           

FLUORITE POWDER PATTERN
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( )2 2 2 216 4 cos 4 cos cos
2 2 2Ca F Ca F
l lF f f f f h kπ π π      = + + +           

The expression simplifies consideraning that h,k,l are integers: 

( ) ( )
( ) ( )

2 2

2 2

2 2

16

16 2 2

16 2 , 2

CaA

Ca FB

Ca FC

F f l

F f f h k or l multiple

F f f h k l

=

= − +

= + +

 odd
   odd  of 
 and  both odd or both even multiple of 

(111) (200) (220) (311) (222) (400) (331) (420) (422) (333) (511) (440) (531) (600)
2

A
F 2

B
F 2

C
F 2

A
F 2

B
F 2

C
F 2

A
F 2

B
F 2

C
F 2

A
F 2

A
F 2

C
F 2

A
F 2

B
F

FLUORITE POWDER PATTERN
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Atomic scattering factor (f):         
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f ′′∆ 1.4 0.1

Debye-Waller factors:

2 2( ) 0.47 , ( ) 0.67B Ca B F= = Å   Å

FLUORITE POWDER PATTERN
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CaA
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F f l
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 and  both odd or both even multiple of 

Dispersion corrections:

à (f+∆f’)+i∆f’’
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( ) ( )22 22 22
0,16 16Ca CaM M

T Ca Ca Ca CaA
F f e f f f e− − ′ ′′= = + ∆ + ∆
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( ) ( ) ( ){ }

22

2 2

0, 0,

16 2

16 2 2

Ca F

Ca CaF F

M M
T Ca FB

M MM M
Ca Ca F F Ca F

F f e f e

f f e f f e f e f e
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− −− −

= − =

 ′ ′ ′′ ′′= + ∆ − + ∆ + ∆ − ∆ 
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22

2 2

0, 0,

16 2

16 2 2

Ca F

Ca CaF F

M M
T Ca FC

M MM M
Ca Ca F F Ca F

F f e f e

f f e f f e f e f e
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− −− −
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 ′ ′ ′′ ′′= + ∆ + + ∆ + ∆ + ∆ 

FLUORITE POWDER PATTERN
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(f+∆f’)+i∆f’’



45ICTP School - Trieste, May 2006        - © Do not copy – Do not reproduce

20 30 40 50 60 70 80 90 100 110 120

2000

4000

6000

8000

10000

 

In
te

gr
at

ed
 in

te
ns

ity
, I

nt

2θ  (degrees)

 ¦F
T
¦2

A

 ¦F
T
¦2

B

 ¦F
T
¦2

C

FLUORITE POWDER PATTERN

( ) ( )
( ) ( )

2 2

2 2

2 2

16

16 2 2

16 2 , 2

CaA

Ca FB

Ca FC

F f l

F f f h k or l multiple

F f f h k l

=

= − +

= + +

 odd
   odd  of 
 and  both odd or both even multiple of 



46ICTP School - Trieste, May 2006        - © Do not copy – Do not reproduce

 
hkl  

 
2θ  

 
sinθ λ  

 
LP  

 
p  

2

2
sin( )B Ca

e
θ

λ
−

 

2

2
sin( )B F

e
θ

λ
−

 

111 28.27 0.1585 15.00 8 0.988 0.983 
200 32.76 0.1830 10.94 6 0.984 0.978 
220 47.00 0.2588 4.94 12 0.969 0.956 
311 55.76 0.3035 3.36 24 0.958 0.940 
222 58.48 0.3171 3.02 8 0.954 0.935 
400 68.67 0.3661 2.14 6 0.939 0.914 
331 75.85 0.3989 1.77 24 0.928 0.899 
420 78.18 0.4093 1.68 24 0.924 0.894 
422 87.37 0.4483 1.45 24 0.910 0.874 
333 
511 

94.22 0.4756 1.38 8 
24 

0.899 0.859 

440 105.8 0.5177 1.39 12 0.882 0.836 
531 113.06 0.5415 1.49 48 0.871 0.822 
600 115.57 0.5492 1.54 6 0.868 0.817 

 
20,Caf +  

 
10,Ff −  

 
2

T AF  
 

2
T BF   

 
2

T CF   
 

Int (§) 

15.53 7.99 3947   86.3 
14.87 7.49  24  0.3 
12.77 5.93   9259 100.0 
11.61 5.12 2109   31.0 
11.28 4.90  79  0.3 
10.22 4.18   4950 11.6 
9.62 3.79 1382   10.7 
9.45 3.68  114  0.8 
8.87 3.31   3228 20.5 
8.52 3.07 1032 

1032 
  2.1 

6.2 
8.03 2.71  0 2288 7.0 
7.76 2.50 812   10.6 
7.67 2.44 0 155  0.3 

13.28mθ = °0 5.463a = Å ( )2sinM B θ λ= 1.540598λ = Å
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5.4639 (1) Å 11 µm 23.98 % 22.33 1.074

Experimental pattern of fluorite powder
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( )hkl  2θ  hkld  maxI  Area  Int  

111 28.267 3.1546 1676 (25) 318.5 83.66 

200 32.754 2.7320 12 (3) 1.7 0.44 

220 47.000 1.9318 1688 (21) 379.9 100 

311 55.754 1.6474 453 (13) 124.2 32.68 

222 58.467 1.5773 10 (2) 1.5 0.41 

400 68.654 1.3660 167 (7) 48.6 12.78 

331 75.833 1.2535 117 (6) 42.7 11.23 

420 78.171 1.2218 14 (2) 4.6 1.22 

422 87.364 1.1153 221 (7) 83.6 22.01 

333 

511 

94.201 1.0515 21 (1) 

64 (14) 

8.5 

25.6 

2.24 

6.73 

440 105.784 0.9659 50 (3) 28.0 7.37 

531 113.033 0.9236 79 (4) 44.3 11.65 

600 115.532 0.9107 7 (2) 5.4 1.42 
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Experimental pattern of fluorite powder:
profile fitting results
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hkl  

 
2θ  

Calculated 
Integ. Int. 

Experimental 
Integ. Int. 

 Pσ   
(%) 

111 28.27 86.3 83.7 1.0 
200 32.76 0.3 0.4 23.0 
220 47.00 100.0 100.0 1.0 
311 55.76 31.0 32.7 1.7 
222 58.48 0.3 0.4 12.7 
400 68.67 11.6 12.8 2.9 
331 75.85 10.7 11.2 3.0 
420 78.18 0.8 1.2 4.3 
422 87.37 20.5 22.0 2.1 
333 
511 

94.22 2.1 
6.2 

2.2 
6.7 

3.5 

440 105.8 7.0 7.4 4.1 
531 113.06 10.6 11.6 3.0 
600 115.57 0.3 1.4 3.1 

FLUORITE POWDER PATTERN

Comparison between calculated and measured
integrated intensities:

100T B
P

T B

N N
x

N N
σ

+
=
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Result using the Rietveld method (TOPAS ©) : 

2( ) 0.43B Ca =  Å
2( ) 0.76B F =  Å Literature values: 

2

2

( ) 0.47

( ) 0.67

B Ca

B F

=

=

 Å
 Å

FLUORITE POWDER PATTERN
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