- X-ray Diffraction
- applied to the study of polycrystalline materials

Prof. Paolo Scardi

Department of Materials Engineering and Industrial Technologies, University of Trento

These slides were used during the ICTP School on Synchrotron Radiation and Applications – Gargnano (TS), May 15th 2006. They are part of the X-ray Diffraction course for the PhD programme in Materials Engineering at the University of Trento. © All rights reserved. Do not copy – do not reproduce

ICTP School – Trieste, May 2006

•

Programme

Part I

- Powder Diffraction and reciprocal lattice
- Diffraction: theoretical elements

Part II

 Applications of powder diffraction: a survey

Part III

 Introduction to line profile analysis for the study of nanocrystalline and heavily deformed materials

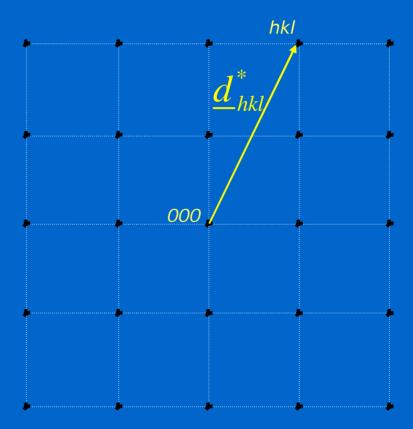
A vector drawn from the origin of the reciprocal lattice to the point (hkl), where h, k, l are the Miller indices (integer numbers) is given by:

$$\underline{d}_{hkl}^* = h\underline{a}^* + k\underline{b}^* + l\underline{c}^*$$

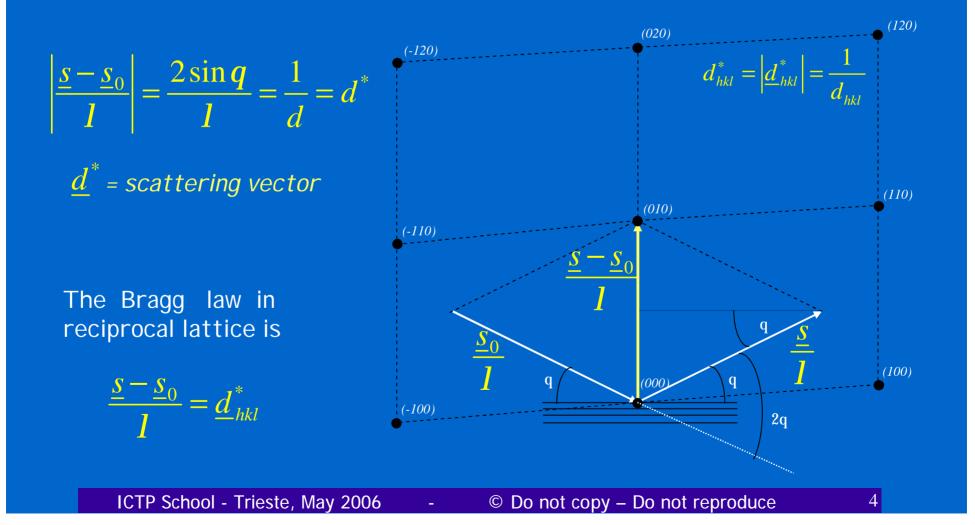
where \underline{a}^* , \underline{b}^* , \underline{c}^* are the reciprocal space vectors

The vector modulus is the inverse of the interplanar distance for the planes with indices (*hkl*):

$$d_{hkl}^* = \left| \underline{d}_{hkl}^* \right| = \frac{1}{d_{hkl}}$$

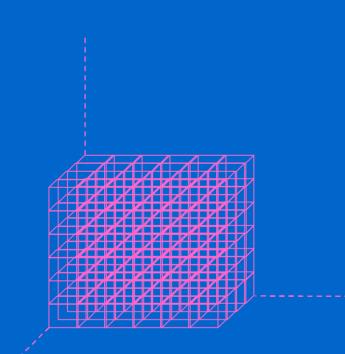


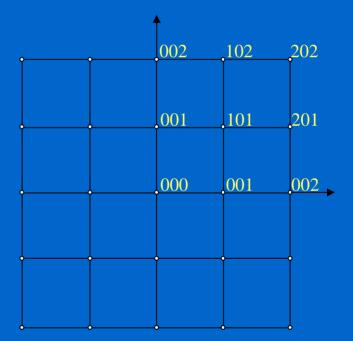
Versors \underline{s}_0 and \underline{s} identify, respectively the incident and scattered beam



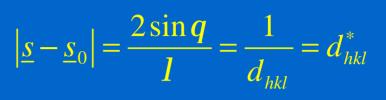
For a *perfect (infinite) crystal*

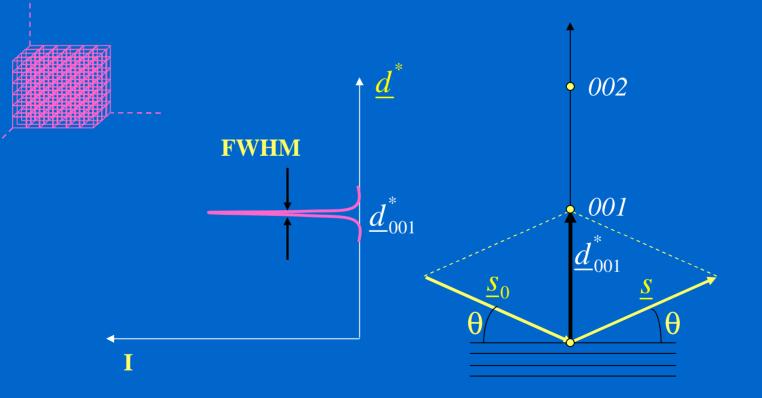
The *reciprocal lattice* is made of (infinitely small) points representing sets of planes of Miller indices *hkl*





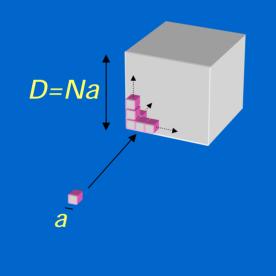
For a *perfect (infinite) crystal* the **peak width** is determined by the instrumental resolution only:

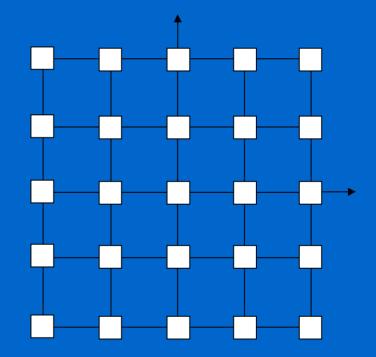


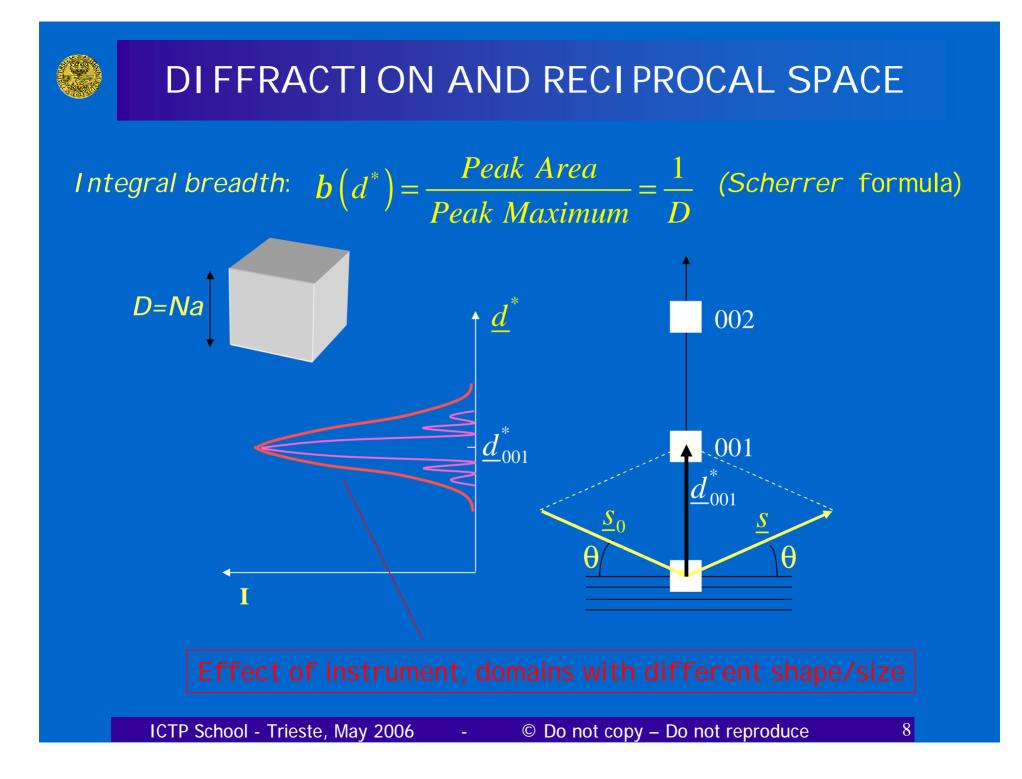


For a *finite crystal* (D<1mm)

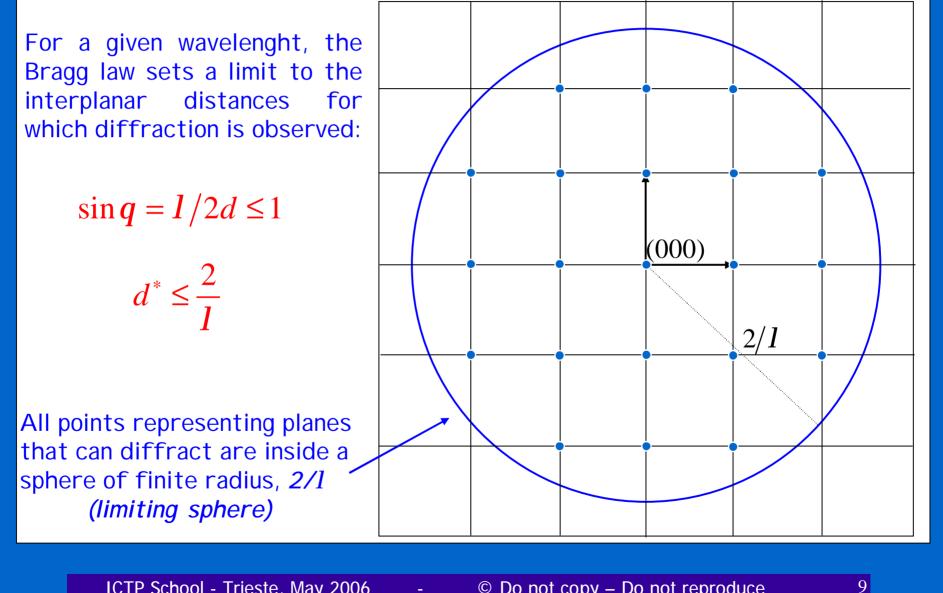
Reciprocal lattice points have finite extension. The shape is related to the crystal shape .







RECIPROCAL LATTICE: DIFFRACTION CONDITIONS

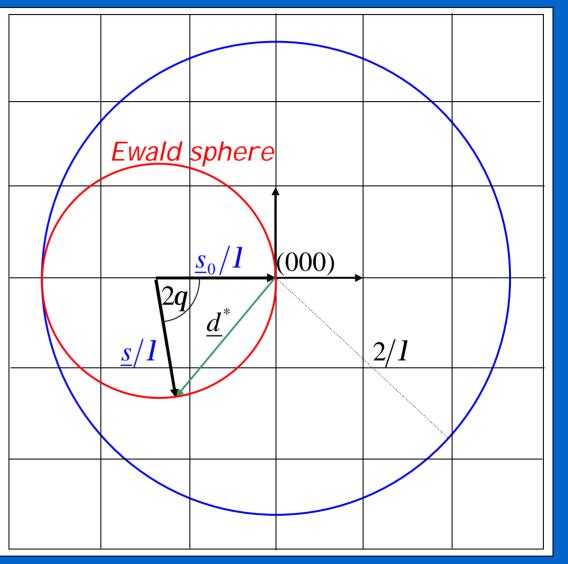


RECIPROCAL LATTICE: DIFFRACTION CONDITIONS

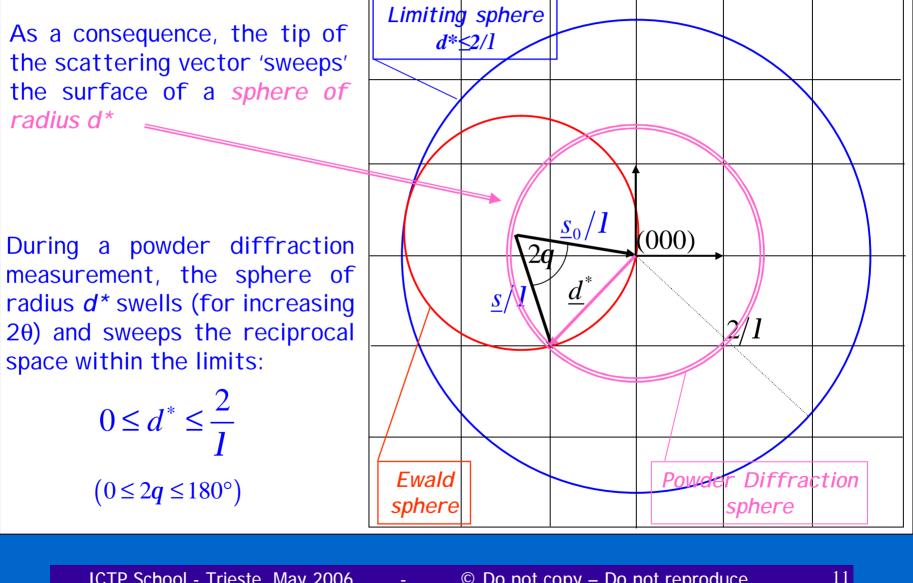
The diffraction condition occurs when the tip of the scattering vector d^* falls on a point of the reciprocal space.

The condition is fulfilled by all points on the *Ewald sphere*, a sphere of radius $1/\lambda$, tangent to the origin and to the $2/\lambda$ sphere.

In a powder diffraction measurement, the Ewald sphere can be thought as *rotating* inside the $2/\lambda$ sphere.



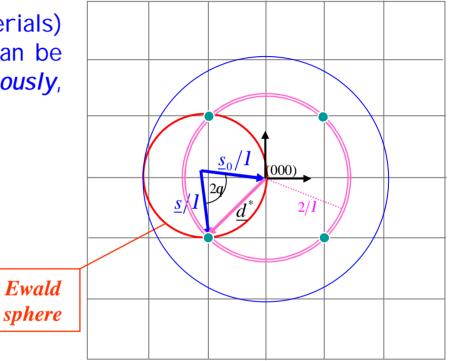
RECIPROCAL LATTICE: DIFFRACTION CONDITIONS



RECIPROCAL LATTICE: MULTIPLICITY

In a powder (polycrysta lline materials) measuremnt more than one point can be in diffraction condition *simultaneously*, i.e., for the same 2θ .

This property leads to the concept of *multiplicity* of a reflection, that is the number of equivalent planes.



In cubic structures:

Miller indices	hkl	hhk	Okl	Okk	hhh	001
Multiplicity	48	24	24	12	8	6

Programme

Part I

- Powder Diffraction and reciprocal lattice
- Diffraction: theoretical elements

Part II

 Applications of powder diffraction: a survey

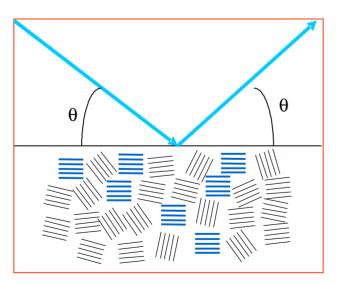
Part III

 Introduction to line profile analysis for the study of nanocrystalline and heavily deformed materials

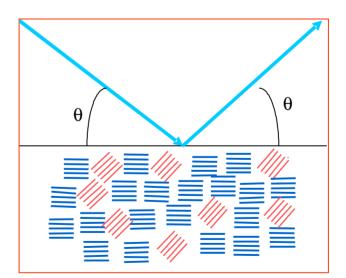
The concept of 'Powder'

An ideal powder is a polycrystalline sample (a true powder or a bulk specimen) such that for every possible orientation a sufficiently high number of grains (à grain statistics) has atomic planes in Bragg condition (*random orientation*).

If preferred orientation (*texture*) is present, suitable models are necessary to account for the 'non-ideal' conditions.



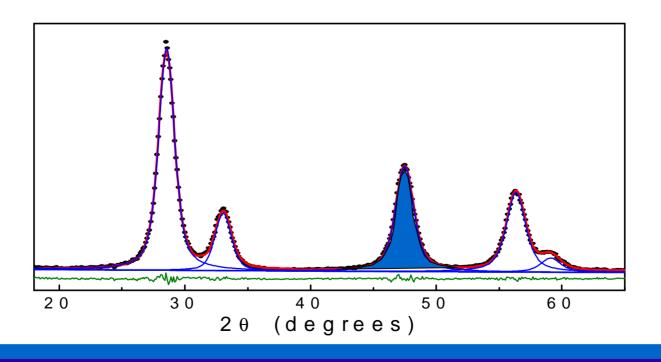
Random orientation



Preferred orientation

Integrated intensity

Intrinsic features of the sample, instrument and measurement geometry cause a dispersion of the scattered intensity across a finite angular range (*a peak*). The range (width) changes with 2q. The diffracted signal is better represented by the area of the diffraction peak (*integrated intensity*) than by maximum intensity.



INTEGRATED INTENSITY

The *integrated intensity* of a powder diffraction peak is given by:

$$I(2q) = k'|F_T|^2 p\left(\frac{1 + \cos^2(2q)}{\sin(q)\sin(2q)}\right)$$

Structure
factor
Molteplicity

INTEGRATED INTENSITY

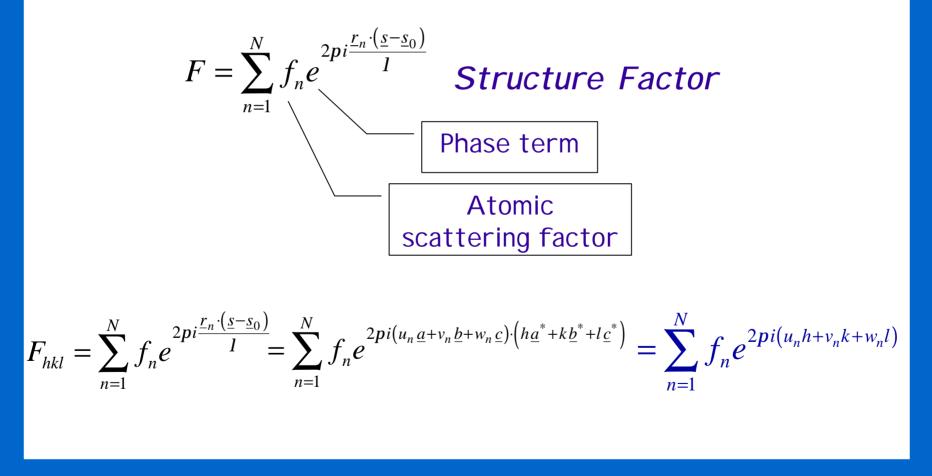
The *integrated intensity* of a powder diffraction peak is given by:

$$I(2q) = k' |F_T|^2 p\left(\frac{1 + \cos^2(2q)}{\sin(q)\sin(2q)}\right)$$

Structure factor

SCATTERING FROM A UNIT CELL: STRUCTURE FACTOR

The instant electric field scattered by a unit cell with N atoms is proportional to the



COHERENT AND INCOHERENT SCATTERING

I stantant electric field scattered by a unit cell

$$\propto F = \sum_{n=1}^{N} f_n e^{2pi(u_n h + v_n k + w_n l)}$$

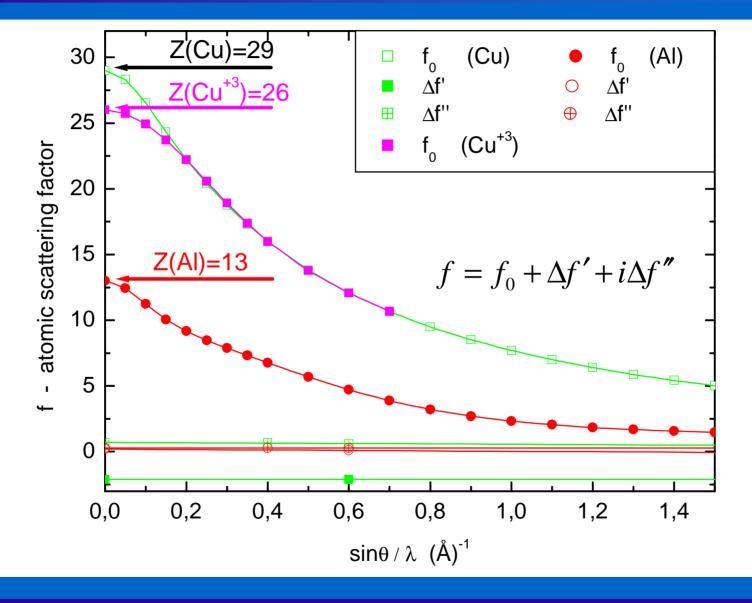
The diffracted intensity is proportional to: $|F|^2 = FF^*$

Phase problem

- For a totally constructive interference, the square of the sum of the amplitudes is considered: $I_P \propto (NF)^2$
- In absence of phase relation, the sum of the squared amplitudes (intensities) is considered: $I_P \propto \left(N|F|^2\right)$

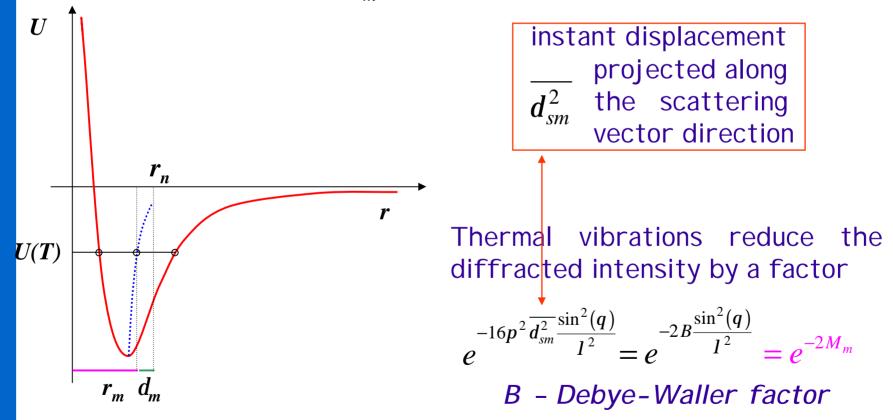
Given the large number of unit cells in a crystal, the difference between **coherent** and **incoherent** signal is huge

ATOMIC SCATTERING FACTOR AND DI SPERSI ON CORRECTI ONS



THERMAL VIBRATIONS: DEBYE-WALLER FACTOR

Owing to thermal vibrations, atoms and molecules oscillate about an equilibrium position. The instant position can be written as: $\underline{r}_n = \underline{r}_m + \underline{d}_m$ (average pos. + instant displacement)



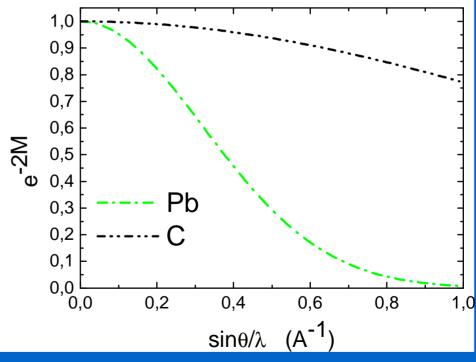
THERMAL VIBRATIONS: DEBYE-WALLER FACTOR

The effect on the Bragg component (coherent diffraction), for one atomic species only, assuming isotropic oscillations

$$I_{P} = I_{e} \left| \sum_{n=1}^{N} f_{n} e^{2pi(u_{n}h + v_{n}k + w_{n}l)} \right|^{2} e^{-2M} = I_{e} \left| F \right|^{2} \underbrace{e^{-2M}}_{e} = I_{e} \left| F_{T} \right|^{2}$$

M is related to the elastic/ thermal properties of the material (atomic vibrations):

$$M = B \frac{\sin^2\left(q\right)}{l^2}$$



INTEGRATED INTENSITY

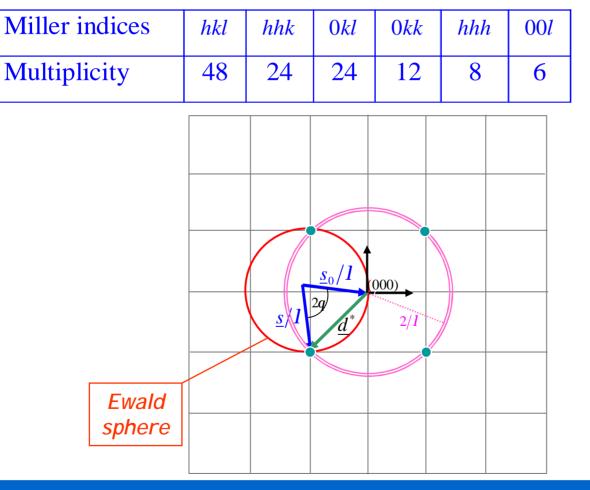
The *integrated intensity* of a powder diffraction peak is given by:

$$I(2q) = k' |F_T|^2 p\left(\frac{1 + \cos^2(2q)}{\sin(q)\sin(2q)}\right)$$

Molteplicity

MULTIPLICITY

Multiplicity (p): number of equivalent planes. Multiplicity for cubic structure powder specimens



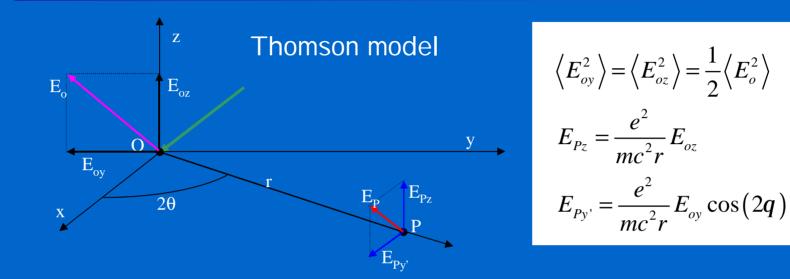
INTEGRATED INTENSITY

The *integrated intensity* of a powder diffraction peak is given by:

$$I(2q) = k' |F_T|^2 p \left(\frac{1 + \cos^2(2q)}{\sin(q)\sin(2q)} \right)$$

Lorentz-Polarization factor

X-RAY ELASTIC SCATTERING AND POLARIZATION

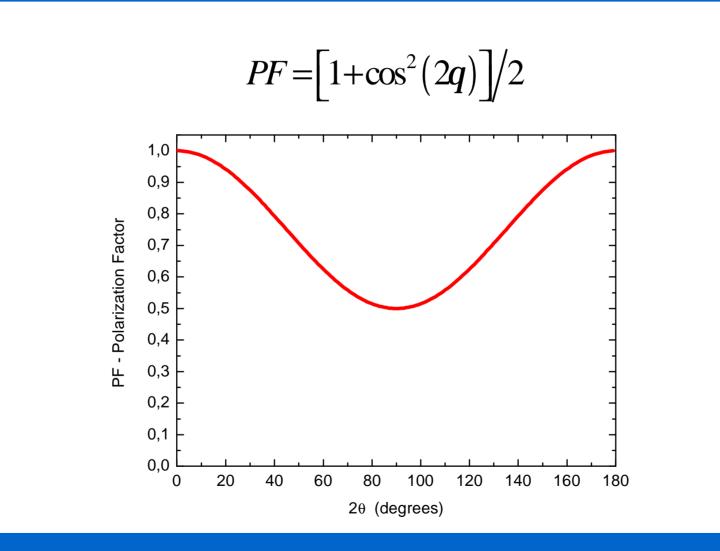


Mean square field:

$$\langle E_{P}^{2} \rangle = \langle E_{Py'}^{2} \rangle + \langle E_{Pz}^{2} \rangle = \langle E_{0}^{2} \rangle \frac{e^{4}}{m^{2}c^{4}r^{2}} \left[\frac{1 + \cos^{2}(2q)}{2} \right]$$
Scattered intensity:

$$I_{P} = I_{O} \frac{e^{4}}{m^{2}c^{4}r^{2}} \left[\frac{1 + \cos^{2}(2q)}{2} \right] = \frac{I_{O}K}{r^{2}} \left[\frac{1 + \cos^{2}(2q)}{2} \right]$$

POLARIZATION FACTOR



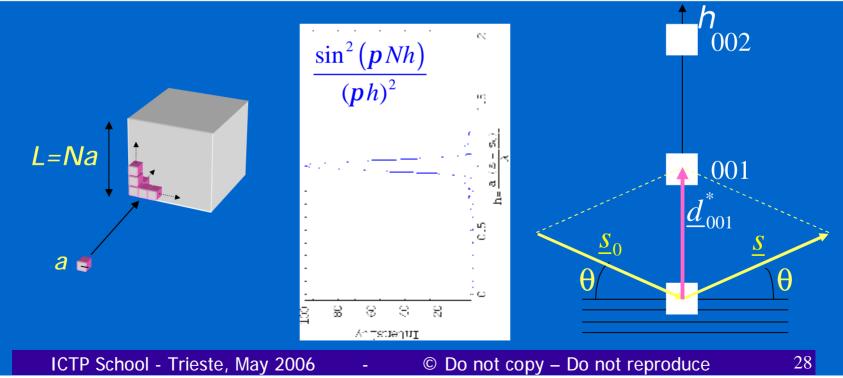
ICTP School - Trieste, May 2006 - © Do not copy – Do not reproduce

THE LORENTZ FACTOR

A diffraction measurement basically consists in a cross section through one or more reciprocal space (RS) points.

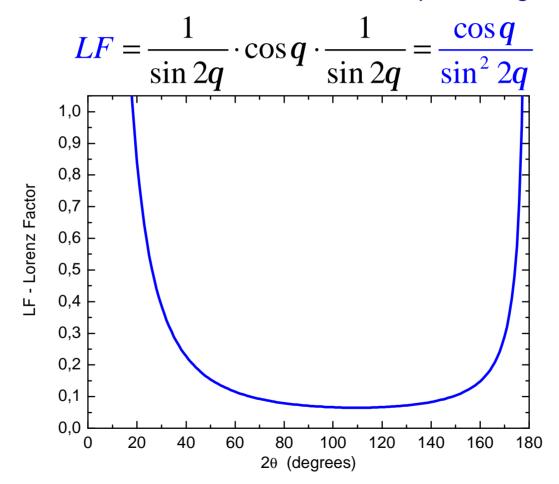
- The measured intensity depends on:
- a) The way RS points are crossed;
- b) The sampling in RS (considering measurements are in 2q space);

c) The fraction of diffracted signal collected by the detector.



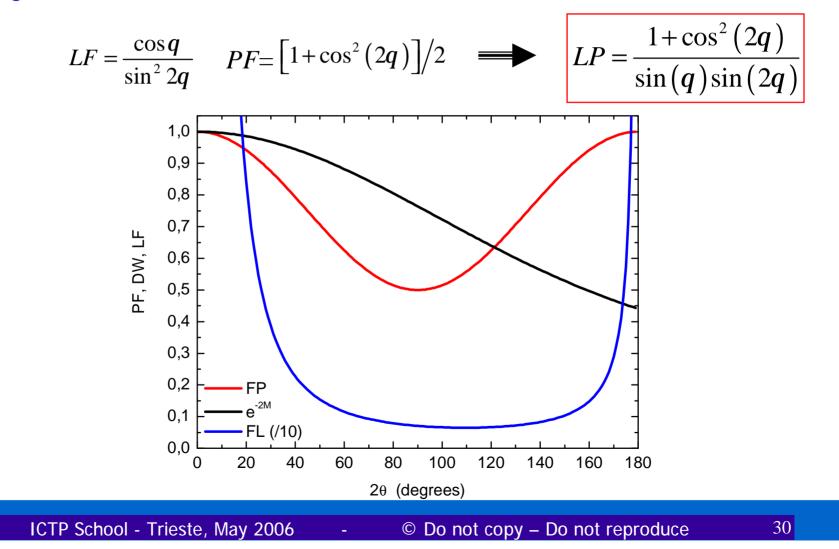
THE LORENTZ FACTOR

Putting together the trigonometric terms for the various contributions, the *Lorentz Factor* for the powder geometry is:



THE LORENTZ-POLARIZATION FACTOR

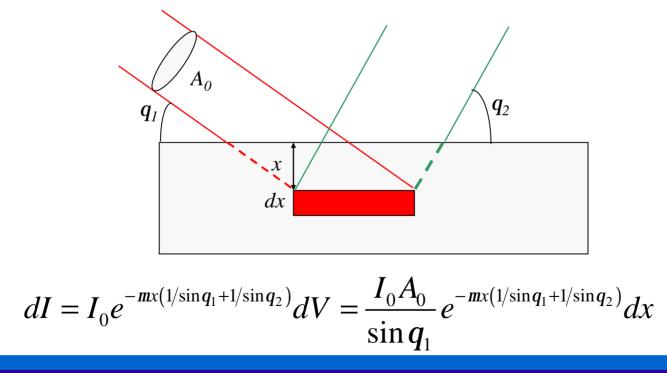
The Lorentz and Polarization factors can be combined in a single trigonometric term: the *Lorentz-Polarization* factor:



ABSORPTION

An advantage of the traditional Bragg-Brentano powder diffraction geometry: no need for q-dependent correction terms for absorption

Beam cross section $A_{0'}$ intensity I_0 impinging with angle q_1 . A small volume dV (thickness dx, surface $A_0/\sin(q_1)$) diffracts at the angle q_2



ICTP School - Trieste, May 2006 - © Do not copy – Do not reproduce

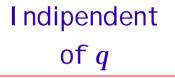
ABSORPTION

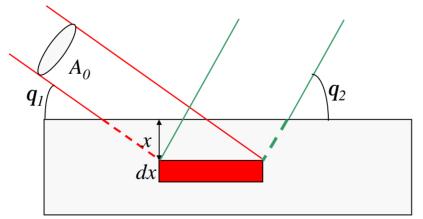
$$dI = I_0 e^{-mx(1/\sin q_1 + 1/\sin q_2)} dV = \frac{I_0 A_0}{\sin q_1} e^{-mx(1/\sin q_1 + 1/\sin q_2)} dx$$

In the traditional powder geometry: $\boldsymbol{q}_1 = \boldsymbol{q}_2 = \boldsymbol{q}$

By integrating on the sample thickness: $I = \frac{I_0 A_0}{\sin q}$

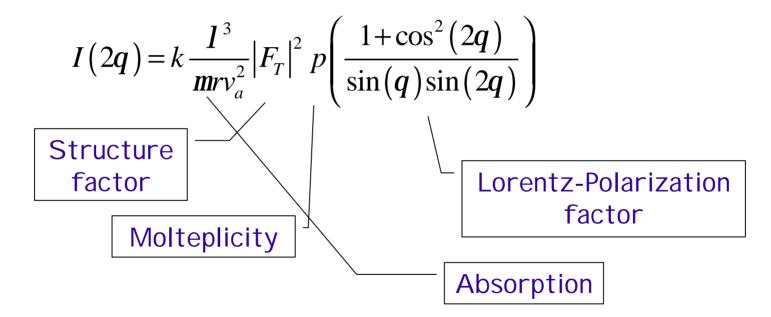
$$\int_{-\infty}^{\infty} e^{-2mx/\sin q} dx = \frac{I_0 A_0}{2m}$$





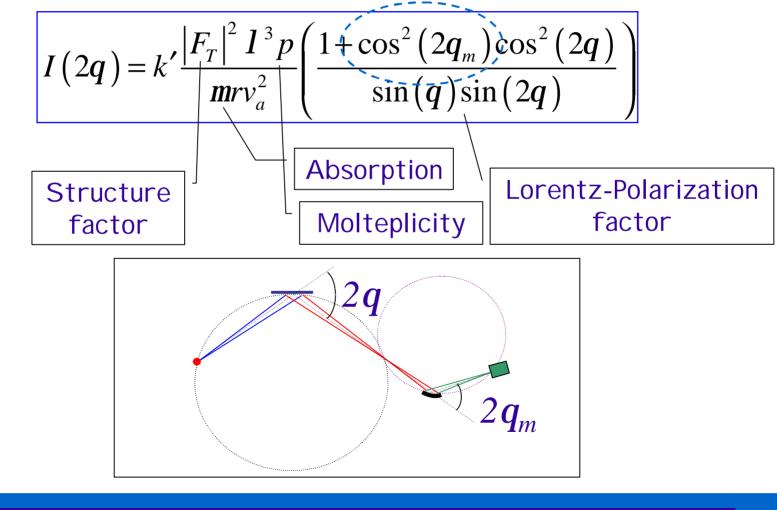
INTEGRATED INTENSITY

The *integrated intensity* of a powder diffraction peak is given by: If terms for absorption (m), cell volume (v_a) , goniometer radius (r)and wavelenght (I) are written explicitly,



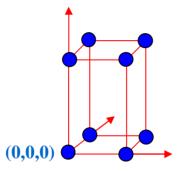
INTEGRATED INTENSITY

If the secondary circle of a crystal monochromator (analyzer) is present at $q_{m'}$ the polarization factor must be written as:



STRUCTURE FACTOR CALCULATION

Primitive unit cell (P) (Z=1) with one atomic species



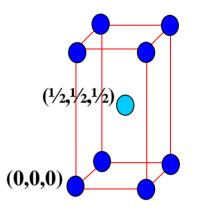
$$F = f e^{2pi(0\cdot h + 0\cdot k + 0\cdot l)} = f$$

$$I \propto \left|F\right|^2 = f^2$$

The structure factor is the same for all (hkl) reflections

STRUCTURE FACTOR CALCULATION

Body centred lattice (1) (Z=2) with one atomic species in (0,0,0) and $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$



$$F = fe^{2pi(0)} + fe^{2pi(h/2+k/2+l/2)} = f\left[1 + e^{pi(h+k+l)}\right] = \begin{cases} 0 & h+k+l & odd \\ 2f & h+k+l & even \end{cases}$$

The intensity is proportional to $4f^2$ for reflections with whose indices have sum even, and it is *zero* for sum odd

STRUCTURE FACTOR CALCULATION

Face centred lattice (F) (Z=4)
with one atomic species in
(0,0,0), (0,½,½), (½,0,½) e (½,½,0)

$$F = fe^{2pi(0)} + fe^{2pi(0+k/2+l/2)} + fe^{2pi(h/2+0+l/2)} + fe^{2pi(h/2+k/2+0)}$$

$$= f \left[1 + e^{pi(k+l)} + e^{pi(h+l)} + e^{pi(h+k)} \right] = \begin{cases} 0 & h, k, l & mixed \\ 4f & h, k, l & unmixed \end{cases}$$

The intensity is proportional to $16f^2$ for reflections with unmixed indices and is *zero* for mixed indices

STRUCTURE FACTOR CALCULATION

Р	Ι	F
(100)	-	-
(110)	(110)	-
(111)	-	(111)
(200)	(200)	(200)
(210)	-	-
(211)	(211)	-
(220)	(220)	(220)
(300)/(221)	-	-
(310)	(310)	-
(311)	-	(311)
(222)	(222	(222)
(320)	-	-
(321)	(321)	-
(400)	(400)	(400)

The structure factor is independent of shape and size of the unit cell.

Rules derived in previous examples hold for any *P*, *I* or *F* unit cell.

POWDER DIFFRACTION

EXAMPLE

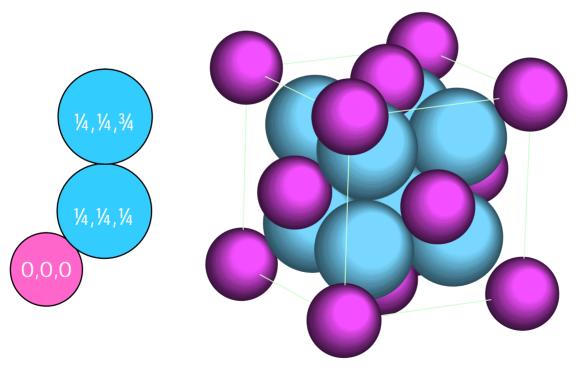
Calculated integrated intensity for the reflections of Fluorite

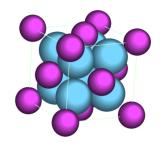
ICTP School - Trieste, May 2006 - © Do not copy – Do not reproduce

Fluorite (CaF₂): *fcc* (Z=4) unit cell.

Cations (Ca⁺², r=0.99 Å) in the origin and positions equivalent by *fcc* Translations.

Anions (F⁻¹, R=1.33 Å) in $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, $(\frac{1}{4}, \frac{1}{4}, \frac{3}{4})$ and positions equivalent by *fcc* Translations.

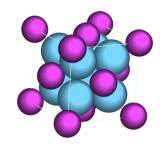




$$F = 4 \left[f_{Ca} + f_F e^{\frac{ip}{2}(h+k+l)} + f_F e^{\frac{ip}{2}(h+k+3l)} \right] = 4 \left[f_{Ca} + f_F \left(e^{\frac{ip}{2}(h+k+l)} + e^{\frac{ip}{2}(h+k-l)} \right) \right] = 4 \left[f_{Ca} + 2f_F e^{\frac{ip}{2}(h+k)} \cos\left(\frac{pl}{2}\right) \right]$$

$$|F|^{2} = 16\left\{f_{Ca}^{2} + 4f_{F}^{2}\cos^{2}\left(\frac{pl}{2}\right) + 2f_{Ca}f_{F}\left[e^{\frac{ip}{2}(h+k)} + e^{-\frac{ip}{2}(h+k)}\right]\cos\left(\frac{pl}{2}\right)\right\} = 16\left\{f_{Ca}^{2} + 4f_{F}^{2}\cos^{2}\left(\frac{pl}{2}\right) + 4f_{Ca}f_{F}\cos\left[\frac{p}{2}(h+k)\right]\cos\left(\frac{pl}{2}\right)\right\}$$

$$\left|F\right|^{2} = 16\left\{f_{Ca}^{2} + 4f_{F}^{2}\cos^{2}\left(\frac{pl}{2}\right) + 4f_{Ca}f_{F}\cos\left[\frac{p}{2}\left(h+k\right)\right]\cos\left(\frac{pl}{2}\right)\right\}$$



The expression simplifies consideraning that $h_{k,l}$ are integers:

$$|F|_{A}^{2} = 16f_{Ca}^{2} \qquad l \text{ odd}$$

$$|F|_{B}^{2} = 16(f_{Ca} - 2f_{F})^{2} \qquad (h+k) \text{ or } l \text{ odd multiple of } 2$$

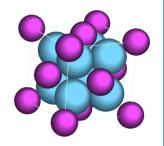
$$|F|_{C}^{2} = 16(f_{Ca} + 2f_{F})^{2} \qquad (h+k) \text{ and } l, \text{ both odd or both even multiple of } 2$$

(111)	(200)	(220)	(311)	(222)	(400)	(331)	(420)	(422)	(333)	(511)	(440)	(531)	(600)
$\left F\right _{A}^{2}$	$\left F\right _{B}^{2}$	$\left F\right _{C}^{2}$	$\left F\right _{A}^{2}$	$\left F\right _{B}^{2}$	$\left F\right _{C}^{2}$	$\left F\right _{A}^{2}$	$\left F\right _{B}^{2}$	$\left F\right _{C}^{2}$	$\left F\right _{A}^{2}$	$\left F\right _{A}^{2}$	$\left F\right _{C}^{2}$	$\left F\right _{A}^{2}$	$\left F\right _{B}^{2}$

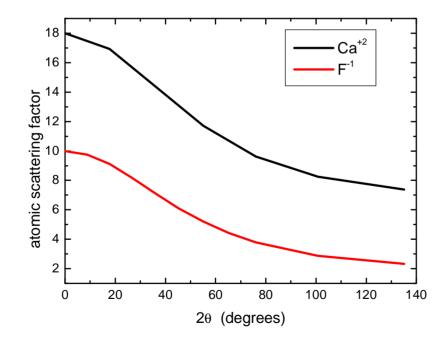
$$|F|_{A}^{2} = 16f_{Ca}^{2} \qquad l \text{ odd}$$

$$|F|_{B}^{2} = 16(f_{Ca} - 2f_{F})^{2} \qquad (h+k) \text{ or } l \text{ odd multiple of } 2$$

$$|F|_{C}^{2} = 16(f_{Ca} + 2f_{F})^{2} \qquad (h+k) \text{ and } l, \text{ both odd or both even multiple of } 2$$



Atomic scattering factor (*f*):



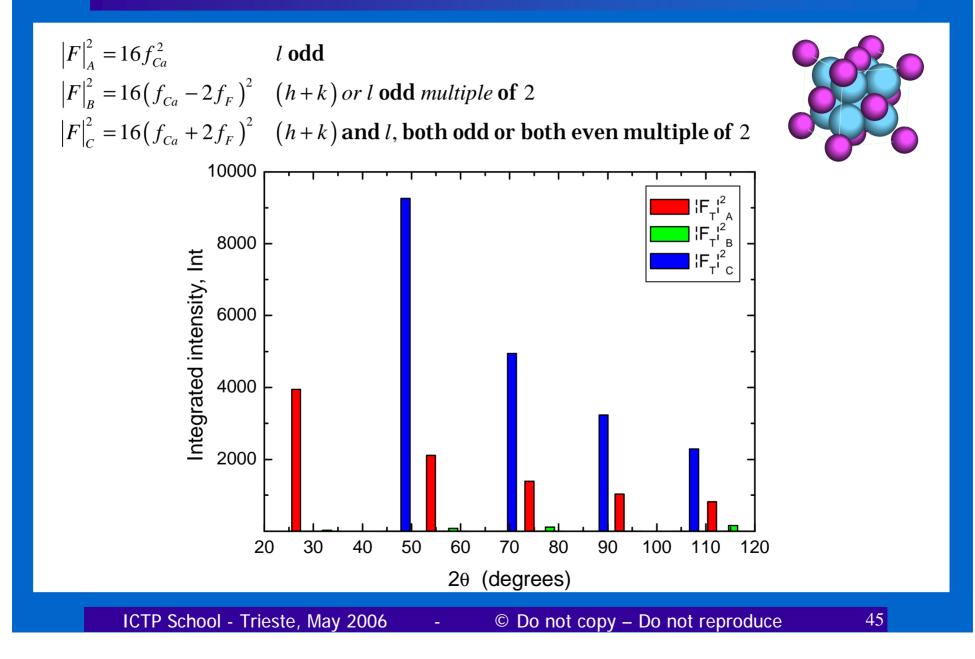
Dispersion corrections:

	Ca	F
$\Delta f'$	0.3	0.0
$\Delta f''$	1.4	0.1

Debye-Waller factors:

$$B(Ca) = 0.47 \text{ Å}^2, B(F) = 0.67 \text{ Å}^2$$

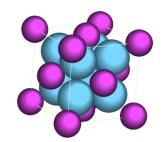
$$|F|_{A}^{2} = 16f_{Ca}^{2} \qquad l \text{ odd} \qquad (f+Df')+iDf'' |F|_{B}^{2} = 16(f_{Ca}-2f_{F})^{2} \quad (h+k) \text{ or } l \text{ odd multiple of } 2 |F|_{C}^{2} = 16(f_{Ca}+2f_{F})^{2} \quad (h+k) \text{ and } l, \text{ both odd or both even multiple of } 2 |F_{T}|_{A}^{2} = 16f_{Ca}^{2}e^{-2M_{Ca}} = 16\left[\left(f_{0,Ca}+\Delta f'_{Ca}\right)^{2}+\left(\Delta f''_{Ca}\right)^{2}\right]e^{-2M_{Ca}} |F_{T}|_{B}^{2} = 16\left(f_{Ca}e^{-M_{Ca}}-2f_{F}e^{-M_{F}}\right)^{2} = = 16\left\{\left[\left(f_{0,Ca}+\Delta f'_{Ca}\right)e^{-M_{Ca}}-2\left(f_{0,F}+\Delta f'_{F}\right)e^{-M_{F}}\right]^{2}+\left(\Delta f''_{Ca}e^{-M_{Ca}}-2\Delta f''_{F}e^{-M_{F}}\right)^{2}\right\} |F_{T}|_{C}^{2} = 16\left(f_{Ca}e^{-M_{Ca}}+2f_{F}e^{-M_{F}}\right)^{2} = = 16\left\{\left[\left(f_{0,Ca}+\Delta f'_{Ca}\right)e^{-M_{Ca}}+2\left(f_{0,F}+\Delta f'_{F}\right)e^{-M_{F}}\right]^{2}+\left(\Delta f''_{Ca}e^{-M_{Ca}}+2\Delta f''_{F}e^{-M_{F}}\right)^{2}\right\}$$



$$|F|_{A}^{2} = 16f_{Ca}^{2} \qquad l \text{ odd}$$

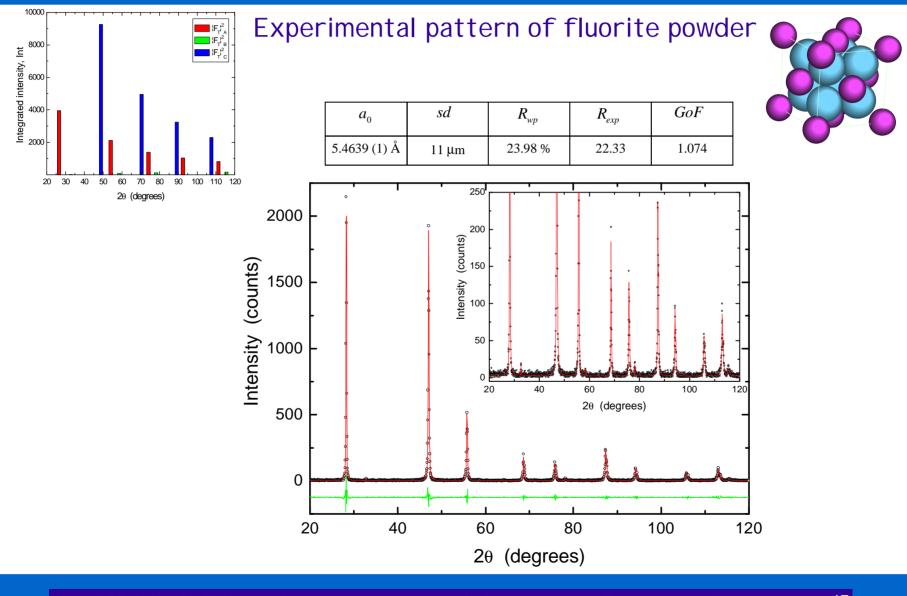
$$|F|_{B}^{2} = 16(f_{Ca} - 2f_{F})^{2} \qquad (h+k) \text{ or } l \text{ odd multiple of } 2$$

$$|F|_{C}^{2} = 16(f_{Ca} + 2f_{F})^{2} \qquad (h+k) \text{ and } l, \text{ both odd or both even multiple of } 2$$

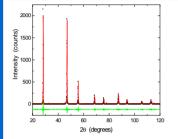


					-							
hkl	2q	sin <i>q/1</i>	LP	р	$e^{-B(Ca)\frac{\sin^2 q}{l^2}}$	$e^{-B(F)\frac{\sin^2 q}{l^2}}$	$f_{0,Ca^{+2}}$	$f_{\scriptscriptstyle 0,F^{^{-1}}}$	$\left F_{T}\right _{A}^{2}$	$\left F_{T}\right _{B}^{2}$	$\left F_{T}\right _{C}^{2}$	Int ([§])
111	28.27	0.1585	15.00	8	0.988	0.983	15.53	7.99	3947			86.3
200	32.76	0.1830	10.94	6	0.984	0.978	14.87	7.49		24		0.3
220	47.00	0.2588	4.94	12	0.969	0.956	12.77	5.93			9259	100.0
311	55.76	0.3035	3.36	24	0.958	0.940	11.61	5.12	2109			31.0
222	58.48	0.3171	3.02	8	0.954	0.935	11.28	4.90		79		0.3
400	68.67	0.3661	2.14	6	0.939	0.914	10.22	4.18			4950	11.6
331	75.85	0.3989	1.77	24	0.928	0.899	9.62	3.79	1382			10.7
420	78.18	0.4093	1.68	24	0.924	0.894	9.45	3.68		114		0.8
422	87.37	0.4483	1.45	24	0.910	0.874	8.87	3.31			3228	20.5
333	94.22	0.4756	1.38	8	0.899	0.859	8.52	3.07	1032			2.1
511				24					1032			6.2
440	105.8	0.5177	1.39	12	0.882	0.836	8.03	2.71		0	2288	7.0
531	113.06	0.5415	1.49	48	0.871	0.822	7.76	2.50	812			10.6
600	115.57	0.5492	1.54	6	0.868	0.817	7.67	2.44	0	155		0.3

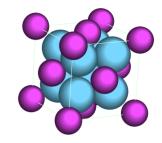
 $a_0 = 5.463 \text{\AA}$ $q_m = 13.28^\circ$ $M = B(\sin q/l)^2$ $l = 1.540598 \text{\AA}$



ICTP School - Trieste, May 2006 - © Do not copy – Do not reproduce



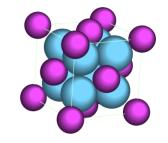
Experimental pattern of fluorite powder: profile fitting results



(hkl)	2 q	$d_{_{hkl}}$	I _{max}	Area	Int
111	28.267	3.1546	1676 (25)	318.5	83.66
200	32.754	2.7320	12 (3)	1.7	0.44
220	47.000	1.9318	1688 (21)	379.9	100
311	55.754	1.6474	453 (13)	124.2	32.68
222	58.467	1.5773	10 (2)	1.5	0.41
400	68.654	1.3660	167 (7)	48.6	12.78
331	75.833	1.2535	117 (6)	42.7	11.23
420	78.171	1.2218	14 (2)	4.6	1.22
422	87.364	1.1153	221 (7)	83.6	22.01
333	94.201	1.0515	21 (1)	8.5	2.24
511			64 (14)	25.6	6.73
440	105.784	0.9659	50 (3)	28.0	7.37
531	113.033	0.9236	79 (4)	44.3	11.65
600	115.532	0.9107	7 (2)	5.4	1.42

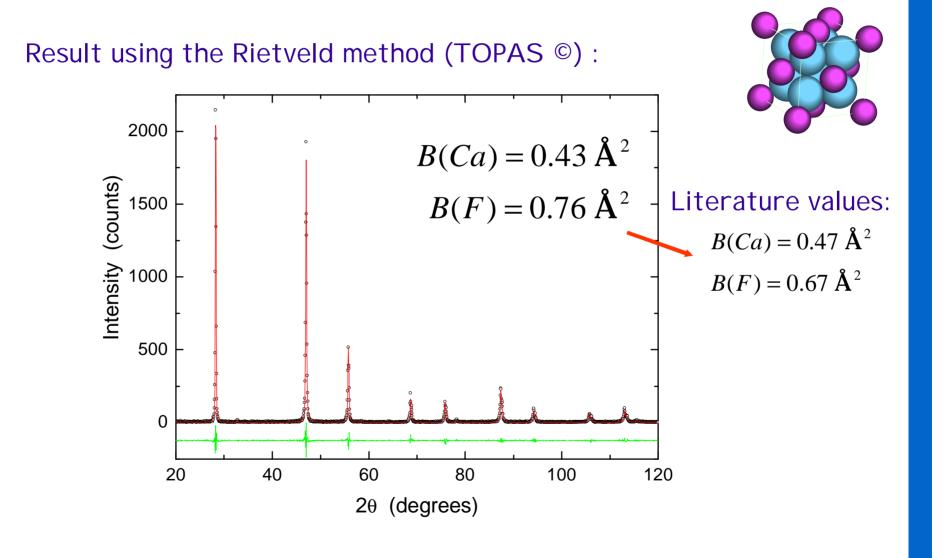
Comparison between calculated and measured integrated intensities:

		Calculated	Experimental	${old S}_p$
hkl	2 q	Integ. Int.	Integ. Int.	(%)
111	28.27	86.3	83.7	1.0
200	32.76	0.3	0.4	23.0
220	47.00	100.0	100.0	1.0
311	55.76	31.0	32.7	1.7
222	58.48	0.3	0.4	12.7
400	68.67	11.6	12.8	2.9
331	75.85	10.7	11.2	3.0
420	78.18	0.8	1.2	4.3
422	87.37	20.5	22.0	2.1
333	94.22	2.1	2.2	3.5
511	77.22	6.2	6.7	
440	105.8	7.0	7.4	4.1
531	113.06	10.6	11.6	3.0
600	115.57	0.3	1.4	3.1



$$\boldsymbol{S}_{P} = \frac{\sqrt{N_{T} + N_{B}}}{N_{T} - N_{B}} x100$$

ICTP School - Trieste, May 2006 - © Do not copy – Do not reproduce



REFERENCES

References

- [1] B.E. Warren, X-ray Diffraction, Addison-Wesley, Reading, MA, 1969.
- [2] R.A. Young, *The Rietveld method*, Oxford University Press, Oxford, 1993.
- [3] B.D. Cullity, *Elements of X-ray Diffraction*, Addison-Wesley, reading Ma, 1978.
- [4] H.P. Klug & L.E. Alexander, X-ray Diffraction procedures, Wiley, New York, 1974.
- [5] International Tables for X-ray Crystallography, 3rd series. <u>Kluwer Academic Publishers</u>, Dordrecht, Boston, London. Vol.A (1983), Vol.B (1993), Vol.C (1992), "Brief Teaching Edition of Volume A" (1985).
- [6] P.P. Ewald, *Fifty years of X-ray Diffraction*, Reprinted in pdf format for the IUCr XVIII Congress, Glasgow, Scotland. Copyright © 1962, 1999 International Union of Crystallography, Chester, UK.
- [7] International Union of Crystallography: <u>http://www.iucr.org</u>
- [8] International Centre for Diffraction Data, Newtown Square, PA, USA. http://www.icdd.com
- [9] CCP14: <u>http://www.ccp14.ac.uk/; http://www.iucr.org/sincris-top/logiciel/index.html</u>