

SYNCHROTRON RADIATION

Lenny Rivkin Paul Scherrer Institute, Switzerland

ICTP SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS Trieste, Italy, May 2006

Useful books and references

- A. Hofmann, *The Physics of Synchrotron Radiation* Cambridge University Press 2004
- H. Wiedemann, *Synchrotron Radiation* Springer-Verlag Berlin Heidelberg 2003
- H. Wiedemann, *Particle Accelerator Physics I and II* Springer Study Edition, 2003
- A. W. Chao, M. Tigner, *Handbook of Accelerator Physics and Engineering*, World Scientific 1999

CERN Accelerator School Proceedings

Synchrotron Radiation and Free Electron Lasers

Grenoble, France, 22 - 27 April 1996 (A. Hofmann's lectures on synchrotron radiation) CERN Yellow Report 98-04

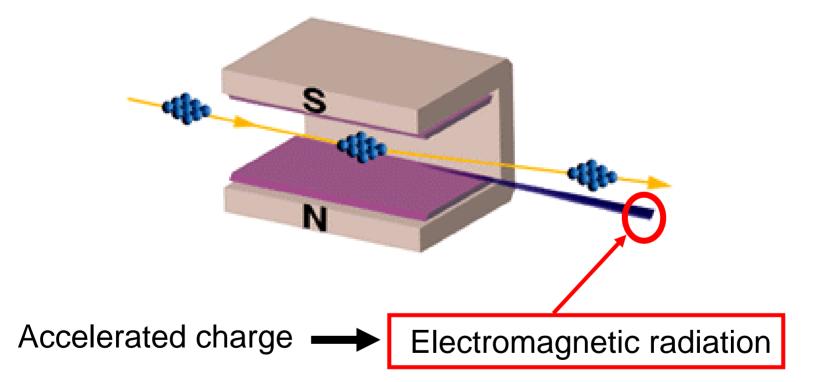
http://cas.web.cern.ch/cas/CAS_Proceedings-DB.html

Brunnen, Switzerland, 2 – 9 July 2003 CERN Yellow Report 2005-012

http://cas.web.cern.ch/cas/BRUNNEN/lectures.html

SYNCHROTRON RADIATION

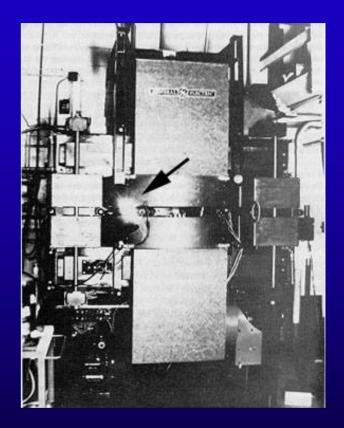
Curved orbit of electrons in magnet field



Crab Nebula 6000 light years away

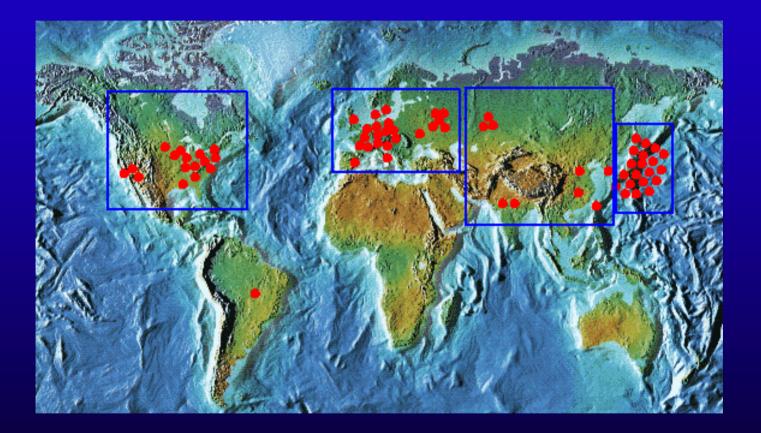
First light observed 1054 AD

GE Synchrotron New York State



First light observed 1947

60 000 users world-wide

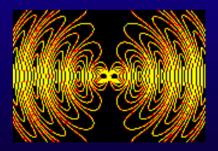


THEORETICAL UNDERSTANDING \rightarrow

1873 Maxwell's equations

→ made evident that changing charge densities would result in electric fields that would radiate outward

1887 Heinrich Hertz demonstrated such waves:



..... this is of no use whatsoever !

Maxwell equations (poetry)

War es ein Gott, der diese Zeichen schrieb Die mit geheimnisvoll verborg'nem Trieb Die Kräfte der Natur um mich enthüllen Und mir das Herz mit stiller Freude füllen. Ludwig Boltzman

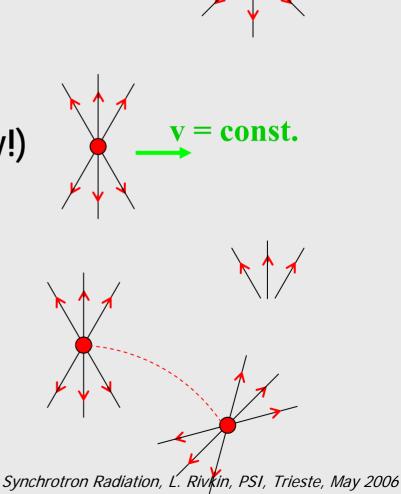
> Was it a God whose inspiration Led him to write these fine equations Nature's fields to me he shows And so my heart with pleasure glows. translated by John P. Blewett

Why do they radiate?

Charge at rest: Coulomb field, no radiation

Uniformly moving charge does not radiate (but! Cerenkov!)

Accelerated charge



Bremsstrahlung

or breaking radiation

1898 Liénard:

ELECTRIC AND MAGNETIC FIELDS PRODUCED BY A POINT CHARGE MOVING ON AN ARBITRARY PATH

(by means of retarded potentials)

L'Éclairage Électrique

REVUE HEBDOMADAIRE D'ÉLECTRICITÉ

DIRECTION SCIENTIFIQUE

A. CORNU, Professeur à l'École Polytechnique, Membre de l'Institut. — A. D'ARSONVAL, Professeur au Collège de France, Membre de l'Institut. — G. LIPPMANN, Professeur à la Sorbonne, Membre de l'Institut. — D. MONNIER, Professeur à l'École centrale des Arts et Manufactures. — H. POINCARE, Professeur à la Sorbonne, Membre de l'Institut. — A. POTIER, Professeur à l'École des Mines, Membre de l'Institut. — J. BLONDIN, Professeur agrégé de l'Université.

CHAMP ÉLECTRIQUE ET MAGNÉTIQUE

PRODUIT PAR UNE CHARGE ÉLECTRIQUE CONCENTRÉE EN UN POINT ET ANIMÉE D'UN MOUVEMENT QUELCONQUE

Admettons qu'une masse électrique en mouvement de densité o et de vitesse u en chaque point produit le même champ qu'un courant de conduction d'intensité u_2 . En conservant les notations d'un précédent article (') nous obtiendrons pour déterminer le champ, les équations

$$\frac{1}{4\pi} \left(\frac{d\gamma}{dy} - \frac{d3}{d\tau} \right) = \gamma u_x + \frac{df}{dt}$$
(1)
$$V^2 \left(\frac{dh}{dy} - \frac{dg}{d\tau} \right) = -\frac{1}{4\pi} \frac{dx}{dt}$$
(2)

'avec les analogues déduites par permutation tournante et en outre les suivantes

$$z = \left(\frac{df}{dx} + \frac{dg}{dy} + \frac{dh}{dt}\right)$$
$$\frac{dz}{dx} + \frac{d\tilde{z}}{dy} + \frac{d\tilde{z}}{dt} = 0.$$

De ce système d'équations on déduit facilement les relations

$$\begin{pmatrix} V^2 \Delta - \frac{d^2}{dt^2} \end{pmatrix} f = V^2 \frac{dz}{dx} + \frac{d}{dt} (zu_x)$$
 (5)
$$\begin{pmatrix} V^2 \Delta - \frac{d^2}{dt^2} \end{pmatrix} z = 4\pi V^2 \left[\frac{d}{d\bar{t}} (zu_y) - \frac{d}{dy} (zu_y) \right]$$
 (6)

La théorie de Lorentz, L'Éclairage Électrique, t. XIV,
 9. 417. α, β, γ, sont les composantes de la force magnétique et f. g, b, celles du déplacement dans l'éther.

Soient maintenant quatre fonctions ψ , F, G, H définies par les conditions

$$\begin{pmatrix} \nabla^{1} \Delta - \frac{d^{2}}{dt^{2}} \end{pmatrix} \psi = -4\pi \nabla^{2} \rho.$$

$$\begin{pmatrix} \nabla^{1} \Delta - \frac{d^{2}}{dt^{2}} \end{pmatrix} F = -4\pi \nabla^{2} \rho u_{x}$$

$$\begin{pmatrix} \nabla^{1} \Delta - \frac{d^{2}}{dt^{2}} \end{pmatrix} G = -4\pi \rho u_{y}$$

$$\begin{pmatrix} \nabla^{2} \Delta - \frac{d^{4}}{dt^{2}} \end{pmatrix} H = -4\pi \nabla^{4} \rho u_{y}$$

$$\begin{pmatrix} \nabla^{2} \Delta - \frac{d^{4}}{dt^{2}} \end{pmatrix} H = -4\pi \nabla^{4} \rho u_{y}$$

$$\begin{pmatrix} \nabla^{2} \Delta - \frac{d^{4}}{dt^{2}} \end{pmatrix} H = -4\pi \nabla^{4} \rho u_{y}$$

$$\begin{pmatrix} \nabla^{2} \Delta - \frac{d^{4}}{dt^{2}} \end{pmatrix} H = -4\pi \nabla^{4} \rho u_{y}$$

$$\begin{pmatrix} \nabla^{2} \Delta - \frac{d^{4}}{dt^{2}} \end{pmatrix} H = -4\pi \nabla^{4} \rho u_{y}$$

$$\begin{pmatrix} \nabla^{2} \Delta - \frac{d^{4}}{dt^{2}} \end{pmatrix} H = -4\pi \nabla^{4} \rho u_{y}$$

$$\begin{pmatrix} \nabla^{2} \Delta - \frac{d^{4}}{dt^{2}} \end{pmatrix} H = -4\pi \nabla^{4} \rho u_{y}$$

On satisfera aux conditions (5) et (6) en pre-

$$4\pi f = -\frac{d^3 q}{dx} - \frac{1}{V^2} \frac{dF}{dt}$$
(9)

$$x = \frac{d\Pi}{dr} - \frac{dG}{d\tilde{i}}.$$
 (10)

Quant aux équations (1) à (4), pour qu'elles soient satisfaites, il faudra que, en plus de (7) et $\langle 8 \rangle$, on ait la condition

$$\frac{d\cdot t}{dt} + \frac{dF}{dx} + \frac{dG}{dy} + \frac{dH}{dy} = 0.$$
(11)

Occupons-nous d'abord de l'équation (7). On sait que la solution la plus générale est la suivante :

$$\dot{\gamma} = \int \frac{\varphi \left[x', y', \zeta, t - \frac{r}{\nabla} \right]}{r} d\omega' \qquad (12)$$

(3)

(.1)

Liénard-Wiechert potentials

$$\varphi(\mathbf{t}) = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{q}}{\left[\mathbf{r}\left(1 - \mathbf{\vec{n}} \cdot \mathbf{\vec{\beta}}\right)\right]_{ret}} \qquad \qquad \mathbf{\vec{A}}(\mathbf{t}) = \frac{\mathbf{q}}{4\pi\varepsilon_0 c^2} \left[\frac{\mathbf{v}}{\mathbf{r}\left(1 - \mathbf{\vec{n}} \cdot \mathbf{\vec{\beta}}\right)}\right]_{ret}$$

and the electromagnetic fields:

$$\nabla \cdot \vec{\mathbf{A}} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0$$
 (Lorentz gauge)

$$\vec{\mathbf{B}} = \nabla \times \vec{\mathbf{A}}$$
$$\vec{\mathbf{E}} = -\nabla \boldsymbol{\varphi} - \frac{\partial \vec{A}}{\partial t}$$

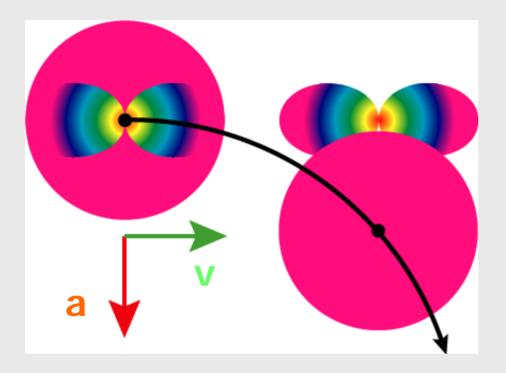
Fields of a moving charge

$$\vec{\mathbf{E}}(t) = \frac{q}{4\pi\varepsilon_0} \left[\frac{\vec{\mathbf{n}} - \vec{\beta}}{\left(1 - \vec{\mathbf{n}} \cdot \vec{\beta}\right)^3 \gamma^2} \cdot \frac{1}{|\mathbf{r}|^2} \right]_{ret} +$$

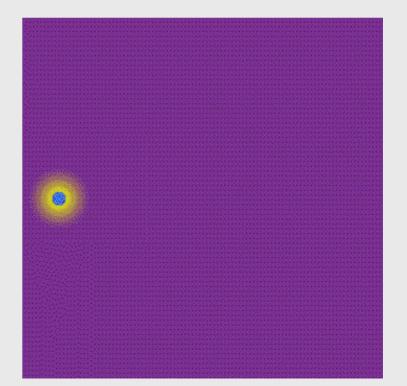
$$\frac{q}{4\pi\varepsilon_0 c} \left[\frac{\vec{\mathbf{n}} \times \left[\left(\vec{\mathbf{n}} - \vec{\beta} \right) \times \vec{\beta} \right]}{\left(1 - \vec{\mathbf{n}} \cdot \vec{\beta} \right)^3 \gamma^2} \cdot \left[\frac{1}{\mathbf{r}} \right]_{ret} \right]_{ret}$$

$$\vec{\mathbf{B}}(t) = \frac{1}{c} [\vec{\mathbf{n}} \times \vec{\mathbf{E}}]$$

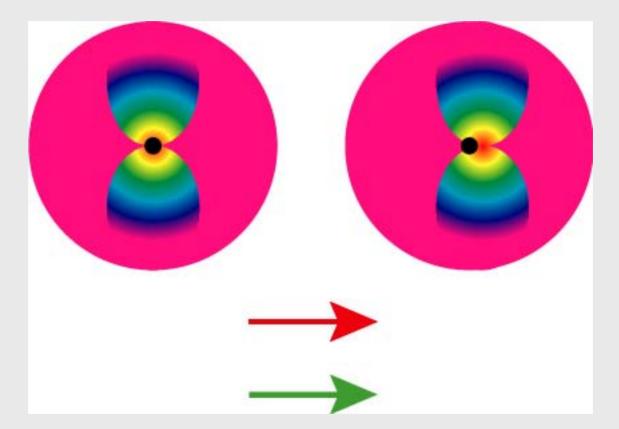
Transverse acceleration



Radiation field quickly separates itself from the Coulomb field

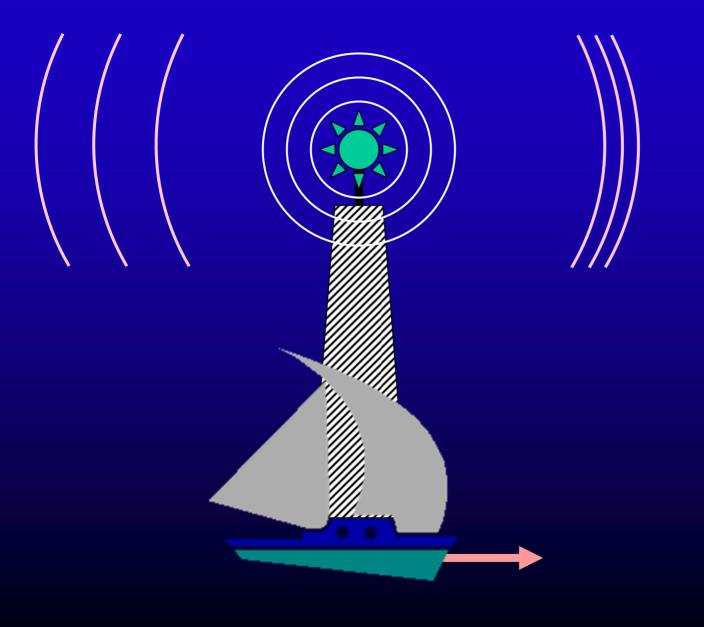


Longitudinal acceleration



Radiation field cannot separate itself from the Coulomb field

Moving Source of Waves



Time compression

Electron with velocity β emits a wave with period T_{emit} while the observer sees a different period T_{obs} because the electron was moving towards the observer

The wavelength is shortened by the same factor

n

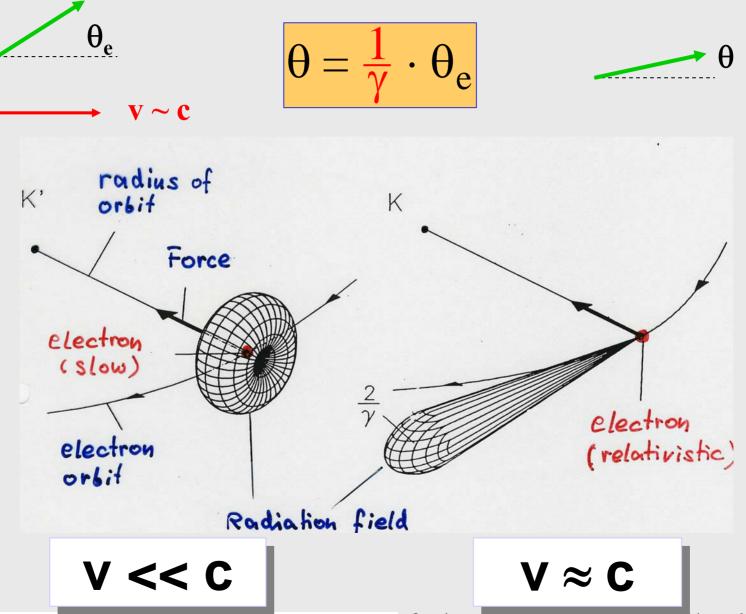
θ

 $\lambda_{obs} = (1 - \beta \cos \theta) \lambda_{emit}$ in ultra-relativistic case, looking along a tangent to the trajectory

$$\lambda_{\text{obs}} = \frac{1}{2\gamma^2} \lambda_{\text{emit}}$$
 since $1 - \beta = \frac{1 - \beta^2}{1 + \beta} \cong \frac{1}{2\gamma^2}$

 $T_{obs} = (1 - \mathbf{n} \cdot \boldsymbol{\beta}) T_{emit}$

Radiation is emitted into a narrow cone



Synchrotron Radiation, L. Rivkin, PSI, Trieste, May 2006

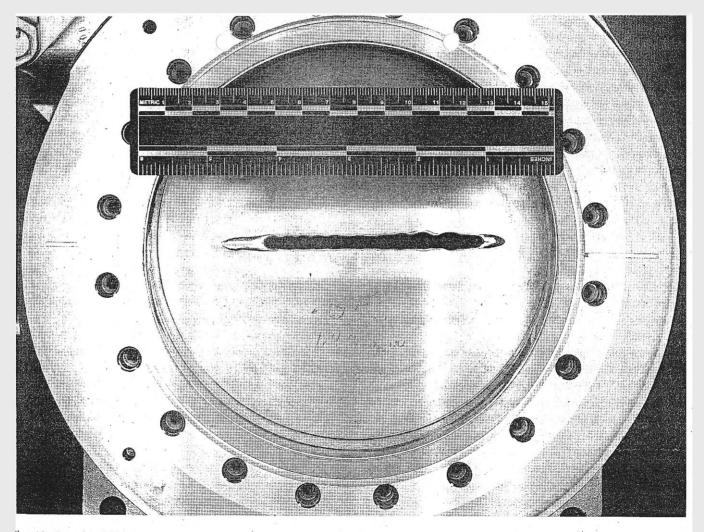
Synchrotron radiation power

Power emitted is proportional to:

$$P_{\gamma} = \frac{cC_{\gamma}}{2\pi} \cdot \frac{E^4}{\rho^2}$$

$$C_{\gamma} = \frac{4\pi}{3} \frac{r_e}{(m_e c^2)^3} = 8.858 \cdot 10^{-5} \left[\frac{\text{m}}{\text{GeV}^3}\right]$$

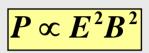
The power is all too real!

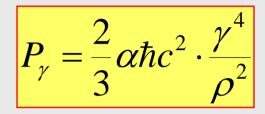


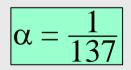
ig. 12. Damaged X-ray ring front end gate valve. The power incident on the valve was approximately 1 kW for a duration estimated to 2-10 min and drilled a hole through the valve plate.

Synchrotron radiation power

Power emitted is proportional to:







$$U_0 = \frac{4\pi}{3} \alpha \hbar c \frac{\gamma^4}{\rho}$$

Synchrotron Radiation, L. Rivkin, PSI, Trieste, May 2006

$$P_{\gamma} = \frac{cC_{\gamma}}{2\pi} \cdot \frac{E^4}{\rho^2}$$

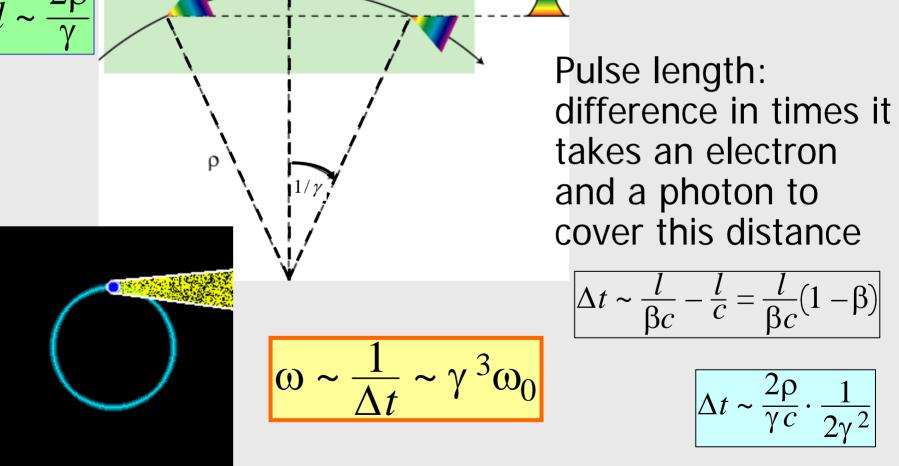
$$C_{\gamma} = \frac{4\pi}{3} \frac{r_e}{(m_e c^2)^3} = 8.858 \cdot 10^{-5} \left[\frac{\text{m}}{\text{GeV}^3}\right]$$

Energy loss per turn:

$$U_0 = C_{\gamma} \cdot \frac{E^4}{\rho}$$

Typical frequency of synchrotron light

Due to extreme collimation of light observer sees only a small portion of electron trajectory (a few mm)



Spectrum of synchrotron radiation

 Synchrotron light comes in a series of flashes every T₀ (revolution period)

 the spectrum consists of harmonics of

$$\omega_0 = \frac{1}{T_0}$$

 flashes are extremely short: harmonics reach up to very high frequencies

$$\omega_{typ} \cong \gamma^3 \omega_0$$

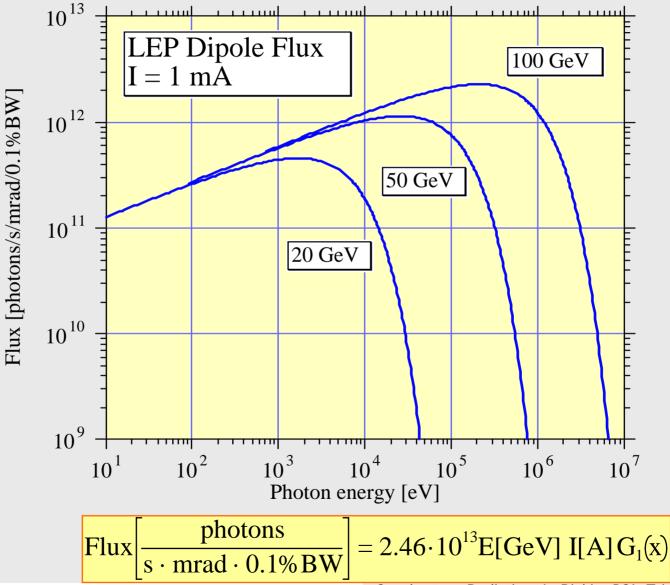
 $\omega_0 \sim 1 \text{ MHz}$ $\gamma \sim 4000$ $\omega_{\text{typ}} \sim 10^{16} \text{ Hz !}$

• At high frequencies the individual harmonics overlap

continuous spectrum !



Synchrotron radiation flux for different LEP energies

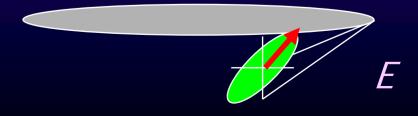


Synchrotron Radiation, L. Rivkin, PSI, Trieste, May 2006

Polarisation

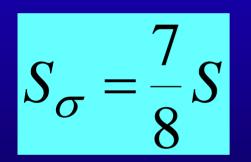
Synchrotron radiation observed in the plane of the particle orbit is horizontally polarized, i.e. the electric field vector is horizontal

Observed out of the horizontal plane, the radiation is elliptically polarized



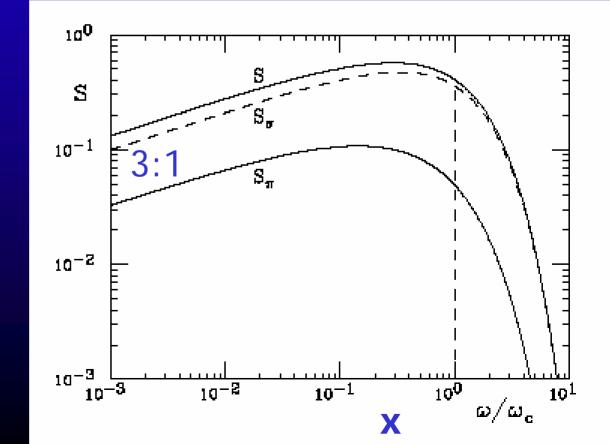
Polarisation: spectral distribution

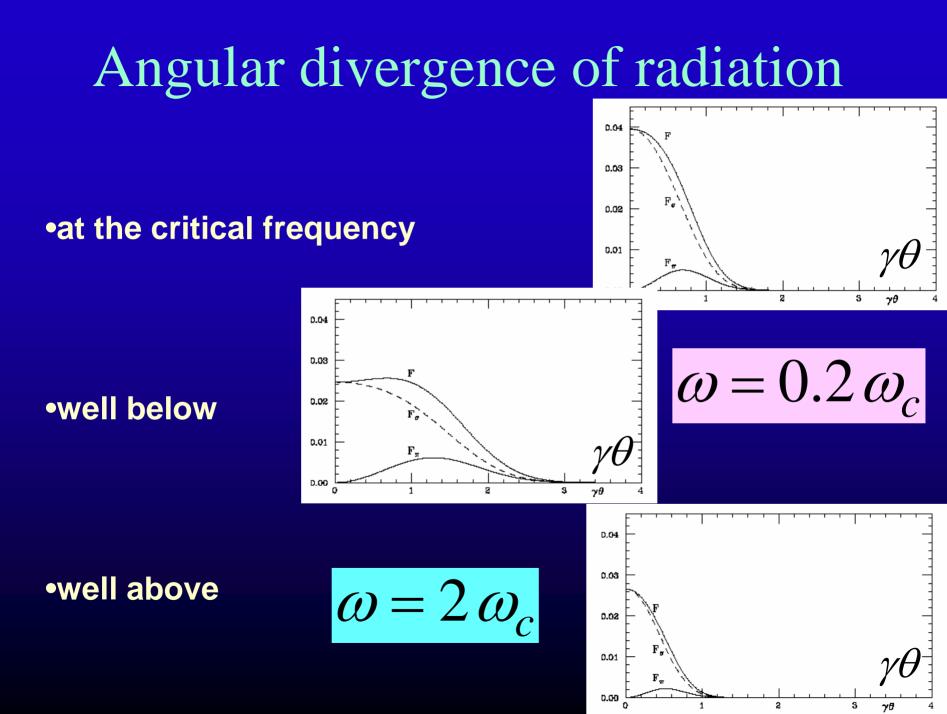
$$\frac{dP}{d\omega} = \frac{P_{tot}}{\omega_c} S(x) = \frac{P_{tot}}{\omega_c} [S_{\sigma}(x) + S_{\pi}(x)]$$



 S_{π}

S





Angular divergence of radiation

The rms opening angle R'

• at the critical frequency:

$$\omega = \omega_{\rm c} \qquad \mathbf{R'} \approx \frac{0.54}{\gamma}$$

well below

$$\omega \ll \omega_{c} \qquad \mathbf{R'} \approx \frac{1}{\gamma} \left(\frac{\omega_{c}}{\omega}\right)^{\frac{1}{3}} \approx 0.4 \left(\frac{\lambda}{\rho}\right)^{\frac{1}{3}}$$

independent of γ !

$$\omega \gg \omega_{\rm c} \qquad \mathbf{R'} \approx \frac{0.6}{\gamma} \left(\frac{\omega_{\rm c}}{\omega}\right)^{1/2}$$

