IXS from polycrystalline samples

Determination of orientation averaged properties

- aggregate sound velocities: V_L , (V_T)
- phonon density of states: V_D , C_V , Θ_D , ...

Diamond anvil cell (DAC) techniques

Pressure measurement by frequency shift of ruby fluorescence

Polycrystalline ε (hcp)-iron

G. Fiquet, J. Badro, F. Guyot, H. Requardt and M. Krisch; Science 291, 468 (2001)

Density dependence of V_P and V_S

D. Antonangeli et al; Earth and Planetary Science Letters 225, 243 (2004)

Determination of the phonon density of states

- ∆E = 3 meV
- Sum of 10 IXS spectra (45 nm⁻¹<Q<60 nm⁻¹

A. Bosak and M. Krisch; Phys. Rev. B 72, 224305 (2005)

IXS in surface sensitive geometry

B. Murphy et al.; Phys. Rev. Lett. 95, 256104 (2005)

2H-NbSe₂

Sample environment

high pressure

Paris-Edinburgh press diamond anvil cells

cooled high-pressure cells resistive heating laser heating (ID27)

low temperature

cryostats

high temperature

ovens

Conclusions I

IXS complements INS

Single Crystals:

- Determination of C_{ij} 's with a few percent precision.
- Full dispersion scheme of simple systems in reasonable time (4-6 days).
- Maximum pressure limited by single crystal quality/thickness.

Conclusions II

Powders:

- Orientation averaged V_{P} and LA acoustic branch.
- Phonon density of states.

Disordered systems:

- longitudinal sound velocities and damping.
- structural relaxation time and strength, thermal diffusivity, viscosity

ADDITIONAL MATERIAL

IXS versus INS: scattering kinematics

Energy Transfer:

Neutrons:

 $\lambda_1 = 1 \text{ Å} \Rightarrow E_1 = 82 \text{ meV}$ E = some meV $E_1 \neq E_2$

=> moderate energy resolution: $E/E_1 = 0.05$

X-rays:

 $\lambda_1 = 1 \text{ Å} \Rightarrow E_1 = 12398 \text{ eV}$ E = some meV $E_1 \approx E_2$

=> extremely high energy resolution: $E/E_1 = 10^{-7}$

IXS versus INS: scattering kinematics

MomentumTransfer:

Neutrons:
$$Q = \sqrt{k_1^2 + k_2^2 - 2k_1k_2\cos(\theta)}$$

strong coupling between E and Q inaccessible E-Q region

X-rays:

=>

=>

$$Q = 2k_1 \sin\left(\frac{9}{2}\right)$$

Q only controlled by scattering angle ϑ

Q-E range and experimental techniques

E. Burkel, Rep. Prog. Phys. 63 (2000) 171–232

Efficiency of the IXS technique

• IXS signal ~ $n/\mu = n t_{\mu}$

n = concentration of scatterers μ = photoelectric absorption

IXS from phonons: the central approximations

(i) Adiabatic approximation: $|S\rangle = |S_e\rangle |S_n\rangle$ (ii) $|I\rangle = |I_e\rangle |I_n\rangle$ $|F\rangle = |I_e\rangle |F_n\rangle$

For a mono-atomic system:

$$\frac{\partial^2 \sigma}{\partial \Omega \partial E} = r_0^2 \left(\vec{\varepsilon}_1 \cdot \vec{\varepsilon}_2\right)^2 \frac{k_1}{k_2} |f(Q)|^2 S(\vec{Q}, E)$$

Thomson scattering cross section

Atomic form factor

Dynamical structure factor

X-ray inelastic cross section

$$\frac{d^{2}\sigma}{d\Omega dE_{f}} = r_{0}^{2} (\hat{e}_{i} \cdot \hat{e}_{f}) S(Q, E)$$
Thomson scattering
cross-section
$$\frac{d^{2}\sigma}{d\Omega dE_{f}} = r_{0}^{2} (\hat{e}_{i} \cdot \hat{e}_{f}) S(Q, E)$$

$$\frac{dynamical}{dynamical}$$
structure factor
$$Single crystals: S(\vec{Q}, E, T) = \sum_{j} G(\vec{Q}, j) F(E, T, \vec{Q}, j)$$

$$F(E, T, \vec{Q}, j) = \frac{((\exp(\frac{E_{\vec{Q}, j}}{kT}) - 1)^{-1} + 1/2 \pm 1/2)}{E_{\vec{Q}, j}} \cdot \delta(E \mp E_{\vec{Q}, j}) \qquad \text{linked to temperature}$$

$$G(\vec{Q}, j) = \left|\sum_{n} f_{n}(\vec{Q}) e^{i\vec{Q}\vec{r}_{n} - W_{n}} (\vec{Q} \cdot \hat{\sigma}_{n}(\vec{Q}, j)) M_{n}^{-1/2}\right|^{2} \qquad \text{defines selection rules}$$

$$- Trieste 2006$$

Dynamical structure factor

Dynamical structure factor $S(Q,\omega)$: **Space** and **time** Fourier transform of $G_P(\mathbf{r},t)$.

Pair correlation function $G_{P}(\mathbf{r},t)$:

 $G_{P}(\mathbf{r},t)$ is the probability to find two different particles at positions $\mathbf{R}_{P}(t=0)$ and $\mathbf{R}_{P}(t)$, separated by the **distance r** and the **time interval t**.

Selecting phonons

1987 - first IXS measurements

Condensed

© Springer-Verlag 1987

Zeitschrift für Physik B Matter

Z. Phys. B - Condensed Matter 69, 179-183 (1987)

First Measurement of a Phonon Dispersion Curve by Inelastic X-ray Scattering

B. Dorner *, E. Burkel, Th. Illini, and J. Peisl Sektion Physik der Ludwig Maximilians Universität, München, Federal Republic of Germany

Received July 6, 1987

HASYLAB

Inelastic scattering of 13.8 keV X-rays with very high energy resolution of $\Delta E = 55$ meV was used to measure the phonon dispersion curves for the *LA* and *LO* modes in the $[00\xi]$ direction in Be. The results agree with inelastic neutron scattering data known from the literature. The X-ray scattering intensities of the phonon excitations for different momentum transfers are in very good agreement with the prediction from the scattering law.

The IXS spectrometer on ID28

Reflection	ΔE [meV]	$Q_{max}(7) [nm^{-1}]$
(777)	7	64
(888)	5.5	73
(999)	3.0	82
(11 11 11)	1.7	100
(13 13 13)	0.9	119