ICTP school 2006 X- Ray Detectors

Ralf Hendrik Menk Sincrotrone Trieste, Italy

Imaging set up with X-rays

Dose considerations

Signal to noise & **Detective Quantum Efficiency DQE**

$$SNR \equiv \frac{Signal}{noise} = \frac{S}{\sigma}$$

In case of photons > Poisson statistics

 $S=N, \sigma=\sqrt{N} \implies SNR^2 = N$

 $DQE(f) \equiv \frac{SNR_{out}^2}{SNR_{in}^2} = \frac{SNR_{out}^2}{N}$

 $DQE \subset [0,1]$

Your measurement!

SNR_{out}

To be or not to be in **nature**

SNR_{in}

Detector

QE(f)

is here the question of the detector....

Detective Quantum Efficiency DQE What looks DQE like? To answer this questions one as to understand the underlying detection principle Bottom line: Convert photons to free charges and measure those ¹-ພິງ ສ₁₀ Photo effect $\mu \approx \frac{Z^5}{E^{\frac{7}{2}}}$ **Incident Photon** Compton Pair production $\mu \approx Z \cdot \frac{1}{E} \cdot \left(\frac{1}{2} + \ln(2 \cdot E)\right); E \gg 1^{0.1}$ Incident Photon 10 100 MeV $\mu \approx Z^2 \cdot \left(\ln \left(2 \cdot E \right) \right); 1 < E < \frac{137}{7^{\frac{1}{3}}}$ **Incident Photon**

Charge Collection

Integrating detectors

Counting detectors

Quantum efficiency ε

Energy resolution Energy resolution for gaseous detectors $\Delta E/E \sim 10\%$ Typical 'energy spectrum' Example: gaseous detector-. Proportional counter HV X-rays $E=E_{v}$ No of photons Photo peak -2000V Fluorescence X-rays $E=E_{F}$ $\Delta E/E$ energy resolution Fluorescence Escape peak photon photo electron electron Q per photon U≈Q ≈E_v $\int_{0}^{\infty} n(E) \cdot E^2 \cdot dE - \left(\int_{0}^{\infty} n(E) \cdot E \cdot dE\right)$ ΔE Energy Process E8 photo electron $$\begin{split} E_p &= E_\gamma \text{-}E_b \\ E_f &= E_i \text{-}E_j \\ E_a &= E_k \text{-}2E_l \end{split}$$ = E $\int n(E) \cdot E \cdot dE$ Fluorescence photon Auger electron for photo effect = single event energy resolution on k-shell

Those of

Bottom line: connect each strip to pream. and collect charges release

Integrating detectors

Counting detectors

and the second s

5/14

Spatial resolution: PSF m(x) $\frac{\partial m}{\partial x}$ PSF(x) point spread function Segmented $m(x) = \int_{-\infty}^{\infty} PSF(x') \cdot \Theta(x - x') \cdot dx'$ detector $\frac{\partial m(x)}{\partial x} = \int_{-\infty}^{\infty} \frac{\partial}{\partial x} \left(PSF(x') \right) \cdot \Theta(x - x') \cdot dx' +$ $\int_{-\infty}^{\infty} PSF(x') \cdot \frac{\partial}{\partial x} \Theta(x - x') \cdot dx'$ Х edge $= \int_{-\infty}^{\infty} PSF(x') \cdot \delta(x - x') \cdot dx' = PSF(x)$ $\Theta(x-x') = \begin{cases} 0 \text{ for } x < x' \\ 1 \text{ else} \end{cases};$ $\frac{\partial \Theta(x-x')}{\partial x} = \delta(x-x')$ Signal smearing is due to - the process of charge generation - and the discrete X-rays pixel size

Spatial resolution: PSF

Contributions to the spatial resolution

- Range of photo electrons
- diffusion of the electron components
- range of the fluorescence
- pixel size of the segmentation
- electronics cross talk
- induction of ion component
- etc

 $PSF(x) = \int_{-\infty}^{\infty} \dots \left[\dots \int_{-\infty}^{\infty} \delta(x' \dots y') \cdot g_1(x' \dots y') dx' \dots y' \right] \dots \left[\cdot g_n(x - x') \cdot dx' \right]$ $= \delta * g_1 * \dots x \cdot g_n$

Point Spread Function /Line Spread Function

range of photo electrons

Projected distribution of photo electrons on the segmented electrode

$$r_P(x) = e^{-\frac{x^2 \cdot \rho_{gas}^2}{2 \cdot \sigma_R^2}}$$

 σ_R = 1.5 10⁻³ E^{1.75} dim (σ_R) = [mgr/cm²] dim(E) = [keV]

diffusion of electrons

- D_t Diffusion constant
- E electrical field
- P pressure
- u- mobility
- z_{drift} drift distance
 t drift time

Fluorescence

Distance anode -cathode = 3 mm

Distance anode -cathode = 10 mm

Spatial resolution: pixel size

Periodic repetition of pixels in real detector

Segmentation is a convolution of g(x) with Dirac comb

Nyquist sampling theorem

MTF = Modulation Transfer Function

Signal to noise ratio

$$\phi(x, y, t) = \phi_0 = const$$

$$\int_A^b da = \int_{\frac{b}{2}}^{\frac{b}{2}} \int_{\frac{h}{2}}^{\frac{h}{2}} dx \cdot dy$$

$$S_{in} = N_{in} = \iint_{AT} \phi(x, y, t) \cdot dt \cdot da = \phi_0 \cdot b \cdot h \cdot T$$

$$\sigma_{in} = \sqrt{\iint_{AT}} \phi(x, y, t) \cdot dt \cdot da = \sqrt{\phi_0} \cdot b \cdot h \cdot T$$

$$SNR_{in} = \frac{\int_{AT}^{\int} \phi(x, y, t) \cdot dt \cdot da}{\sqrt{\iint_{AT}} \phi(x, y, t) \cdot dt \cdot da} = \frac{N}{\sqrt{N}} = \sqrt{N}$$

3

DQE: Signal to noise ratio for integrating detectors

$$S_{out} = \varepsilon \cdot S_{in}(x) \otimes PSF(x) = \varepsilon \cdot N(x) \otimes PSF(x)$$

$$\sigma_{out} = \sqrt{\varepsilon \cdot N(x) \otimes PSF(x)} + \sigma_{out}^{2}$$

Poisson noise

Electronics noise of an integrating detector

$$SNR_{out} = \frac{S_{out}}{\sigma_{out}} = \frac{\varepsilon \cdot S_{in}(x) \otimes PSF(x)}{\sqrt{\varepsilon \cdot N(x) \otimes PSF(x) + \sigma_{out}^{2}}} = \frac{\varepsilon \cdot N(x) \otimes PSF(x)}{\sqrt{\varepsilon \cdot N(x) \otimes PSF(x) + \sigma_{out}^{2}}}$$
$$SNR_{out} = \sqrt{DQE} \cdot SNR_{in}$$

$$DQE = \left(\frac{SNR_{out}}{SNR_{in}}\right)$$

DQE for integrating detectors

$$\Im(DQE) = \Im\left(\left(\frac{SNR_{out}}{SNR_{in}}\right)^{2}\right) = DQE(f); f spatial frequence$$
$$DQE(f,N) = \Im\left(\left(\frac{\varepsilon \cdot N(x) \otimes PSF(x)}{\sqrt{\varepsilon \cdot N(x) \otimes PSF(x) + \sigma_{out}^{2}}}\right)^{2}\right)$$

 $DQE(f,N) = \chi(N) \cdot \frac{|MTF(f)|^2}{NPS(f)}; with |MTF(f=0)|^2 = 1 and$

$$NPS(f=0) = 1 + \frac{\sigma^2}{\varepsilon \cdot N}$$

$$DQE(f=0,N) = \frac{\varepsilon}{1 + \frac{\sigma^2}{1 + \frac{\sigma^2}{\sigma^2}}}$$

MTF = modulation transfer function NPS = noise power spectrum $\chi(M)$ = zero spatial frequency DQE

DQE: Signal to noise ratio for counting detectors

Non paralyzable m = n/(1+n τ)

Paralyzable m = $ne^{-n\tau}$

$$DQE(f=0) = \left(\frac{SNR_{out}}{SNR_{in}}\right)$$

$$S_{out} = \frac{\varepsilon \cdot n}{1 + n \cdot \tau}; \ \sigma_{out} = \sqrt{\frac{\varepsilon \cdot n}{1 + n \cdot \tau}}$$

$$SNR_{out} = \sqrt{\frac{\varepsilon \cdot n}{1 + n \cdot r}}$$
$$SNR_{in} = \sqrt{n}$$

 $DQE(f=0) = \frac{\varepsilon}{1+n\tau}$

Zero spatial frequency DQE

integrating 10 photons noise counting 1μ s dead time integrating 50 photons noise counting 10 μ s dead time

Counting detectors

$$DQE = \frac{\varepsilon}{1 + N \cdot \tau} \cdot |MTF|^{2}$$
Integrating detectors

$$DQE = \frac{\varepsilon}{1 + \frac{\sigma_{add}^{2}}{\varepsilon \cdot N}} \cdot |MTF|^{2}$$

Integrating detectors

 $DQE = \frac{\varepsilon}{1 + \frac{\sigma_{add}^2}{\varepsilon \cdot N}} \cdot \left| MTF \right|^2$

 $MTF = \mathcal{J}(PSF)$

DQE

PSI

Counting detectors

$$DQE = \frac{\mathcal{E}}{1 + R \cdot \tau} \cdot |MTF|^2$$

$$T = \begin{cases} 1 \text{ for } -b/2 < x < b/2 \\ 0 \text{ else} \end{cases} => MTF \sim \frac{Sin(x)}{x}$$

Integrating: noise 10 photon

Counting: deadtime 10⁻⁶s

Spatial frequency DQE = 0Photon flux DQE = 0