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Line detector
DQE

Movement device
insertion device

monochromator

Image 
reconstruction
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Rotation stage
2-d detector

DQE
Inverse 
Fourier

Direct imaging
Length scale 

0.5 µm – 30 cm
most of pixels see

approx same photon 
~ 104 for 0.1%

Fourier
indirect imaging

Length scale 
15 Å –5000Å

most of pixels see
~ 0 photons

Imaging set up with X-rays
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Signal to noise & 
Detective Quantum Efficiency DQE

In case of photons > Poisson statistics 
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Your measurement!
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is here the question of the detector….



Detective Quantum Efficiency DQE

What looks DQE like?  
To answer this questions one as to understand  the underlying detection principle

Bottom line: Convert photons to free charges and measure those  
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Charge Collection

Integrating detectors Counting  detectors
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ε :=
no of photons that interact in the detector volume

no of photons in front of the detector

Detector window and/or
‘dead volume’

I0

Conversion volume
defined by ρ and µ
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Q per photon

Photo peak 

Escape peak 

Typical ‘energy spectrum’

∆E/E energy 
resolution

Energy resolution for 
gaseous detectors  ∆E/E ~ 10%

Process Energy

photo electron Ep = Eγ -Eb
Fluorescence photon               Ef = Ei-Ej
Auger electron                   Ea = Ek-2El

for photo effect
on k-shell

U≈Q ≈Ey

Fluorescence 
X-rays E=EF

Fluorescence
photon

photo
electron

Example: gaseous detector-. Proportional counter

X-rays E=EγHV
-2000V

Auger
electron
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Spatial resolution 
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Bottom line: connect each strip to pream. and collect charges release

Integrating detectors Counting  detectors

( ) ( )i
ion

E
Q E E N e

W
γ

γ γε −= ⋅ ⋅ ⋅ ( ) ( ) ( )i
ion

E
Q E E N e A t

W
γ

γ γε δ−= ⋅ ⋅ ⋅ ⋅ ⋅

( )
( )

i
i

i
i

i Q E
x

Q E

γ

γ

⋅
=
∑

∑



Segmented
detector

X-rays
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Signal smearing is due to
- the process of charge

generation 
- and the discrete

pixel size

Spatial resolution: PSF  
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• Range of photo electrons
• diffusion of the electron components
• range of the fluorescence
• pixel size of the segmentation
• electronics cross talk
• induction of ion component
• etc 

Contributions to the spatial resolution

Point Spread Function /Line Spread Function
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Spatial resolution: PSF  



Possible tracks of photo electron

σR

range of photo electrons  

R

0 20 40 60 80 100

500

450
400
350
300
250
200

150
100
50
0

XeCO
2

2 bar

4 bar 16 bar

Photon energy

σ
of

 th
e 

pr
oj

ec
te

d 
di

st
rib

ut
io

n 
in

 u
m

σR= 1.5 10-3 E1.75 dim (σR) = [mgr/cm2] dim(E) = [keV]

Projected distribution of photo electrons
on the segmented electrode 
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• Dt Diffusion constant
• E electrical field
• P pressure
• u- mobility
• zdrift drift distance
• t drift time

CH4

diffusion of electrons  
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For  Kr-CO2 filled Ionization chamber with a pixel size of  0.4mm and Ey= 33.174 keV 
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Distance  anode -cathode = 3 mm Distance  anode -cathode = 10 mm
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Fluorescence
photon photo

electron

ions
Fluorescence strongly depends on the geometry gas, energy etc.
-> no analytical expression -> Monte Carlo  

• Dice position of incident photon 
• Dice  primary ionization e−µ∆z

• Dice effect (Auger or fluorescence
• If fluorescence 

• dice ϕ and dcos(θ) [solid angle]
• dice conversion position according to e−µ∆r

• projection on x-axis
• apply segmentation

• endif & go to beginning 

Fluorescence



Pixel size

b/2-b/2

Spatial resolution: pixel size  
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Measured response 
over sampling

Measured response no
signal transfer

How good are different spatial frequencies transmitted (modulated) by the detector??

MTF = Modulation Transfer Function

Nyquist sampling theorem  

Detector segments

Measured response
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Signal to noise ratio   
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DQE: Signal to noise ratio  
for integrating detectors 
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MTF = modulation transfer function
NPS  = noise power spectrum

=  zero spatial frequency DQEχ( )N

DQE for integrating detectors 
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dead
alive

dead
alive

Events  in the detector 

τ
Paralyzable
m = ne-nτ

m = measure rate 
n  = real rate 
τ = dead time

τ
Non paralyzable
m = n/(1+n τ)

DQE: Signal to noise ratio  for counting detectors 
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Zero spatial frequency  DQE  
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MTF =ℑ(PSF) PSF =
1 for  -b/2<x<b/2

0 else
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