How well do we understand X-ray absorption spectral shapes?

Utrecht University Faculty of Chemistry

Department of

Inorganic Chemistry and Catalysis

- Multiplet Analysis
- Resonant inelastic x-ray spectroscopy

www.anorg.chem.uu.nl/people/staff/FrankdeGroot/

Phys. Rev. B. 40, 5715 (1989) / 48, 2074 (1993)

Oxygen K edge EELS

- Element specific DOSL specific DOS
- Core hole effects
- Multiplet effects
- Many body effects

Phys. Rev. B. 40, 5715 (1989) / 48, 2074 (1993)

Fermi Golden Rule: $I_{EELS} = |\langle \Phi_f | dipole | \Phi_i \rangle|^2 \delta_{[\Delta E=0]}$

Single electron (excitation) approximation: $I_{EELS} = |\langle \Phi_{empty} | dipole | | \Phi_{core} \rangle|^2 \rho$

Neglect <vv'|1/r|vv'> ('many body effects')
 Neglect <cv|1/r|cv> ('multiplet effects')

Multiplet Effects in EELS

Core Hole Effect in XAS

Final State Rule: Spectral shape of XAS looks like final state

Initial State Pulo

DOS

Initial State Rule:

Intensity of XAS is given by the initial state

> Phys. Rev. B. 41, 11899 (1991)

Multiplet Effects in XAS

Multiplet Effects in EELS

Charge Transfer Multiplet program: Simulation of XAS, EELS, XES, RIXS, (resonant) photoemission, Auger **ATOMIC PHYSICS GROUP THEORY** MODEL HAMILTONIANS

www.anorg.chem.uu.nl/people/staff/FrankdeGroot/

Calculated L-edges $3d^{N} \rightarrow 2p^{5}3d^{N+1}$

- Single configuration
- Atomic values for
 intra-atomic interactions
- Cubic crystal field of 1.2 eV

Metal L edges

Atomic Multiplet Theory

$$H'_{ee} = H_{ee} - \left\langle H_{ee} \right\rangle = \sum_{pairs} \frac{e^2}{r_{ij}} - \left\langle \sum_{pairs} \frac{e^2}{r_{ij}} \right\rangle$$

Atomic Multiplet Theory

$$H_{ATOM} = \sum_{pairs} \frac{e^2}{r_{ij}} + \sum_{N} \zeta(r_i) l_i \cdot s_i$$

$$\left\langle {}^{2S+1}L_J \left| \frac{e^2}{r_{12}} \right|^{2S+1}L_J \right\rangle = \sum_k f_k F^k + \sum_k g_k G^k$$

Multiplet Effects

1 s	2s	2 p	3s	3 p	
0.07	5	8	13	17	
	Core	Core Valence Overlap			
0	0	17	0	2	
	Core S	Core Spin-orbit coupling			

Multiplet Effects

3d0 XAS calculation

 $H_{eff} = H_{ELECTRO} + H_{LS-2p} + H_{LS-3d}$

 $H_{ELECTRO} = \langle 2p^5 3d^1 | \frac{e^2}{r_{12}} | 2p^5 3d^1 \rangle$ $H_{LS-2p} = \left\langle 2p \left| \varsigma_p l_p \cdot s_p \right| 2p \right\rangle$ $H_{LS-3d} = \langle 3d \mid \varsigma_d l_d \cdot s_d \mid 3d \rangle$

3d^o XAS calculation

H _{electro=0} H _L	_S-2p=0	H _{LS-3d=0}	
Energy Matrix 0 0 0 0 0 0 0 0 0 0		<i>Eigenvectors</i> 1 0 0 0 1 0 0 0 1	
Energy Levels		Intensities	
0.00	³ P	0.00	
0.00	^{3}D	0.00	
0.00	^{1}P	1.00	

3d^o XAS calculation

H _{electro=ATOM} H	LS-2p=0	H _{LS-3d=0}	
<i>Energy Matrix</i> -1.345 0 0 0 0.671 0 0 0 3.591		<i>Eigenvectors</i> 1 0 0 0 1 0 0 0 1	
Energy Levels		Intensities	
-1.345	³ P	0.00	
+0.671	^{3}D	0.00	
+3.591	^{1}P	1.00	

3d^o XAS calculation

H _{electro=0} H _{LS-2}	2p=ATON	H _{LS-3d=0}	
Energy Matrix 0.944 1.635 2.312 1.635 - 0.944 1.335 2.312 1.335 0.000		Eigenvectors 0.5 -0.5 -0.707 -0.866 -0.288 -0.408 0.0 0.816 -0.577	
Energy Levels		Intensities	
-1.888	^{3}P	0.00	
-1.888	^{3}D	0.666	
+3.776	^{1}P	0.333	

3d⁰ XAS calculation

3d⁰ XAS calculation

H _{electro=ATOM} H _{LS-}		2p=ATO	M	H _{LS-3d=0}		
<i>En</i> 1.615 1.635 2.312	nergy Mat 1.635 – 2.289 1.335	rix 2.312 1.335 3.591		E 0.297 - 0.951 0.089	igenvector – 0.776 – 0.185 0.603	s 0.557 0.248 0.792
Energy Levels				Intens	ities	
	-2.925		^{3}P		0.008	
+0.207			^{3}D	0.364		
+5.634			^{1}P	0.628		

3d⁰ XAS calculation

Term Symbols and XAS

$Ti^{|V|}$ ion in TiO_2 : Ground state: Final state: Dipole transition:

3d⁰ 2p⁵3d¹ p-symmetry

3d⁰-configuration: 2p¹3d⁹-configuration: ${}^{2}P \otimes {}^{2}D = {}^{1,3}PDF$ i'=0,1,2,3,4 p-transition:

1**S** $1\mathbf{P}$

```
j=0
\Delta i = +1, 0, -1
```

ground state symmetry: ¹S transition: $^{1}S \otimes ^{1}P = ^{1}P$ two possible final states: ¹P

¹P₁, ³P₁, ³D₁

 ${}^{1}S_{0}$

Term Symbols and XAS

Ni^{II} ion in NiO: Ground state: Final state: Dipole transition:

3d⁸ 2p⁵3d⁹ p-symmetry

3d⁸-configuration: 2p⁵3d⁹-configuration: p-transition:

¹S ¹D, ³P, ¹G, ³F $^{2}P \otimes ^{2}D = ^{1,3}PDF$ j'=0,1,2,3,4 $1\mathbf{P}$

j=4 $\Delta i = +1, 0, -1$

 ${}^{3}\mathsf{F}_{4}$ ground state symmetry: ³F ${}^{3}F \otimes {}^{1}P = {}^{3}DFG$ transition: two possible final states: ³D, ³F ³D₃, ³F₃, ³F₄, ¹F₃

3d⁸ XAS calculation

Term Symbols and XAS

Ni^{II} ion in NiO: Ground state: Final state: Dipole transition:

3d⁸ 2p⁵3d⁹ p-symmetry

3d⁸-configuration: 2p⁵3d⁹-configuration: p-transition:

¹S ¹D, ³P, ¹G, ³F $^{2}P \otimes ^{2}D = ^{1,3}PDF$ j'=0,1,2,3,4 $1\mathbf{P}$

j=4 $\Delta i = +1, 0, -1$

 ${}^{3}\mathsf{F}_{4}$ ground state symmetry: ³F ${}^{3}F \otimes {}^{1}P = {}^{3}DFG$ transition: two possible final states: ³D, ³F ³D₃, ³F₃, ³F₄, ¹F₃

3d⁸ XAS calculation

XAS calculations of rare earths

Nd^{III} ion in Nd metal Ground state: 4f³

Final state: 3d⁹4f⁴

Effect of ligand field on metal d-orbitals

orbitals forming e_g set

orbitals forming t_{2g} set

d⁴ ions

Two possible arrangements of electrons

The Pairing Energy P is the energy required to pair two electrons

Effect of 10Dq on XAS:3d⁰

Multiplet Effects in XAS

Effect of 10Dq on XAS:3d^N

Charge transfer

Charge transfer

Charge transfer

Charge Transfer in EELS

MnO: Ground state: $3d^5 + 3d^6L$ Energy of $3d^6L$: Charge transfer energy Δ

X-ray Absorption Spectroscopy

Spectral shape:(1) Multiplet effects(2) Charge Transfer

Charge Transfer in XAS

NiO: Ground state: $3d^8 + 3d^9L$ Energy of $3d^9L$: Charge transfer energy Δ

Charge Transfer in XPS

Charge Transfer in XAS

NiO: Ground state: $3d^8 + 3d^9L$ Energy of $3d^9L$: Charge transfer energy Δ

Charge Transfer in XAS

Cu^{III}: Ground state: $3d^8 + 3d^9L$ Energy of $3d^9L$: Charge transfer energy $\Delta < 0$

X-ray Absorption Spectroscopy

Charge Transfer Multiplet program: Simulation of XAS, EELS, XES, RIXS, (resonant) photoemission, Auger **ATOMIC PHYSICS GROUP THEORY** MODEL HAMILTONIANS

www.anorg.chem.uu.nl/people/staff/FrankdeGroot/

Multiplet Theory of XAS

New 'multiplet' developments:

> Erik Wasinger, Ed Solomon (Stanford)

Multiplet Theory of XAS

New 'multiplet' developments:

- > Erik Wasinger, Ed Solomon (Stanford)
- Projection of charge transfer simulation to 'constituents'
- Differential Orbital Covalency
- >Inclusion π (back)-bonding and MLCT
- Cinthia Piamonteze, Helio Tolentino (Campinas)
 Mixed spin ground state in RENiO₃

JACS 125, 12894 (2003)

Ligand-metal CT in XAS

Fe^{III}: Ground state: $3d^5 + 3d^6L$

+ Metal-ligand CT in XAS

Fe^{III}: Ground state: $3d^5 + 3d^6L + 3d^4L$

Multiplet Theory of cyanides

XAS and Electronic Structure

• Directional variations of 3d-electrons:

symmetry: ${}^{2S+1}L_J$, crystal field, charge transfer interplay spin-orbit, exchange, distortions moments: $\langle S_z \rangle$, $\langle L_z \rangle$, $\langle Q_{zz} \rangle$, MCA

Hybridization of correlated electrons

superconductivity, magnetism, Kondo

mixed valence, orbital orderings

Single-particle approach

Many-body approach

Resonant Inelastic X-ray Scattering

Resonant Inelastic X-ray Scattering

Site selective XAFS

Valence selective XAFS

- Independent XANES and EXAFS spectra for different valences in the same system.
- Use chemical shift in the XES emission line with <1 eV resolution.
- 1s3p decay gives clearest chemical shifts due to changing exchange.
- Note that the center-of-gravity does not shift with valence because the energy difference between 1s and 3p (or 2p) core levels is constant

Valence selective XAFS

Chemical Dependence of K_{\beta} **Emission**

Equal center-of-gravity energies used in calculations!

Valence selective XAFS

Site selective XAFS

- Independent XANES spectra for different neighbours using the cross-over peak.
- Use cross-over peak in the XES with <1 eV resolution.
- The cross-over peak is related to the ligand 2s states that are hybridized with the metal 4p states. The metal 4p states are visible due to 1s4p XES.
- Note that only K edges will have a significant cross-over peak because they have 1s4p XES. L edges create 2p core holes and d metal valence have little overlap with ligand 2s states.
- Only cross-over for 3d metal K edges, not for Pt L edges.

Site selective XAFS

XANES of nanoparticle atoms bonded to oxygen-bonded support and to the carbonbonded adsorbate

Topics in Catal.10, 179 (2000)

- measure deep core hole XANES with the resolution of a shallow core hole
- For example 3d metal K edges, 5d metal L edges and rare earth L edges.
- (1) detect adsorbates on Pt or Au,
- (2) separate pre-edges from edges for pre-edge analysis,
- (3) make quadrupole peaks visible.
- The overall resolution should ideally be as good as the shallow core hole, say down to 0.4 eV. (1.0 eV experiments are also possible).
- Needs additional monochromator (Si(333) or Si(220))
- (HERFD = High-Energy Resolution Fluorescence detection)

Tracking valence and site symmetry during catalysis

Pt catalyst with and without hydrogen (1999, unpublished)

Recent data on Pt catalyst with and without CO (Olga Sofanova, Moniek Tromp et al, Southampton, subm.)

HERFD-XANES and pre-edges

- K Pre-edge structures are due to a combination of 1s3d quadrupole and 1s4p dipole, mixed into the 3d-band.
- HERFD-XANES gives unprecedented high-resolution view on pre-edges.
- A number of 'mysteries' exist:
 - 1. TiO₂ pre-edge shifts 2.5 eV between dipole and quadrupole, while all Fe-oxide spectra have no shift.
 - 2. For Mn-oxides normal XANES gives pre-edge shift of 0.3 eV, while HERFD-XANES gives shift of 2.0 eV.
 - 3. For Fe-oxides exactly the same shifts are found in XANES and HERFD-XANES.

HERFD-XANES and pre-edges

XANES and HERFD-XANES gives identical centroid position HERFD-XANES yields larger pre-edge intensity (approx. factor 3)

Calculated pre-edges $3d^{N} \rightarrow 2p^{5}3d^{N+1}$

- Single configuration
- Atomic values for intra-atomic interactions
- Cubic crystal field of 1.2 eV
- Theoretical relative energyposition

Calculated pre-edges $3d^{N} \rightarrow 1s^{1}3d^{N+1}$

- Single configuration
- Atomic values for intra-atomic interactions
- Cubic crystal field of 1.2 eV
- Theoretical relative energyposition (= incorrect)
XAS Open Questions: The K pre-edge

XAS Open Questions: The K pre-edge

XAS Open Questions: The K pre-edge

Soft X-ray spectra with hard X-rays

- X-ray Raman (or X-ray energy Loss) gives the carbon and oxygen K edges, for example in H₂O.
- Resonant X-ray Raman (or RIXS) gives the 3d metal L edges at the K pre-edges.
- Only makes sense with a resolution similar to soft x-rays, say 0.4 eV.
- Needs additional monochromator (Si(333) or Si(220))

1s2p RIXS of Fe₂O₃

Quadrupole to 3d-states Dipole to 4p-states

Decay of 2p-electron into 1s-hole

Final state identical to 2p XAS

Two-dimensional RIXS plots

- Two types of plots:
 - Incident energy versus energy transfer
 - Incident energy versus emitted energy
- Cross-sections
 - (different behaviour on- and off-resonance)
 - CIE: constant incident energy
 - CTE: constant transferred energy
 - CEE: constant emitted energy (=used for HERFD-XANES)
- Integrations:
 - IIE: integrated incident energy
 - ITE: integrated transferred energy (=total FY at edge; only the resonances are visible)
 - IEE: integrated emitted energy (=total FY everywhere, if the resonances at the edge fall within the integration area)

(Away from resonances the XES spectrum has fixed a emission energy)

RIXS of Iron Oxides

RIXS of Iron Oxides

RIXS of Iron Oxides

