

SMR.1751 - 1

Fifth International Conference on **PERSPECTIVES IN HADRONIC PHYSICS**

Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies

22 - 26 May 2006

Contribution of Strange Quarks to the Structure of the Nucleon (presented by W. Melnitchouk)

Anthony W. THOMAS

Thomas Jefferson National Accelerator Facility 12000 Jefferson Ave. Newport News, VA 23606 U.SA.

Contribution of Strange Quarks to the Structure of the Nucleon

Wally Melnitchouk (for Anthony W. Thomas)
Workshop on Precision Perspectives in Hadronic Physics

ICTP: May 22nd, 2006

Thomas Jefferson National Accelerator Facility

U.S. DEPARTMENT OF ENERGY

Outline

- The QCD Vacuum
- Quarks to Hadrons
- Measurements of Nucleon Form Factors
- A Precise Theoretical Calculation of G_M^s
- Latest Results on Strangeness

Topology of QCD Vacuum

Powerful Qualitative New Insights From Lattice QCD

QCD sum rules:

$$\left\langle 0 \left| \frac{\alpha_s}{\pi} G_{\mu\nu}^i G_i^{\mu\nu} \right| 0 \right\rangle = \left\langle 0 \left| \frac{2\alpha_s}{\pi} (B^2 - E^2) \right| 0 \right\rangle$$
$$= (350 \pm 30 \text{ MeV})^4,$$

- Non-trivial topological structure of vacuum linked to dynamical chiral symmetry breaking
- There are regions of positive and negative topological charge
- BUT they clearly are NOT spherical
- NOR are they weakly interacting!

Quark Condensate

$$\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle = -(225 \pm 25 \text{ MeV})^3$$

at a renormalization scale of about 1 GeV.

- **σ commutator measures chiral symmetry breaking**
- ≈ valence + pion cloud + volume * (difference of condensate in & out of N)

... and last term is as big as 20 MeV (or more)

i.e. presence of nucleon "cleans out" vacuum to some extent

Lattice QCD Simulation of Vacuum Structure

χ 'al Extrapolation Under Control when Coefficients Known – e.g. for the nucleon

FRR give same answer to «1% systematic error!

	Bare Coefficients				Renormalized Coefficients			
Regulator	a_0^{Λ}	a_2^{Λ}	a_4^{Λ}	Λ	c_0	c_2	c_4	m_N
Monopole	1.74	1.64	-0.49	0.5	0.923(65)	2.45(33)	20.5(15)	0.960(58)
Dipole	1.30	1.54	-0.49	0.8	0.922(65)	2.49(33)	18.9(15)	0.959(58)
Gaussian	1.17	1.48	-0.50	0.6	0.923(65)	2.48(33)	18.3(15)	0.960(58)
Sharp cutoff	1.06	1.47	-0.55	0.4	0.923(65)	2.61(33)	15.3(8)	0.961(58)
Dim. Reg. (BP)	0.79	4.15	+8.92	_	0.875(56)	3.14(25)	7.2(8)	0.923(51)

Convergence from LNA to NLNA is Rapid – Using Finite Range Regularization

Regulator	LNA	NLNA		
Sharp	968	961		
Monopole	964	960		
Dipole	963	959		
Gaussian	960	960		
Dim Reg	784	884		

JLab: Unique Capabilities for Investigating QCD in the Non-Perturbative Regime

JLab is a world leader in SRF technology: SNS, 12 GeV Upgrade, FEL, RIA, and others in the Office of Science 20-Year Facilities Outlook Superconducting rf (SRF) technology makes the circulating accelerator feasible

Providing ~2300 international users with a unique electron beam, three experimental halls, and computational and theory support

High luminosity, high resolution detectors in Halls A, B, and C.

Thomas Jefferson National Accelerator Facility

Precision Tests of Nucleon Structure

 Astonishing discovery concerning proton electric form factor

- But what about contribution from non-valence quarks
- especially strange quarks?

Strangeness Widely Believed to Play a Major Role – Does It?

As much as 100 to 300 MeV of proton mass:

$$M_N = \ \langle N(P)| - \frac{9\,\alpha_s}{4\,\pi}\, {\rm Tr}(G_{\mu\nu}G^{\mu\nu}) + m_u \bar{\psi}_u \psi_u + m_d \bar{\psi}_d \psi_d + m_s \bar{\psi}_s \psi_s |N(P)\rangle$$

$$\Delta M_N^{s- ext{quarks}} = rac{y m_s}{m_u + m_d} \sigma_N$$
 y=0.2 \circ 0.2

Hence 110 ∘ 110 MeV (increasing to 180 for higher σ_N)

- Through proton spin crisis:
 As much as 10% of the spin of the proton
- HOW MUCH OF THE MAGNETIC FORM FACTOR?

MIT-Bates & A4 at Mainz

G0 and HAPPEx at JLab

Strange Form Factors at Q^2=0.1GeV^2

$$G_{E}^{s}$$
 = -0.013 ± 0.028
 G_{M}^{s} = +0.62 ± 0.31 μ_{N}

Theories

- 1. Leinweber, et al. PRL 94 (05) 212001
- 2. Lyubovitskij, et al. PRC 66 (02) 055204
- 3. Lewis, et al. PRD **67** (03) 013003
- 4. Silva, et al. PRD **65** (01) 014016

Physical Significance of this Result

- Size and sign of the strange magnetic moment is <u>astonishing!</u>
- For the deuteron, this result (G0) gives 0.54 μ_N i.e. 60% of its experimental magnetic moment!!
- Also remarkable versus lattice QCD which gives +0.03 \circ 0.01 μ_N (Leinweber et al., PRL 94 (2005) 212001)
- Sign would require violation of universality of valence quark moments by $\sim 70\%$!

Magnetic Moments within QCD

$$p = 2/3 u^p - 1/3 d^p + O_N$$

$$p = 2/3 u^p - 1/3 d^p + O_N$$

 $n = -1/3 u^p + 2/3 d^p + O_N$

$$2p + n = u^p + 3 O_N$$

(and p + 2n =
$$d^p + 3 O_N$$
)

$$\Sigma^{+} = 2/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$$
$$\Sigma^{-} = -1/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$$

$$\Sigma^{-} = -1/3 \mathbf{u}^{\Sigma} - 1/3 \mathbf{s}^{\Sigma} + \mathbf{O}_{\Sigma}$$

$$\Sigma^{\scriptscriptstyle +}$$
 – $\Sigma^{\scriptscriptstyle -}=u^\Sigma$

HENCE:
$$O_N = 1/3 [2p + n - (u^p / u^Σ) (Σ^+ - Σ^-)]$$

Just these ratios from Lattice QCD

$$O_N = 1/3 [n + 2p - (u^n / u^{\Xi}) (\Xi^0 - \Xi^-)]$$

Constraint from Charge Symmetry

$$O_N = \frac{2}{3} {}^{\ell}G_M^u - \frac{1}{3} {}^{\ell}G_M^d - \frac{1}{3} {}^{\ell}G_M^s$$

$$= \frac{1}{3} \left({}^{\ell}G_M^d - {}^{\ell}G_M^s \right) ,$$

$$= \frac{{}^{\ell}G_M^s}{3} \left(\frac{1 - {}^{\ell}R_d^s}{{}^{\ell}R_d^s} \right) ,$$

$$G_M^s = \left(\frac{{}^{\ell}R_d^s}{1 - {}^{\ell}R_d^s}\right) \left[3.673 - \frac{u_p}{u_{\Sigma^+}}(3.618)\right]$$

$$G_M^s = \left(\frac{{}^{\ell}R_d^s}{1 - {}^{\ell}R_d^s}\right) \left[-1.033 - \frac{u_n}{u_{\Xi^0}} \left(-0.599\right)\right]$$

Leinweber and Thomas, Phys. Rev. D62 (2000) 07505.

up_{valence}: QQCD Data Corrected for Full QCD Chiral Coeff's

c.f. CQM 2/3 940/540 ♡ 1.18

New lattice data from Zanotti et al.; Chiral analysis Leinweber et al.

u^{Σ} valence

Check: Octet Magnetic Moments

Leinweber et al., hep-lat/0406002

Convergence LNA to NLNA Again Excellent (Effect of Decuplet)

State of the Art Magnetic Moments

	QQCD	Valence	Full QCD	Expt.
р	2.69 (16)	2.94 (15)	2.86 (15)	2.79
n	-1.72 (10)	-1.83 (10)	-1.91 (10)	-1.91
Σ^+	2.37 (11)	2.61 (10)	2.52 (10)	2.46 (10)
Σ-	-0.95 (05)	-1.08 (05)	-1.17 (05)	-1.16 (03)
Λ	-0.57 (03)	-0.61 (03)	-0.63 (03)	-0.613 (4)
三0	-1.16 (04)	-1.26 (04)	-1.28 (04)	-1.25 (01)
Ξ-	-0.65 (02)	-0.68 (02)	-0.70 (02)	-0.651 (03)
u ^p	1.66 (08)	1.85 (07)	1.85 (07)	1.81 (06)
u ^Ξ	-0.51 (04)	-0.58 (04)	-0.58 (04)	-0.60 (01)

Accurate Final Result for G_Ms

1.10±0.03

1.25±0.12

Yields : $G_M^s = -0.046 \pm 0.019 \, \mu_N$

Leinweber et al., (PRL June '05) hep-lat/0406002

G_E^s by same technique (January 2006)

In this case only know Σ^- radius (and p and n)

$$2p + n = u^p + 3O_N$$

$$p + 2n = d^p + 3 O_N$$

 $\langle r^2 \rangle_s = 0.000 \ \text{m}^2 \ 0.006 \ \text{m}^2 \ ; \ 0.002 \ \text{m}^2 \ 0.004 \ \text{m}^2$

$$G_E^s(0.1\,\mathrm{GeV}^2) = +0.001 \pm 0.004 \pm 0.004$$

(up to order Q4)

Note consistency and level of precision!

Leinweber, Young et al., hep-lat/0601025: Jan 2006

Ross Young: Why not use ALL the data?

Young, Roche, Carlini, Thomas – nucl-ex/0604010 (pre- latest HAPPEx)

erson Lab —

Thomas Jefferson National Accelerator Facility

Office of

U.S. DEPARTMENT OF ENERGY

Superimpose NEW HAPPEx Measurement (April 2006)

Thomas Jefferson National Accelerator Facility

Office of Science

Operated by the Southeastern Universities Research Association for the U.S. Department

World data plus new HAPPEx data

Thomas Jefferson National Accelerator Facility

Office of Science

Axial Form Factors

World Data pre-latest HAPPEx (Young et al., nucl-ex/0604010)

World Data with new HAPPEx

(Young, Roche, Carlini and Thomas, extended analysis)

Strange Form Factor Measurements – Future Plans

HAPPEx: "HAPPEx3" measure $G_E^s + 0.48G_M^s$ with high precision at $Q^2 \sim 0.6 \text{ GeV}^2$

G⁰: Turn experiment around

- •detect electrons at $\theta = 108^{\circ}$
- add Cerenkov for pion rejection
- measure at Q^2 = .23 and .63 GeV²
- LH₂ and LD₂ targets

Mainz A4: Turn experiment around

- •detect electrons at θ = 145°
- Measure at $Q^2 = .23$ and .47 GeV²
- LH₂ and LD₂ targets

from Mark Pitt

Thomas Jefferson National Accelerator Facility

Summary

- Beautiful measurements at JLab have defined $G_{E,M}^{s}$ at $Q^{2} = 0.1 \text{ GeV}^{2}$ very precisely
- Results agree astonishingly well with modern calculations based on lattice QCD with chiral extrapolation and unquenching using FRR
- Result supports physical picture that s-quark is effectively a HEAVY quark and s-quark fluctuations are strongly suppressed
 e.g. contribution to nucleon mass ~ 10 MeV
- Useful for lab tests of extra dimensions
 (e.g. Flambaum et al., Phys Rev D hep-ph/0402098)

Special Mentions.....

Derek Leinweber

Ross Young

