

International Atomic Energy Agency

SMR.1751 - 22

Fifth International Conference on **PERSPECTIVES IN HADRONIC PHYSICS** Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies

22 - 26 May 2006

Hadron Production in Particle Nucleus Scattering

Hans J. PIRNER

Universitat Heidelberg Institut fuer Theoretische Physik Philosophenweg 19 D-69120 Heidelberg GERMANY

These are preliminary lecture notes, intended only for distribution to participants

Hadron production in particle nucleus scattering

H.J. Pirner Universität Heidelberg

A. Accardi, V. Muccifora, D. Grünewald and H.J. Pirner, Nucl.Phys. A761 67-91,2005 and hep-ph/0508036, S. J. Brodsky, J. Raufeisen and H.J. Pirner, hep-ph/0502072, Phys.Lett.B July 2006

Outline

- Hadron Production in deep inelastic e-A scattering
- Space time development of hadron production
- Scaling in high pt hadron production
- Conclusions

I. Semi-inclusive deep inelastic scattering

• Factorization theorem in QCD:

$$\frac{d^2\sigma}{dxd\nu dz}\bigg|_{SIDIS} = \sum_f e_f^2 q_f(x,Q^2) \frac{d^2\sigma^{lq}}{dxd\nu} D_f^h(z,Q^2)$$

• Multiplicity:

$$M^{h}(z) = \frac{1}{N_{A}^{DIS}} \frac{dN_{A}^{h}(z)}{dz}$$

$$\frac{1}{N^{DIS}} \frac{dN^{h}(z)}{dz} = \frac{1}{\sigma^{lp}} \int dx d\nu \sum_{f} e_{f}^{2} q_{f}(x, Q^{2}) \frac{d\sigma^{lq}}{dx d\nu} \times D_{f}^{h}(z, Q^{2})$$

$$\sigma^{lp} = \int dx d\nu \sum_{f} e_{f}^{2} q_{f}(x, \xi_{A}(Q^{2})Q^{2}) \frac{d\sigma^{lq}}{dx d\nu}$$

The Calculation of Absorption

Rescaling of Parton Distribution, Rescaling of Fragmentation Function Calculation of the mean formation times of the prehadron and hadron Calculation of the Nuclear Absorption Factor N_A, using formation times

Rescaling of PDF and FF

- Assume change of confinement scale in bound nucleons $\lambda_A > \lambda_0$
- Two consequences:

.)
$$\frac{1}{A}q_{f}^{N_{|A}}(x,Q^{2}) = q_{f}^{N}(x,\xi_{A}(Q^{2})Q^{2})$$
$$D_{f}^{h|A}(z,Q^{2}) = D_{f}^{h}(z,\xi_{A}(Q^{2})Q^{2})$$
$$\xi_{A}(Q^{2}) = \left(\frac{\lambda_{A}}{\lambda_{0}}\right)^{\frac{\bar{\alpha}_{s}}{\alpha_{s}(Q^{2})}}$$

$$\textbf{2.)} \quad \kappa_A \lambda_A^2 = \kappa \lambda_0^2$$

 Rescaling implies a longer DGLAP evolution (increased gluon shower)

String Fragmentation

- First rank particle contains struck quark -> flavor dependent formation length
- String fragmentation function:

 $f(u) \propto (1-u)^{D_a}$ $D_q = 0.3$ and $D_{qq} = 1.3$ proportional to $\exp\left(-\frac{\pi\mu^2}{\kappa}\right)$

 -> dominantly quark production
 -> diquark production is suppressed

$$L = \frac{\nu}{\kappa}$$
 $\kappa = 1 GeV/fm$

Turning point of struck quark:

$$L_h = \frac{\nu r_h^2}{\kappa r_\pi^2}$$

Prehadron Formation Lengths

Fig. 3. Computed prehadron formation lengths when an up quark is struck by the virtual photon. Left: When a π^+ , K^+ or p is observed, the corresponding prehadron can be created at rank $n \ge 1$. Right: When a π^- , K^- or \bar{p} is observed, the corresponding prehadron can be created only at rank $n \ge 2$.

Scaled Hadron f.l.=p.f.l.+z

Absorption model

 Inelastic scattering of (pre)hadrons on nucleons removes them from the considered (z,nu) bin, absorption rate is determined by the prehadron mean free path-Fitted prehadron-nucleon absorption cross section is about 1/3 of hadron nucleon cross section

$\frac{\partial P_q(y,y^{\boldsymbol{\cdot}})}{\partial y^{\boldsymbol{\cdot}}}$	$= -\frac{P_q(y, y^{\cdot})}{\langle l^* \rangle}$			$,P_{q}(y,y^{\scriptscriptstyle \circ}=y)=1$
$\frac{\partial P_*(y,y^{\boldsymbol{\cdot}})}{\partial y^{\boldsymbol{\cdot}}}$	$= \frac{P_q(y, y^{\cdot})}{\langle l^* \rangle} -$	$-rac{P_*(y,y^{`})}{\langle \Delta l angle}$ -	$-rac{P_*(y,y')}{\lambda_*(y')}$	$,P_{\ast}(y,y^{\scriptscriptstyle \circ}=y)=0$
$\frac{\partial P_h(y,y^{\boldsymbol{\cdot}})}{\partial y^{\boldsymbol{\cdot}}}$	$= \frac{P_*(y, y^{\cdot})}{\langle \Delta l \rangle} -$	$\frac{P_h(y,y^{\boldsymbol{\cdot}})}{\lambda_h(y^{\boldsymbol{\cdot}})}$		$,P_{h}(y,y^{\prime}=y)=0$

• Absorption factor:

$$\begin{split} N_{A} &= \lim_{y^{i} \to \infty} \int d^{2}b \int_{-\infty}^{\infty} dy \rho_{A}(b, y) P_{h}(y^{i}, y) \\ &= \int d^{2}b \int_{-\infty}^{\infty} dy \rho_{A}(b, y) \int_{y}^{\infty} dx^{i} \int_{y}^{x^{i}} dx \frac{e^{-\frac{x-y}{\langle l^{*} \rangle}}}{\langle l^{*} \rangle} e^{-\sigma_{*} \int_{x}^{x^{i}} ds A \rho_{A}(s)} \\ &\times \frac{e^{-\frac{x^{i}-x}{\langle \Delta l \rangle}}}{\langle \Delta l \rangle} e^{-\sigma_{h} \int_{x^{i}}^{\infty} ds A \rho_{A}(s)} \end{split}$$

Prehadron und Hadron-Production probabilities at HERMES energies for Kr target without absorption

Additional indication for prehadron formation from JLAB-data (W. Brooks)

GeV^2

- Variation of mean produced hadron pt^2 shows that only the pt acquired by the propagating quark does contribute (Kopeliovich and Nemcik, work in preparation)
- In large Pb-nucleus, when the nu dependent formation of the prehadron occurs outside of the nucleus, no more pt can be acquired. The process terminates.
- In smaller Fe and C nuclei the size of the nucleus terminates the process earlier

<-Energy transfer to the quark

Comparison with HERMES data

Hermes Coll. A.Airapetian et al. Phys. Lett. B577 (2003) 37-Xe,Kr,Ne,He target

A-dependence of model

- The absorption model gives an A-dependence A^(2/3) in agreement with the data
- The figure represents a fit of the exponent at each z to the theoretical calculation for different sets of nuclei
- The A dependence cannot be used to differentiate between energy loss picture and absorption

II. Space time Structure of hadron production

- In pp or AA collisions, the produced parton has time like virtuality t_0 >0 and loses energy even in vacuum (vacuum energy loss). (Thesis :C. Zapp)
- No difference in decay time between charm quarks and light quarks because t_0>>mc
- Each new virtuality t´=kt^2/z has to be lower than the original virtuality
- Most descriptions treat first the energy loss of an on shell quark in the medium and then hadronization
- (Induced) radiation and fragmentation, however, can not be separated

$$z_c D'_{h/c}(z_c, Q_c^2) = z'_c D_{h/c}(z'_c, Q_{c'}^2) + N_g z_g D_{h/g}(z_g, Q_g^2) ;$$

$$z'_c = \frac{p_h}{p_c - \Delta E_c(p_c, \phi)} , \quad z_g = \frac{p_h}{\Delta E_c(p_c, \phi)/N_g} ,$$

Modification of fragmentation function separated from energy loss is not justified

Space time development (Initial virtuality t0=100 Gev 2 - \rightarrow t1)

р

 Probability Distribution of radiated virtualities t1 when original virtuality is t0=107 GeV²

In[46] := Plot[{.2*T[t]}, {t, 0.1, 22}]

t[fm]

Out[46] = Graphics -

 Mean Time in fm for radiation as a function of radiated virtuality t1 [GeV²] Take RHIC case: Mean final virtuality [GeV^2] of radiated gluons is t1=10 GeV^2

Mean time for radiation <t>=0.7 fm/c

This changes the picture of high p_T Suppression

High p_t Suppression

- Quantum coherence (like in angle ordered MLLA of gluon radiation in the vacuum) may be destroyed in propagation through QGP
- Medium enhances emission of gluon radiation, effective QCD coupling in hot quark gluon plasma is larger than fixed alpha=0.5
- If gluon radiation is hard, then the gluon can neutralize the original radiating source
- Consequently prehadron formation may be also important at RHIC

Medium induced scattering

- Mean free path is shorter due to larger coupling alpha(k,T)
- Debye Mass can be determined selfconsistently from strong coupling alpha(k,T)
- Running alpha(k,T) at finite temperature is calculated from RG equation (J.Braun,H. Gies,hepph/0512085 and J. Braun and H.J. Pirner work in progress)

 $d\sigma_i/dq_{\perp i}^2 \approx C_i \frac{4\pi\alpha^2}{(q_{\perp i}^2 + \mu^2)^2}$

III. Binary Scaling and Hard Scattering

- Fixed Angle, e.g. y=0 90° in cm-system
- Compare various energies, same xt
- Expect n=4 from lowest order pQCD

$$x_T = 2p_T/\sqrt{s}.$$

$$E\frac{d^3\sigma}{d^3p} = \frac{1}{p_T^n}F(x_T) = \frac{1}{\sqrt{s}^n}G(x_T) ,$$

Pure dimensional counting of the number of active participants determines the exponent

$$E\frac{d^3\sigma(h_ah_b \to hX)}{d^3p} = \frac{F(y, x_R)}{p_T^{n(y, x_R)}}$$

- $n(y,x_R)=2^*n(active with hard pt)-4$; $(x_R=xt at y=0)$
- 4 active participants give n(y,x_R)=4
- RHIC measures n=6.3 or n=7.8, depending on particle species
- The smaller number n=6 is compatible with hard gluon radiation NLO calculations
- The larger number n=8 points to more complicated processes e.g. for proton production (q+q->qqq+qbar)

Data show nonscaling behaviourPhenix analysisfor protonsProtons

6.2 x_T scaling in Au+Au collisions at RHIC

Final state interaction may change the scaling behaviour ¢ n would decrease with x_t if energy loss like in BDMPS occurs

Conclusions

- Meson production at low <Q^2 >=2.5 GeV^2 in Hermes is well described by the string model with prehadron formation and absorption
- Data with high <pt^2>=100GeV^2 at RHIC or LHC need a correct treatment of vacuum energy loss
- The gluon radiation time of the time like parton is of the same size as its mean free path
- The initial gluon cascade for fragmentation is entwined with induced medium scattering
- Violation of xt-scaling relations behave differently then expected from BDMPS-energy loss picture

Calculation of Prehadron Formation Lengths

$$\langle l_{\geq 1}^* \rangle = \frac{1 + D_a}{1 + C + (D_a - C)z} (1 - z) z L \times \left[1 + \frac{1 + C}{2 + D_a} \frac{(1 - z)}{z^{2 + D_a}} {}_2F_1 \left(2 + D_a, 2 + D_a; 3 + D_a; \frac{z - 1}{z} \right) \right]$$

F- Hypergeometric Function, C=0.3, D arise from the string fragmentation $f(u)=(1-u)^D$ Dq=0.3 for producing a quark and Dqq=1.3 for producing a diquark

Result of Absorption Model

- Rescaling + absorption are able to describe the data
- Flavor dependence is reproduced in accordance with the first and second rank description
- Proton multiplicities are not reproduced well

2) String branching

- Cut off (4 Gev) excludes target fragmentation at low z
- But string cannot only break, but also branch into two strings (cf.X.N. Wang et al., nuclth/0407095)
- Main mechanism of baryon flow(Garvey, Kopeliovich,Povh, hepph/ 0006325)

Pion Multiplicity on the Proton

- D. Grünewald (Diploma Thesis) has calculated meson and baryon multiplicities in this Lund picture
- Unfortunately experimental baryon multiplicities are not available to compare with

