

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR.1751 - 36

Fifth International Conference on **PERSPECTIVES IN HADRONIC PHYSICS** Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies

22 - 26 May 2006

Prompt photon production from RHIC to LHC

Francois ARLEO CERN European Organization for Nuclear Research Theory Division Department of Physics CH-1211 Geneva 23 SWITZERLAND

These are preliminary lecture notes, intended only for distribution to participants

Prompt photon production from RHIC to LHC

François Arleo CERN

Outline

Introc	lucti	on
--------	-------	----

- Outline
- Which hard probes
- Strategy
- Single inclusive production
- Proton proton
- Nucleus nucleus
- Correlations
- Results
- Summary

Motivations

- why prompt photons and how to use them
- Single inclusive spectra
 - pQCD reference
 - quenching
- $\gamma \pi^0$ correlations
 - definitions
 - probing fragmentation functions

[FA, Aurenche, Belghobsi, Guillet, JHEP 11 (2004) 009] [FA, hep-ph/0601075]

Introduction

	()	111	line	2
\sim	0	u	III IS	~

```
    Which hard probes
```

```
    Strategy
```

Single inclusive production

Proton – proton

Nucleus – nucleus

Correlations

Results

Summary

Schematically

1. Interacting probes

2. Non-interacting probes

Introduction

•	Out	line

- Which hard probes
- Strategy

Single inclusive production

Proton – proton

Nucleus - nucleus

Correlations

Results

Summary

1. Interacting probes

Schematically

- sensitive to dense medium formation
 - energy loss, Debye screening

2. Non-interacting probes

Introduction

	•	Ou	tli	ne
--	---	----	-----	----

```
    Which hard probes
```

Strategy

Single inclusive production

Proton – proton

Nucleus - nucleus

Correlations

Results

Summary

Schematically

1. Interacting probes

- sensitive to dense medium formation
 - energy loss, Debye screening
- jets / hard pions, heavy quarkonia

2. Non-interacting probes

Introduction

-	0	1.11	
\bigcirc	U	utii	ne

- Which hard probes
- Strategy
- Single inclusive production

Proton – proton

Nucleus - nucleus

Correlations

Results

Summary

Schematically

1. Interacting probes

- sensitive to dense medium formation
 - energy loss, Debye screening
- jets / hard pions, heavy quarkonia
- 2. Non-interacting probes
 - gauge "nuclear" effects
 - shadowing / saturation, Cronin effect

Introduction

•	0	utl	ine	

- Which hard probes
- Strategy
- Single inclusive production

Proton – proton

Nucleus - nucleus

Correlations

Results

Summary

Schematically

1. Interacting probes

- sensitive to dense medium formation
 - energy loss, Debye screening
- jets / hard pions, heavy quarkonia
- 2. Non-interacting probes
 - gauge "nuclear" effects
 - shadowing / saturation, Cronin effect
 - Drell-Yan, W^{\pm} / Z , prompt photons

Introduction

•	Οι	utli	ne	

- Which hard probes
- Strategy
- Single inclusive production

Proton – proton

Nucleus - nucleus

Correlations

Results

Summary

Schematically

1. Interacting probes

- sensitive to dense medium formation
 - energy loss, Debye screening
- jets / hard pions, heavy quarkonia
- 2. Non-interacting probes
 - gauge "nuclear" effects
 - shadowing / saturation, Cronin effect
 - Drell-Yan, W^{\pm} / Z , prompt photons

Let's compare interacting vs. non-interacting probes !

Strategy

Two possibilities

1. Single-inclusive production

Introduction

- Outline
- Which hard probes
- Strategy
- Single inclusive production

Proton - proton

Nucleus – nucleus

Correlations

Results

Introduction

Outline

Strategy

Proton - proton

Correlations

Results

Summary

Nucleus – nucleus

• Which hard probes

Single inclusive production

Strategy

Two possibilities

- 1. Single-inclusive production
- 2. Double-inclusive production

Terminology

Single inclusive productio
Terminology
• pQCD

Proton – proton

Nuo		- 011	dou	~
INUC	ieus	- nu	ueu	3

Correlations

Results

Summary

Many different photons

- Prompt photons
 - produced in the binary NN collisions
- Thermal photons
 - quark-gluon plasma radiation
- Background photons
 - π^0 radiative decays

 $p_{\perp} \gg \Lambda_{\rm _{QCD}}$

 $p_{\perp} = \mathcal{O}\left(T\right)$

all p_{\perp}

pQCD

	Direct contribut
Introduction	~
Single inclusive production	
Terminology DOCD	
Proton – proton	Les -
Nucleus – nucleus	
Correlations	Fragmentation
Results	
Summary	
	g `
	ğ
	9

Direct contribution

contribution

("Drell–Yan like")

$$d\sigma \sim f_i^{p,A}(x_1) f_j^{p,A}(x_2) \hat{\sigma} \\ = \mathcal{O}(\alpha \alpha_s)$$

("jet like")

 $\mathrm{d}\sigma ~\sim ~f_i^{p,\mathrm{A}}(x_1)~f_j^{p,\mathrm{A}}(x_2)~\hat{\boldsymbol{\sigma}}~D_{\gamma/k}$ $= \mathcal{O}\left(\alpha_s^2\right) D_{\gamma/k} = \mathcal{O}\left(\alpha \alpha_s\right)$

pQCD

	Direct contribution
Introduction Single inclusive production Terminology nOCD	
Proton – proton	eee
Nucleus – nucleus Correlations Results	Fragmentation contribution
Summary	6000
	The produced medi

("Drell-Yan like")

$$d\sigma \sim f_i^{p,A}(x_1) f_j^{p,A}(x_2) \hat{\sigma} = \mathcal{O}(\alpha \alpha_s)$$

("jet like")

The produced medium could – in principle – affect prompt photon production

Direct vs. fragmentation

Introduction

- Single inclusive production
- Terminology

• pQCD

Proton – proton

Nucleus - nucleus

Correlations

Results

- Distinction between direct and fragmentation through
 - isolation criteria (w/o hadronic activity)
 - kinematics

Direct vs. fragmentation

Introduction

Single inclusive production

Terminology

• pQCD

Proton – proton

Nucleus - nucleus

0		10.0	
Cor	rela	atio	ns

Results

Summary

Distinction between direct and fragmentation through

- isolation criteria (w/o hadronic activity)
- kinematics
- Arbitrary distinction at NLO

Fragmentation LO

Direct NLO

 only the sum direct + fragmentation is meaningful and scale independent

Ingredients

Introduction

Single inclusive production

Proton – proton

- Ingredients
- Scale dependence
- Spectrum
- Data over theory

Nucleus - nucleus

Correlations

Results

Summary

■ *p p* collisions

- next-to-leading order
- CTEQ6 parton densities
- KKP (π^0) and BFG (γ) fragmentation functions
- uncertainty given by the scale dependence

Scale dependence

Scale dependence

Spectrum

Data over theory

20

Ingredients

Introduction

Single inclusive production

Proton - proton

Nucleus - nucleus

- Ingredients
- Model
- Probability distribution
- Medium-modified fragmentation functions
- $\bullet \pi$ quenching
- $ullet \gamma$ quenching
- $\bullet \gamma / \pi$
- ullet γ quenching at LHC
- Limits

Correlations

Results

Summary

A A collisions

- leading order
- \blacklozenge only yield ratios A A / $p\ p$
- with/out EKS98 shadowing
- with/out energy loss

Model

Introduction

Single inclusive production

Proton – proton

Nucleus – nucleus

- Ingredients
- Model
- Probability distribution
- Medium-modified fragmentation functions
- $\bullet \pi$ quenching
- $ullet \gamma$ quenching
- $\bullet \gamma / \pi$
- γ quenching at LHC
- Limits

Correlations

Results

Model

Introduction

Single inclusive production

Proton - proton

Nucleus - nucleus

- Ingredients
- Model
- Probability distribution
- Medium-modified fragmentation functions
- $\bullet \pi$ quenching
- $ullet \gamma$ quenching
- $\bullet \gamma / \pi$
- γ quenching at LHC
- Limits

Correlations

Results

Summary

Multiple scattering shifts parton energy from k_{\perp} to $k_{\perp} - \epsilon$

Simple model for medium-modified fragmentation functions

[Wang, Huang, Sarcevic 1996]

$$zD_{h/k}^{\text{med}}(z,\mu) = \int_0^{(1-z)k_{\perp}} d\epsilon \ \mathcal{P}(\epsilon,k_{\perp}) \ z^* D_{h/k}(z^*,\mu)$$

with $z^* = \frac{E}{k_{\perp} - \epsilon} = \frac{z}{1 - \epsilon/k_{\perp}}$

Model

Introduction

Single inclusive production

Proton - proton

Nucleus - nucleus

- Ingredients
- Model
- Probability distribution
- Medium-modified fragmentation functions
- $\bullet \pi$ quenching
- $ullet \gamma$ quenching

 $\bullet \gamma / \pi$

- γ quenching at LHC
- Limits

Correlations

Results

Summary

Multiple scattering shifts parton energy from k_{\perp} to $k_{\perp} - \epsilon$

Simple model for medium-modified fragmentation functions

[Wang, Huang, Sarcevic 1996]

$$zD_{h/k}^{\mathrm{med}}(z,\mu) = \int_{0}^{(1-z)k_{\perp}} d\epsilon \mathcal{P}(\epsilon,k_{\perp}) z^* D_{h/k}(z^*,\mu)$$

with $z^* = \frac{E}{k_{\perp} - \epsilon} = \frac{z}{1 - \epsilon/k_{\perp}}$

Probability distribution

Medium-modified fragmentation functions

Strong suppression at large z

 \blacksquare Pronounced effects for partons $k_{\perp} \lesssim \omega_c$

π quenching

π quenching

20

Single inclusive production

Proton – proton

Nucleus – nucleus

- Ingredients
- Model
- Probability distribution
- Medium-modified fragmentation functions
- $\bullet \pi$ quenching
- ullet γ quenching
- $\bullet \gamma / \pi$
- ullet γ quenching at LHC
- Limits

Correlations

Results

Single inclusive production

Proton – proton

Nucleus – nucleus

- Ingredients
- Model
- Probability distribution
- Medium-modified fragmentation functions
- $\bullet \pi$ quenching
- ullet γ quenching
- $\bullet \gamma / \pi$
- ullet γ quenching at LHC
- Limits

Correlations

Results

γ/π

Single inclusive production

Proton – proton

Nucleus – nucleus

- Ingredients
- Model
- Probability distribution
- Medium-modified fragmentation functions
- $\bullet \pi$ quenching
- $ullet \gamma$ quenching
- $\circ \gamma / \pi$
- γ quenching at LHC
- Limits

Correlations

Results

Summary

slight underestimate at large p_{\perp}

γ quenching at LHC

Shadowing corrections below $p_{\perp} \lesssim 20 \text{ GeV}$ Pronounced energy loss effects

Limits

Parton energy not fixed

Introduction

Single inclusive production

Proton - proton

Nucleus – nucleus

- Ingredients
- Model
- Probability distribution
- Medium-modified fragmentation functions
- $\bullet \pi$ quenching
- $\bullet\,\gamma \text{ quenching}$
- $\bullet \gamma / \pi$
- ullet γ quenching at LHC
- Limits

Corro	lationa
Cone	allons

Results

Summary

Single inclusive spectra in pQCD to leading-order

$$\frac{\mathrm{d}\sigma^{\pi}}{\mathrm{d}\mathbf{p}_{\perp}\,\mathrm{d}y} = \sum_{i,j,k=q,g} \int dx_1 dx_2 F_{i/p}(x_1,M) F_{j/p}(x_2,M)$$
$$\times \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \frac{\mathrm{d}\widehat{\sigma}_{ij}k}{\mathrm{d}\mathbf{p}_{\perp}\,\mathrm{d}y} \frac{dz}{z^2} D_{\pi/k}(z,M_F)$$

do not allow one to determine

parton energy k_⊥ thus the variable $z = p_{\perp_{\pi}}/k_{\perp}$ medium-modified fragmentation functions

Limits

Introduction

Single inclusive production

Proton - proton

Nucleus – nucleus

- Ingredients
- Model
- Probability distribution
- Medium-modified fragmentation functions
- $\bullet \pi$ quenching
- $\bullet \gamma \text{ quenching}$
- $\bullet \gamma / \pi$
- γ quenching at LHC
- Limits

Correlations

Results

Summary

Need to go beyond single-inclusive production to better understand the medium-modified fragmentation processes

prompt photon — hard pion correlations

- momentum correlations
- azimuthal correlations

Parton energy not fixed

Correlations

Introduction

Single inclusive production

Proton – proton

Nucleus – nucleus

Correlations

Correlations

Kinematic cuts

Results

Summary

 ${f k}_{\perp}\simeq -{f p}_{\perp_{\gamma}}$

François Arleo, Perspectives in Hadronic Physics, 22 - 26 May 2006

Prompt photon production from RHIC to LHC - p. 21/26

Summary

Correlations

 \blacksquare To leading-order in α_s

 ${f k}_{ot}\simeq -{f p}_{ot\gamma}$

Imbalance momentum

$$z_{\gamma\pi} \equiv -rac{{f p}_{\perp\pi} \cdot {f p}_{\perp\gamma}}{|{f p}_{\perp\gamma}|^2} \simeq z$$

allows for the estimate of the fragmentation variable z

Correlations

	То	lead	ing-orde	r in α_s
--	----	------	----------	-----------------

 ${f k}_{ot}\simeq -{f p}_{ot\gamma}$

perturbative calculation of correlation distributions in $p \ p$ et A A collisions at RHIC

Introduction

Single inclusive production

Proton - proton

Nucleus – nucleus

Correlations

Correlations

Kinematic cuts

Results

Constraints

Introduction

Single inclusive production

Proton - proton

Nucleus – nucleus

Correlations

Correlations

Kinematic cuts

Results

- Wide range in the $z_{\gamma\pi}$ variable
 - ullet asymmetric cuts: $p_{\perp_{\pi}}^{\mathrm{cut}} \ll p_{\perp_{\gamma}}^{\mathrm{cut}}$

Constraints

Introduction

Single inclusive production

Proton - proton

Nucleus – nucleus

Correlations

Correlations

Kinematic cuts

Results

- \blacksquare Wide range in the $z_{\gamma\pi}$ variable
 - ullet asymmetric cuts: $p_{\perp_{\pi}}^{\mathrm{cut}} \ll p_{\perp_{\gamma}}^{\mathrm{cut}}$
- Reasonable rates

Constraints

Introduction

Single inclusive production

Proton - proton

Nucleus - nucleus

Correlations

Correlations

Kinematic cuts

Results

Summary

- \blacksquare Wide range in the $z_{\scriptscriptstyle\gamma\pi}$ variable
 - asymmetric cuts: $p_{\perp_{\pi}}^{\mathrm{cut}} \ll p_{\perp_{\gamma}}^{\mathrm{cut}}$

Reasonable rates

• $p_{\perp_{\gamma}}^{\text{cut}} \ll \sqrt{s}/2$

- pQCD at work
 - $\bullet \ p_{\perp_{\pi}}^{\rm cut} \gg \Lambda_{\rm \tiny QCD}$

Constraints

Introduction

Single inclusive production

Proton - proton

Nucleus – nucleus

Correlations

Correlations

Kinematic cuts

Results

Summary

- \blacksquare Wide range in the $z_{\gamma\pi}$ variable
 - asymmetric cuts: $p_{\perp_{\pi}}^{\mathrm{cut}} \ll p_{\perp_{\gamma}}^{\mathrm{cut}}$

Reasonable rates

pQCD at work

 $\bullet \ p_{\perp_{\pi}}^{\rm cut} \gg \Lambda_{\rm \tiny QCD}$

 $\Lambda_{\rm \scriptscriptstyle QCD} \ll p_{\perp_\pi}^{\rm \scriptscriptstyle cut} \ll p_{\perp_{\sim}}^{\rm \scriptscriptstyle cut} \ll \sqrt{s}\,/2$

Constraints

Introduction

Single inclusive production

Proton - proton

Nucleus – nucleus

Correlations

Correlations

Kinematic cuts

Results

Summary

- \blacksquare Wide range in the $z_{\gamma\pi}$ variable
 - asymmetric cuts: $p_{\perp_{\pi}}^{\mathrm{cut}} \ll p_{\perp_{\gamma}}^{\mathrm{cut}}$

Reasonable rates

• $p_{\perp_{\gamma}}^{\text{cut}} \ll \sqrt{s}/2$

pQCD at work

 $\bullet \ p_{\perp_{\pi}}^{\rm cut} \gg \Lambda_{\rm \tiny QCD}$

$$\Lambda_{_{
m QCD}} \ll p_{_{\perp_{\pi}}}^{
m cut} \ll p_{_{\perp_{\gamma}}}^{
m cut} \ll \sqrt{s} \, / 2$$

RHIC

$$p_{\perp_{\pi}}^{\text{cut}} = 3 \text{ GeV} \qquad p_{\perp_{\gamma}}^{\text{cut}} = 10 \text{ GeV}$$

Constraints

Introduction

Single inclusive production

Proton - proton

Nucleus – nucleus

Correlations

Correlations

Kinematic cuts

Results

Summary

- \blacksquare Wide range in the $z_{\gamma\pi}$ variable
 - asymmetric cuts: $p_{\perp_{\pi}}^{\mathrm{cut}} \ll p_{\perp_{\gamma}}^{\mathrm{cut}}$

Reasonable rates

• $p_{\perp_{\gamma}}^{\text{cut}} \ll \sqrt{s}/2$

pQCD at work

 $\bullet \ p_{\perp_{\pi}}^{\rm cut} \gg \Lambda_{\rm \tiny QCD}$

$$\Lambda_{_{
m QCD}} \ll p_{_{\perp_{\pi}}}^{
m cut} \ll p_{_{\perp_{\gamma}}}^{
m cut} \ll \sqrt{s} / 2$$

LHC

$$p_{\perp_{\pi}}^{\text{cut}} = 5 \text{ GeV} \qquad p_{\perp_{\gamma}}^{\text{cut}} = 25 \text{ GeV}$$

 $p_{T \gamma} > 10 \text{ GeV}$

 $p_{T\pi} > 3 \text{ GeV}$

^{'o}oooooct

1

0.8

¹⁰0_{0,}

0.4

0.6

 $Z_{\gamma\pi}$

François Arleo, Perspectives in Hadronic Physics, 22 - 26 May 2006

Prompt photon production from RHIC to LHC - p. 23/26

The more asymmetric cuts the better

Better to increase $p_{\perp_{\gamma}}^{\mathrm{cut}}$ to reduce the double fragmentation

Higher-order corrections

New configurations in momentum space

Higher-order corrections

New configurations in momentum space
 Infrared consitivity at a < 1

1

 \blacksquare Infrared sensitivity at $z_{\gamma\pi} \lesssim 1$

لوو لوو

Diphoton at LHC

Diphoton at LHC

Diphoton at LHC

Summary

Introduction
Single inclusive production
Proton – proton
Nucleus – nucleus
Correlations
Results
Summary

Summary

Single inclusive production

- evidence for dense medium formation
- slight quenching for photons in agreement with PHENIX
- limitations
- **Correlations** $\gamma \pi^0$
 - hopefully efficient to probe fragmentation processes
 - phenomenology at RHIC and LHC