

SMR.1751 - 32

Fifth International Conference on **PERSPECTIVES IN HADRONIC PHYSICS**

Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies

22 - 26 May 2006

Recent developments in chiral dynamics of hadrons and hadrons in a nuclear medium

E. OSET

Departamento de Fisica Teorica Institutos de Investigacion de Paterna Universidad de Valencia Aptdo. Correos 22085 46071 Valencia SPAIN

These are preliminary lecture notes, intended only for distribution to participants

Recent developments in chiral dynamics of hadrons and hadrons in a nuclear medium

E. Oset

Universidad de Valencia - IFIC

Unitarized Chiral Perturbation Theory

Skillful combination of the information of the Chiral Lagrangians and unitarity in coupled channels.

- Pioneering work of Kaiser, Siegel, Waas, Weise 95-97 using Lipmann-Schwinger eq. and input from Chiral Lagrangians as potential.
- Subsequent work

- Inverse Amplitude Method (IAM)→
$$\begin{cases}
 \text{Dobado, Peláez '97} \\
 \text{Oller, E.O., Peláez '98}
\end{cases}$$

- (N/D) method
$$\rightarrow$$
 { Oller, E.O. '99 Oller, Meissner '01

- Bethe-Salpeter eq. →
$$\begin{cases} Oller, E.O. '97 \\ Nieves, Ruiz-Arriola '00 \end{cases}$$

Meson-Baryon interaction

Successful at low energies

General scheme Oller, Meissner PL '01 (meson baryon as exemple)

• Unitarity in coupled channels $\bar{K}N$, $\pi\Sigma$, $\pi\Lambda$, $\eta\Sigma$, $\eta\Lambda$, $K\Xi$, in S=-1

$$\operatorname{Im} T_{ij} = T_{il} \sigma_{ll} T_{lj}^*$$
 $\sigma_l \equiv \sigma_{ll} \equiv \frac{2Mq_l}{8\pi\sqrt{s}}$
 $\sigma = -\operatorname{Im} T^{-1}$

- Dispersion relation

$$T_{ij}^{-1} = -\delta_{ij} \left\{ \hat{a}_i(s_0) + \frac{s - s_0}{\pi} \int_{s_i}^{\infty} ds' \frac{\sigma(s')_i}{(s - s')(s' - s_0)} \right\} + V_{ij}^{-1} \equiv -g(s)_i \delta_{ij} + V_{ij}^{-1}$$

g(s) accounts for the right hand cut

V accounts for local terms, pole terms and crossed dynamics. V is determined by matching the general result to the χPT expressions (usually at one loop level)

$$g(s) = \frac{2M_i}{16\pi^2} \left\{ a_i(\mu) + \log \frac{m_i^2}{\mu^2} + \frac{M_i^2 - m_i^2 + s}{2s} \log \frac{M_i^2}{m_i^2} + \frac{q_i}{\sqrt{s}} \log \frac{m_i^2 + M_i^2 - s - 2q_i\sqrt{s}}{m_i^2 + M_i^2 - s + 2q_i\sqrt{s}} \right\}$$

 μ regularization mass a_i subtraction constant

Inverting T^{-1} :

$$T = [1 - Vg]^{-1}V$$

Example 1: Take $V \equiv$ lowest order chiral amplitude

In meson-baryon S-wave

$$[1 - Vg]T = V \rightarrow T = V + VgT$$

Bethe Salpeter eqn. with kernel V

This is the method of E. O., Ramos '98 using cut off to regularize the loops

Oller, Meissner show equivalence of methods with

$$a_i(\mu) \simeq -2 \mathrm{ln} \left[1 - \sqrt{1 + \frac{m_i^2}{\mu^2}} \, \right];$$
 $\mu \, \mathrm{cut \, off}$ $a_i \simeq -2 \to \mu \simeq 630 \, \mathrm{MeV \, in} \, \bar{K} N$

If higher order Lagrangians not well determined then fit a_i to the data

V. K. Magas, E. Oset and A. Ramos, Phys. Rev. Lett. 2005

Interaction of the meson octet with the baryon decuplet S. Sarkar, E. O. M.J. Vicente Vacas, PRC

$$\mathcal{L} = -i\bar{T}^{\mu}\mathcal{D}\Gamma_{\mu} \tag{1}$$

$$\mathcal{D}^{\nu}T^{\mu}_{abc} = \partial^{\nu}T^{\mu}_{abc} + (\Gamma^{\nu})^{d}_{a}T^{\mu}_{dbc} + (\Gamma^{\nu})^{d}_{b}T^{\mu}_{adc} + (\Gamma^{\nu})^{d}_{c}T^{\mu}_{abd} \tag{2}$$

$$\Gamma^{\nu} = \frac{1}{2} (\xi \partial^{\nu} \xi^{\dagger} + \xi^{\dagger} \partial^{\nu} \xi) \tag{3}$$

$$\xi^2 = U = e^{i\sqrt{2}\Phi/f} \tag{4}$$

$$V_{ij} = -\frac{1}{4f^2}C_{ij}(k^0 + k^{\prime 0}). \tag{5}$$

$$|\pi\Sigma^*; I = 0\rangle = \frac{1}{\sqrt{3}} |\pi^-\Sigma^{*+}\rangle - \frac{1}{\sqrt{3}} |\pi^0\Sigma^{*0}\rangle - \frac{1}{\sqrt{3}} |\pi^+\Sigma^{*-}\rangle$$

$$|K\Xi^*; I=0\rangle = -\frac{1}{\sqrt{2}} |K^0\Xi^{*0}\rangle + \frac{1}{\sqrt{2}} |K^+\Xi^{*-}\rangle.$$
 (6)

Introduction of the $\bar{K}N$ and $\pi\Sigma$ channels

$\bar{K}N$ and $\pi\Sigma$ couple to $\pi\Sigma(1385)$ in D-wave

$$-it_{\bar{K}N\to\pi\Sigma^*} = -i\beta_{\bar{K}N} |\vec{k}|^2 \mathcal{C}(1/2\ 2\ 3/2; m, M-m) Y_{2,m-M}(\hat{k})(-1)^{M-m} \sqrt{4\pi}.$$
 (7)

$$-it_{\pi\Sigma\to\pi\Sigma^*} = -i\beta_{\pi\Sigma} |\vec{k}|^2 \mathcal{C}(1/2\ 2\ 3/2; m, M-m) Y_{2,m-M}(\hat{k})(-1)^{M-m} \sqrt{4\pi}.$$
 (8)

$$V = \begin{pmatrix} C_{11}(k_1^0 + k_1^0) & C_{12}(k_1^0 + k_2^0) & \gamma_{13} q_3^2 & \gamma_{14} q_4^2 \\ C_{21}(k_2^0 + k_1^0) & C_{22}(k_2^0 + k_2^0) & 0 & 0 \\ \gamma_{13} q_3^2 & 0 & \gamma_{33} q_3^4 & \gamma_{34} q_3^2 q_4^2 \\ \gamma_{14} q_4^2 & 0 & \gamma_{34} q_3^2 q_4^2 & \gamma_{44} q_4^4 \end{pmatrix},$$
(9)

We chose a to get the pole at the physical position. β and γ chosen to reproduce the partial decay widths of the $\Lambda(1520)$ into $\bar{K}N(45\%)$ and $\pi\Sigma(42\%)$ and $\bar{K}N$ phase shifts. From residues at pole $|g_{\pi\Sigma^*}|=0.91, |g_{K\Xi^*}|=0.29, |g_{\bar{K}N}|=0.54$ and $|g_{\pi\Sigma}|=0.45$.

The reaction $K^-p \to \pi^0 \Sigma^{*0}(1385) \to \pi^0 \pi^0 \Lambda(1116)$

Prakhov...PRD04

$$-it(\vec{p}_{1},\vec{p}_{2}) = \frac{-iT_{\bar{K}N\to\pi\Sigma^{*}}}{3\sqrt{2}} \frac{f_{\Sigma^{*}\pi\Lambda}/m_{\pi}}{M_{R} - M_{\Sigma^{*}} + i\Gamma_{\Sigma^{*}}(M_{R})/2} \left\{ \begin{array}{l} -2p'_{2z} & m' = +1/2 \\ p'_{2x} + ip'_{2y} & m' = -1/2 \end{array} \right\}.$$

$$(10)$$

Conventional scheme for $K^-p \to \pi^0\pi^0\Lambda$

 $K^-p \to \pi^0\pi^0\Lambda$, Prakhov, $K^-p \to \pi^+\pi^-\Lambda$, Mast

Hadron in a nuclear medium

Talks of Mosel and Metag tuesday
Good review on the topic
M. Post, S. Leupold and U. Mosel , Nucl. Phys. A 741 (2004) 81
I present here examples closely linked to the chiral dynamics of the hadrons

- Kaons in a nuclear medium
- Kaon atoms
- $\Lambda(1520)$ in the medium

One does many body corrections in the KN amplitude $t(s) \rightarrow \hat{t}(q,p)$ $\Rightarrow \prod_{\bar{\kappa}} (q^{\bullet}, q, p) = 2 \int \frac{d^{3}p}{(2\pi)^{3}} n(\vec{p}) \Big[\tilde{t}_{\bar{\kappa}} p(q, p) + \tilde{t}_{\bar{\kappa}} n(q, p) \Big]$ Pauli blocking Koch 94 Waas, Weise 97 N -> TI-NIP) + NIP' Shifts the 1(1405) at higher energies Lutz 98 Selfconsistent Lutz 98

Selfconsistent Brings back use of k selfenergy Brings back in the loops the 1 (1405) to the tree position Kamos, E.O. Sefcons. K NPA (2000) + TT selfenergy PB vien for different baryons Opens new + mean field Opens new baryon potential decay channel and widens spectral function

FIG. 7. Real (top) and imaginary (bottom) parts of the K^- optical potential as a function of density obtained from the *In-medium pions and kaons* approximation. Results are shown for three different K^- energies: $\omega = m_K \sim 45$ MeV (dotted lines), $\omega = m_K$ (solid lines) and $\omega = m_K + 20$ MeV (dashed lines).

Similar results in Schaffner-Bielich, Koch, Effenberg Cieply, Friedman, Gal, Mares NPA 2000

PR.C 2000

Fig.3

Claims of narrow deeply bound kaon atoms

Akaishi and Yamazaki made rough estimates of the kaon nucleus optical potential ignoring the selfconsistency and predicted narrow bound states For the A=3 and 4 systems

leads to binding energies of the kaon of the order of 70 MeV with widths around 75 MeV, (from $K^-N \to \pi\Sigma$).

Next, the nucleus is allowed to shrink to densities $\rho=10\rho_0$

Then, K^- bound in 3He by 108 MeV and in 4He by 86 MeV Experimentalist "find" a possible deeply bound K^- state. Suzuki et al. PLB597 (2004)

 K^{-} $^4He \rightarrow Sp$, S(3115) Strange tribaryon. But I=1, and if K^- state, B=195 MeV

Contradiction with AY with I=0 and 108 MeV!!

MEK Suzuki et al

Fig. 5. Proton momentum spectra without energy-loss correction, with cut conditions defined in Fig. 4: (a) with the " π "-cut, (b) with the "p"-cut, (c) with "fast- π "-cut, and (d) with " π "-cut excluding the fast pions.

The saga continues

AY strike back:

Introduce relativistic corrections (use Klein Gordon equation) (The chiral theories always did)

some spin orbit corrections

Increase ad hoc the $\bar{K}N$ interaction

B=195 comes out then

At this point the K^- potential in the center of the nucleus has become 618 MeV!!!

Experimental reconversion: Sato in BadHonnef, PANIC05... claim the state seen is indeed a K^- bound state.

Discussion of the KEK experiment, Suzuki et al.

- Kaons at rest absorbed: $K^{-} {}^4He \rightarrow S p$, They see a peak in the p spectrum around 500 MeV/c.
- Auger emission of the p. Binding energy taken by K^- .
- Alternative explanation
 - .. E. O. and H. Toki (2005)
 - .. Many possible conventional mechanisms studied and discarded
- The one passing all tests
- $K^-NN \to \Lambda N$ $p_N = 562 MeV/c$
- $K^-NN \to \Sigma N$ $p_N = 488 MeV/c$ The other nucleons left as spectators
- exp. peak seen at $p_p=475MeV/c$ (some energy loss in thick target)

 But what about a peak at $p_p=562MeV/c$ from $K^-pp\to\Lambda p$?

FINUDA experiment, M. Agnello et al. PRL 94 (2005)

- K^- absorption at rest from $^6Li, ^7Li, ^{12}C....$ They look for events back to back. Find two peaks in Λp invariant mass: a narrow one at higher energies and a broad one at lower energies. The latter is identified with a bound K^- state.
- Cuts: $p_{\Lambda} > 300 MeV/c$ to eliminate $K^-p \to \Lambda\pi$ $|cos(\theta)| > 0.8$
- Narrow peak identified as K⁻pp → Λp removing binding energy
 Broad one at lower energies: "bound K⁻ state in pp " with B=115 MeV.
- Questions: where does the binding energy of the kaon go? Where is the strength if $K^-pp\to \Lambda p$ exciting the nucleus (largest part)?

12303 (2005)

PHYSICAL REVIEW LETTERS

i) Invariant-mass distribution of a proton and a π^- for all the events in which these two particles are observed, saint together with a linear background in the invariant-mass range of 1100–1130 MeV/ c^2 . (b) Opening angle 1 and a proton: solid line, ⁶Li, ⁷Li, and ¹²C; dashed line, ²⁷Al and ⁵¹V. The shaded area ($\cos\theta^{\text{Lab}} < -0.8$) is selective event.

FIG. 3. Invariant mass of a Λ and a proton in back-to-back correlation ($\cos\theta^{\text{Lab}} < -0.8$) from light targets before the acceptance correction. The inset shows the result after the acceptance correction for the events which have two protons with well-defined good tracks. Only the bins between 2.22 and

Our description of the peaks

V. K. Magas, A. Ramos, E. O and H. Toki, (2006)

- We run a computer simulation code for K^- absorption in nuclei by pp and pn pairs:
- $|\Psi(r)|^2$ distribution for K^- peaked around surface of nucleus
- K^- absorbed by pp or pn, with momenta randomly chosen from local Fermi sea.
- energy and momentum conservation including nuclear potential
- Λp , Λn emitted according to phase space
- p, n have further collisions pN -> p' N np -> pn (fast n to fast p) done according to $\sigma \rho$ probability per unit length and experimental angular distributions ($\sigma_{\Lambda} = \frac{2}{3}\sigma_{N}$)
- Λp invariant mass reconstructed from final events.

 ^{12}C Results imposing the experimental angle cut for back to back events, $\cos\Theta_{ec{p}_{\Lambda}ec{p}_{p}}<$

$\Lambda(1520)$ in the nuclear medium

The coupling of the $\Lambda(1405)$ to $\pi\Sigma(1385)$ is very large but decay into this channel practically suppressed because of lack of phase space.

In nuclei a π can excite ph. Plenty of phase space. Large width.

M.Kaskulov and E. O., Phys Rev C (2006)

Results for $\Lambda(1520)$ in the nuclear medium

These drastic changes could be observed experimentally suggestion made in Kaskulov, Roca, E. O, Eur. Phys. J. A (2206) by looking at the A dependence of the production cross section in

- proton induced $\Lambda(1520)$ production
- photon induced $\Lambda(1520)$ production (in progress at Spring8/Osaka)

Conclusions

- Chiral dynamics is a powerful and ideal tool to face hadron interactions at intermediate energies in free space and in nuclei.
- It has shown as a side effect that some popular resonances qualify as dynamically generated or quasibound states of hadrons.
- It has predicted the existence on new resonances. Evidence for the second $\Lambda(1405)$ recently found.
- Chiral dynamics is important when dealing with hadrons in a nucleus.
- It makes prediction for kaon interaction with nuclei in good agreement with data of Kaon atoms. Predicts deeply bound kaon states but with a large width.
- strinking medium effects in some resonances, like the $\Lambda(1520)$

Deeply bound kaon states

- The K^- optical potential on which predictions of narrow deeply bound K^- states was done is overly exagerated and incomplete in the decay channels.
- The KEK and FINUDA experiment do not have any support for the interpretation of the data as bound kaons except the "theoretical predictions" of the mentioned work.
- We have shown that all the peaks can be interpreted in terms of K^- absorption on pairs of nucleons, in KEK with remnant nucleus as spectator in FINUDA, first peak with remnant nucleus as spectator second peak with nuclear excitation to the continuum
- These mechanisms passed all tests for which there were available data.

Summary of DHD06 Workshop, Kyoto Feb 2006

- Akaishi strikes back, confusion of cut off in fi eld theory and range of interaction. No selfconsistency yet, still $10\rho_0$ density.
- Yamazaki strikes back, makes wrong assumption on fi nal state in K^{-} 4He absorption going to $p\Sigma$ nn instead of $p\Sigma$ d (small recoil energy of d, 10 MeV for 200 MeV/c of Fermi motion). Misses the experimental fact of the narrow signal in FINUDA for K^- absorption without extra fi nal state interaction. Disguised offer of compromise, peaks partly from K^- absorption and partly from production of tribaryon. Compromise rejected: too much coincidence that the peaks appear in all nuclei at the K^- absorption kinematics.
- No help from any body else of the japanese community.
- No claims in the experimental talks about deeply bound kaon atoms. Back to tribaryon claim.
- Iwasaki pledge "please understand all this is still preliminary, we are working to understand what happens"
- The paper of 2003 with claims for deeply bound K from the $K^-(at\ rest)$ absorption in $^4He,\ (K^-,n)$ has been withdrawn.

Summary of DHD06 Workshop, Kyoto Feb 2006

- Y. Yamagata presents calculations of (K^-, p) in flight and concludes that even if there are deeply bound kaon states the signal would be too weak to be seen in present experiments.
- S. Okada (Hayano exp.) presents results for 3d → 2p X-rays of Kaonic Helium. 2p shift: Old experiments 40 eV, chiral unitary model 0.2 eV, Akaishi potential 11 eV.
 New experiment compatible with zero with 3-4 eV precision.