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Outline of the talk

• Hard probe and its probing size

• Source of nuclear dependence

• Coherent multiple scattering and power corrections

—Resummation of power corrections to DIS SFs

• Universal nuclear dependence in nPDFs

—Resummation of power corrections to nPDFs

• Summary and outlook

May 23, 2006 2 Jianwei Qiu, ISU



Hard probe and its probing size
Hard probe - process with a large momentum transfer:

qM with

Size of a hard probe is very localized and much smaller than
a typical hadron at rest:

1
2R~fm

• But, it might be larger than a Lorentz contracted hadron:

1 1

Q
» 27?

m

\ PJ
or equivalently x

1
xc =

2mR
0.1

If an active parton x is small enough
the hard probe could cover several nucleons

In a Lorentz contracted large nucleus!
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Coherence length in different frames

Use DIS as an example - in target rest frame:

virtual photon fluctuates into a q-qbar pair

- Lifetime of the qq state:

v -
2

QQ ™ ~2U

2v

2fm, inter-nuclear distance, if X R < 0 . 1

• If a:^ < 0 . 1 , the probe - q-qbar state of the virtual photon

can interact with who hadron/nucleus coherently.

• In Breit frame:

coherent final-state rescattering

The conclusion is frame independent

A
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Incoherent/independent multiple scattering

• Weak quantum interference between scattering centers

2

oc

• Modify jet spectrum without changing the total rate

• Nuclear dependence from the scattering centers'
• density
• number
• momentum distribution and cut-off (new scale)
• etc

Not discussed in this talk
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Coherence soft multiple scattering

• Strong quantum interference between scattering centers

oc

• Modify production rate as well as jet spectrum

• Nuclear dependence from multi-parton correlations
• Multi-parton correlation functions are process

independent if pQCD factorization can be applied
• Fourier transform from momentum to coordinate

universal matrix elements of multiple fields
• no additional scale - power suppressed
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Single hard scattering
• Non-perturbative dynamics is effectively frozen

OC

• Production rate is proportional to the PDFs

• Nuclear dependence from nPDFs
modified DGLAP evolution
input nPDFs for the evolution

•
•

\

PDF

• nPDFs are universal and process independent

0000 lOOff
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Nuclear dependence of observables

• At small x, measured nuclear dependence include both

nuclear dependence from coherent multiple scattering

nuclear dependence from nPDFs

• Factorization to separate these two contributions

May 23, 2006 8 Jianwei Qiu, ISU



Size of the power correction
Coherent multiple scattering leads to dynamical power corrections:

( f Same impact (+)
parameter - da « da(s) + da{D)

Naive power counting:

2D lightcone dynamics

a
R

• Characteristic scale for the power corrections: \F +a

a
• For a hard probe: « 1

• Enhanced by nuclear radius: Am < 6
d

• Enhanced by the slope of small-x distribution: (P\X)
dx
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Calculate multi-parton interactions
At small x, the hard probe covers several nucleons, coherent

multiple scattering could be equally important at relatively low Q

To take care of the coherence, we need to sum over all cuts
for a given forward scattering amplitude

Scatterings Cuts

Summing over all cuts is also necessary for IR cancellation
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Collinear approximation is important

With collinear approximation:

Cuts IR safe

Cuts

Different cuts for matrix elements of partons with kT are not equal
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Factorization beyond leading power
• Consequence of OPE:

phys = &'2
nlh

+

2 Leading twist

Power corrections

• Predictive power:
• Coefficient functions are IR safe

• Distributions/correlations/matrix elements are universal

• Distributions are defined to remove all collinear
divergences of the partonic scattering
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Multi-parton correlation functions
• Parton momentum convolution:

z
Cuts

l \

oc fn*.
All coordinate space integrals are localized if x is large

• Leading-pole approximation for cfr, integrals :

• dXj integrals are fixed by the poles (no pinched poles)
• x~0 removes the exponentials

dy integrals can be extended to the size of nuclear matter

Leading-pole leads to highest powers in medium length,
a much smaller number of diagrams to worry about
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Multiple soft scattering to inclusive DIS

LO contribution to DIS cross section:

NLO contribution:

1V
xB lim

X — X\

r

• Nth order contribution:

5(x - xB)

- xB) H
— x

5{x - xB)

-—6{x - xB)
dx

M—•! • • K + -

N N
N r

xa bm

Infrared safe!
May 23, 2006

ifn
L*=i

—1

N-m

n
j=i

1
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Corrections to DIS structure functions
• Transverse structure function: Qiu and Vitev, PRL (2004)

O
a dxB

• Similar result for longitudinal structure function

Single universal parameter lead to the x-, Q-, and A-dependent
suppression to all DIS structure functions at small x
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Neglect LT shadowing
upper limit of £?

<£2~ 0 .09-0 .12 GeV2

1.1

0.9

0.1

0

-0.1

o

0,9
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0
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• x=O.O175

CERN-NA37
H 1 M H H -

i i
10

Q2 [GeV2]

SLAC-E143

3 10
Q2 [GeV2]

0.12
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4

O-O EKSS9
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CERN-NA37

FNAL-E665
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• FNAL-E665
O FNAL-E665
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Leading twist shadowing
• Power corrections complement to the nuclear dependence in nPDFs:

• Leading twist shadowing changes the x- and Q-dependence
of the parton distributions

• Power corrections to the DIS structure functions (or cross
sections) are effectively equivalent to a shift in x

• Power corrections vanish quickly as hard scale Q increases
while the leading twist shadowing goes away much slower

• If leading twist shadowing is
so strong that x-dependence of
parton distributions saturates

for x< xc,

additional power corrections,
the shift in x, should have
no effect to the cross section!
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Beyond the tree-level

OTMBB . /
elk!

0
Collinear

divergence

Should be a part of
nuclear PDFs

• But, DGLAP evolved nPDFs do not remove this singularity,

nor any collinear divergences beyond single scattering

• Redefine nPDFs to include all collinear divergences of partonic

subprocesses
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Power corrections to PDFs
• Hard probe sees only one effective parton:

* YiYiYrv"J"

• Pinched poles in the ladder diagrams - corrections to evolution
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Corrections to DGLAP evolution

f{x,fi2)-

Power
Correction
to evolution
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Corrections to PDFs not down by 1/Q2

Leading order
power correction

1 >

dltift' 1 1
as jJ -* co

power correction can
build up a big effect to
low Q2 distribution

Evolve back

DGLAP+Power

What about high power corrections?
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Modified ladder diagrams
• Leading-pole - Leading A1'3 term - less diagrams

s 3 a , '

SJ >

Modified DGLAP evolution equations at all powers
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Evolution kennels for modified DGLAP
Modified Q evolution kennel:

\

• First non-trivial term

+ ... + Virtual diagrams

F
. . •

[< F+1Fl> ( - # - - ) • (h(- 1)] 4-S(y - y*)

F

• Sum of all power corrections:

">'••' Amm

Translation Operator 6 *•

• Similar results for the other kennels

• • • .
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Numerical results
Gluon evolution slope

o
T

!
q

MOO

: K '

3000

. ! : : : : •

• I

CTEQ6L

MRST2O01LO

GRV9BLO

. . : . • ! • •

O.&i

o.a

0.75

0.7
JC

G(GeV)

Important at small x and low Q2

. CTEQ6L

VRST2001LO

M GRV9S_0

Q(GeV]
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Negative gluon distribution at low Q?
• NLO global fitting

based on leading twist
DGLAP evolution
leads to negative
gluon distribution

• MRST, CTEQ PDF's
have the same
features

Does it mean that we
have no gluon for
x<10-3at1 GeV?

No!

Power corrections slows
down small-x evolution

May 23, 2006
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Phase diagram of parton densities

pQCD
factorization

• Experiments measure
cross sections, not PDFs

• PDFs are extracted based on
> factorization
> truncation of perturbative

expansion

• How to probe the boundary
between different regions?

2
MV ln(G2/A2)

• Look for where pQCD
factorization fails

• Power corrections
- improve predictive power

of factorization approach
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Summary and outlook
• Hard probe with an active small x is not "local"

• Coherent QCD soft scattering - power corrections

• Leading-pole power corrections could be enhanced at small-x
(steep slope of PDFs)

• Leading-pole power corrections are expressed in terms of
only ONE universal matrix element

1 rdy-
a

p +

• Power corrections to DGLAP evolution are important

• Leading-pole power corrections vanish for saturated nPDFs

Global fitting of nPDFs needs to include both power
corrections to hard parts as well as the evolution kennels
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Backup transparencies
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Model for the correlation functions

Matrix elements:

i=\

• Approximation:

Nucleus is made of a group of loosely bound nucleons

A
_PA

A

PA

N

i=\

PA) oc Alp O(
\ N i

p)n{p

• Reduce the correlation functions to one unknown
- a universal matrix element

P F+aF
a P

May 23, 2006 29 Jianwei Qiu, ISU


