

SMR.1751 - 6

Fifth International Conference on **PERSPECTIVES IN HADRONIC PHYSICS**

Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies

22 - 26 May 2006

Deeply Virtual Compton Scattering in JLAB Hall A

Malek MAZOUZ

Laboratoire de Physique Subatomique et de Cosmologie 53 avenue des Martyrs F-38026 Grenoble FRANCE

Deeply Virtual Compton Scattering in JLAB Hall A

Malek MAZOUZ
For JLab Hall A & DVCS collaborations

5th ICPHP

LPSC Grenoble : mazzouz@lpsc.in2p3.fr

May 22nd 2006

Generalized parton distributions: GPDs

Generalized parton distributions: GPDs

Probability $|\Psi(x)|^2$ that a quark carries a fraction x of the nucleon momentum

Parton distributions q(x), $\Delta q(x)$ measured in inclusive reactions (D.I.S.)

GPDs measure the **Coherence** $\Psi^*(x+\xi)$ $\Psi(x-\xi)$ between a initial state with a quark carrying a fraction $x+\xi$ of the nucleon momentum and a final state with a quark carrying a fraction $x-\xi$

4 GPDs: $H, \tilde{H}, E, \tilde{E}(x, \xi, t)$

For each quark flavor

Dependence in t : new wealth of physics to explore

GPDs properties, link to DIS and elastic form factors

$$H^{q}(x,0,0) = q(x) = -\overline{q}(-x)$$

$$\tilde{H}^{q}(x,0,0) = \Delta q(x) = -\Delta \overline{q}(-x)$$

Link to form factors (sum rules)

$$H^{q}, E^{q}, \widetilde{H}^{q}, \widetilde{E}^{q}(x, \xi, t)$$

$$\int_{-1}^{1} dx E^{q}(x, \xi, t) = F_{2}^{q}(t)$$

$$\int_{-1}^{1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t)$$

$$\int_{-1}^{1} dx \ \tilde{H}^{q}(x,\xi,t) = g_{A}^{q}(t) , \int_{-1}^{1} dx \ \tilde{E}^{q}(x,\xi,t) = h_{A}^{q}(t)$$

$$J_{q} = \frac{1}{2} \Delta \Sigma_{q} + L_{q} = \frac{1}{2} \int_{-1}^{1} x dx \left[H^{q}(x, \xi, 0) + E^{q}(x, \xi, 0) \right]$$

How to access GPDs: DVCS

Collins, Freund, Strikman

Simplest hard exclusive process involving GPDs

pQCD factorization ____ theorem

$$Q^{2} = -q^{2} = -(k - k')^{2} >> M^{2}$$
$$t = (p - p')^{2} = \Delta^{2} << Q^{2}$$

Bjorken regime

Perturbative description (High Q² virtual photon)

Generalized Parton Distributions

$$x_{B} = \frac{Q^{2}}{2 pq} = \frac{Q^{2}}{2M v}$$

$$\xi = \frac{x_{B}}{2 - x_{B}}$$

$$\xi + x = \text{fraction of longitudinal momentum}$$

Deeply Virtual Compton Scattering

$$T^{DVCS} = \int_{-1}^{+1} \frac{GPD(x, \xi, t)}{x - \xi + i\varepsilon} dx + \cdots$$

$$= P \int_{-1}^{+1} \frac{GPD(x, \xi, t)}{x - \xi} dx - i\pi GPD(x = \xi, \xi, t) + \dots$$

The GPDs enter the DVCS amplitude as an integral over x:

GPDs appear in the imaginary part but at the line $x=\xi$

But using a polarized electron beam: Asymmetry appears in Φ

The cross-section difference accesses the Imaginary part of DVCS and therefore GPDs at $x=\xi$

The total cross-section accesses the real part of DVCS and therefore an integral of GPDs over x

cross-section difference in the handbag dominance

Pire, Diehl, Ralston, Belitsky, Kirchner, Mueller

$$\frac{d\vec{\sigma}}{dQ^2 dx_B d\Delta^2 d\varphi_e d\varphi_{\gamma\gamma}} - \frac{d\vec{\sigma}}{dQ^2 dx_B d\Delta^2 d\varphi_e d\varphi_{\gamma\gamma}} = \Gamma_A(x_B, \varphi_e, \Delta^2, \varphi). A \sin \varphi + \Gamma_B(x_B, \varphi_e, \Delta^2, \varphi). B \sin 2\varphi$$

with $x_B = Q^2 / 2p \cdot q$ and $\Delta = p' - p$,

and φ_{γ} the angle between the leptonic and photonic planes

A contains twist 2 terms and is a *linear* combination of three GPD imaginary part evaluated at $x=\xi$

$$A = \frac{F_1(t)}{2 - x_B} \cdot \left(F_1(t) + F_2(t)\right) \cdot \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2(t) \cdot \mathcal{E}$$

B contains twist 3 terms

- -Twist-2 contribution(Γ .A.sin ϕ) dominate the total cross-section and cross-section difference.
- -Twist-2 term (A) and twist-3 term (B) have only log(Q²) dependence.

Test of the handbag dominance

To achieve this goal, an experiment was initiated at JLab Hall A on hydrogen target with high luminosity (10³⁷ cm⁻² s⁻¹) and exclusivity.

Another experiment on a deuterium target was initiated to measure DVCS on the neutron. The neutron contribution is very interesting since it will provide a direct measure of GPD E (less constrained!)

Neutron Target

$$A = \frac{F_1(t)}{2 - x_B} \cdot \left(F_1(t) + F_2(t)\right) \cdot \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2(t) \cdot \mathcal{E}$$

Neutron

<u></u> –t	$F_2^p(t)$	$F_1^{p}(t)$	$\left(F_1^p(t) + F_2^p(t)\right) \cdot x_B / (2 - x_B)$	$(-t/4M^2)\cdot F_2^p(t)$
0.1	-1.46	-0.01	-0.26	-0.04
0.3	-0.91	-0.04	-0.17	-0.06
0.5	-0.6	-0.05	-0.12	-0.08
0.7	-0.43	-0.06	-0.09	-0.08

$$F_1^n(t) << F_2^n(t)$$
 !!!

Model:
$$Q^{2} = 2 \text{ GeV}^{2}$$

$$x_{B} = 0.3$$

$$-t = 0.3$$

Target
$$\mathcal{H}$$
 $\tilde{\mathcal{H}}$ \mathcal{E} neutron0.81-0.071.73

Goeke, Polyakov and Vanderhaeghen

$$A = F_{1}(t) \cdot \mathcal{H} + \underbrace{\frac{x_{B}}{2 - x_{B}} \cdot (F_{1}(t) + F_{2}(t)) \cdot \tilde{\mathcal{H}}}_{A = -0.03} - \underbrace{\frac{t}{4M^{2}} F_{2}(t) \cdot \mathcal{E}}_{0.01} - 0.12$$

E00-110 (p-DVCS) was finished in November 2004 (started in September)

E03-106 (n-DVCS) was finished in December 2004 (started in November)

 $x_{Bj} = 0.364$

	s (GeV²)	Q ² (GeV ²)	P _e (Gev/c)	Θ _e (deg)	-Θ _{γ*} (deg)	$\int Ldt$ (fb ⁻¹)
,	4.94	2.32	2.35	23.91	14.80	5832
	4.22	1.91	2.95	19.32	18.25	4365
	3.5	1.5	3.55	15.58	22.29	3097
•	4.22	1.91	2.95	19.32	18.25	24000

proton

neutron

Beam polarization was about 75.3% during the experiment

Experimental method

Analysis - Selection of DVCS events

$$ep \rightarrow e\gamma X$$

π^0 contamination subtraction

One needs to do a π^0 subtraction if the only (e,γ) system is used to select DVCS events.

- Symmetric decay: two distinct photons are detected in the calorimeter

 No contamination
- Asymmetric decay: 1 photon carries most of the π0 energy → contamination because DVCS-like event.

π^0 contamination subtraction

Still to check the exclusivity under the missing mass cut!

Check of the exclusivity

One can **predict** for each (e,γ) event the Proton Array block where the missing proton is supposed to be (assuming DVCS event).

Contamination < 3%

Extraction of observables

$$\frac{d\vec{\sigma}}{dQ^{2}dx_{B}d\Delta^{2}d\varphi_{e}d\varphi_{\gamma\gamma}} - \frac{d\vec{\sigma}}{dQ^{2}dx_{B}d\Delta^{2}d\varphi_{e}d\varphi_{\gamma\gamma}} = \Gamma_{A}(x_{B},\varphi_{e},\Delta^{2},\varphi) \cdot A\sin\varphi + \Gamma_{B}(x_{B},\varphi_{e},\Delta^{2},\varphi) \cdot B\sin2\varphi$$
Q2 independent

$$\Delta N^{Exp}(i_e) = N_{i_e}^+ - N_{i_e}^-$$

$$\Delta N^{MC}(i_e) = L \left[\mathbf{A} \int_{x \in i_e} \Gamma_{\mathbf{A}} . \sin \varphi \otimes Acc + \mathbf{B} \int_{x \in i_e} \Gamma_{\mathbf{B}} . \sin 2\varphi \otimes Acc \right]$$
 MC sampling MC sampling

MC includes real radiative corrections (external+internal)

$$\chi^{2} = \sum_{i_{e}} \frac{\left[N^{Exp}(i_{e}) - N^{MC}(i_{e})\right]^{2}}{\left[\sigma^{Exp}(i_{e})\right]^{2}} \qquad \qquad \left\{\begin{array}{c} \mathbf{A} \\ \mathbf{B} \end{array}\right.$$

DVCS on the **neutron** and the **deuteron**

Same exclusivity check as before

$$\frac{\sigma(ed \to e\pi^0 X)}{\sigma(ep \to e\pi^0 X)} \approx 1.0$$

In our kinematics π^0 come essentially from proton in the deuterium

 π^0 asymmetry is small

No π^0 subtraction needed for neutron and coherent deuteron

By subtracting proton contribution from deuterium, one should access to the neutron and coherent deuteron contributions.

$$Q^2 = 1.9 \text{ GeV}^2$$

$$< t > = -0.3 \text{ GeV}^2$$

Conclusion

High statistics extraction of the total cross-section (another linear combination of GPD!)

Analysis in progress to extract the **neutron** and **deuteron** contribution

Proton Target

$$A = \frac{F_1(t)}{2 - x_B} \cdot \left(F_1(t) + F_2(t)\right) \cdot \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2(t) \cdot \mathcal{E}$$

Proton

- t	$F_2^p(t)$	$F_1^p(t)$	$\left(F_1^p(t) + F_2^p(t)\right) \cdot x_B / (2 - x_B)$	$(-t/4M^2)\cdot F_2^p(t)$
0.1	1.34	0.81	0.38	0.04
0.3	0.82	0.56	0.24	0.06
0.5	0.54	0.42	0.17	0.07
0.7	0.38	0.33	0.13	0.07

Model: $x_B = 0.3$

$$Q^{2} = 2 \text{ GeV}^{2}$$

$$x_{B} = 0.3$$

$$-t = 0.3$$

Target	\mathcal{H}	$ ilde{\mathcal{H}}$	${\cal E}$
Proton	1.13	0.70	0.98

Goeke, Polyakov and Vanderhaeghen

$$A = F_1(t) \cdot \mathcal{H} + \underbrace{\frac{x_B}{2 - x_B} \cdot \left(F_1(t) + F_2(t)\right) \cdot \tilde{\mathcal{H}}}_{A = 0.34 + 0.06} - \underbrace{\frac{t}{4M^2} F_2(t) \cdot \mathcal{E}}_{+ 0.06}$$

Electronics

1 GHz Analog Ring Sampler (ARS)

x 128 samples x 289 detector channels

Sample each PMT signal in 128 values (1 value/ns)

Extract signal properties (charge, time) with a wave form Analysis.

Allows to deal with pile-up events.

Electronics

Not all the calorimeter channels are read for each event

Calorimeter trigger

Following HRS trigger, stop ARS.

30MHz trigger FADC digitizes all calorimeter signals in 85ns window.

- Compute all sums of 4 adjacent blocks.
- Look for at least 1 sum over threshold
- Validate or reject HRS trigger within 340 ns

Not all the Proton Array channels are read for each event

Calorimeter resolution and calibration

- -Time resolution < 1ns for all detectors
- -Energy resolution of the calorimeter :

$$\frac{\delta E}{E} = 2.5\% \text{ at } 4.2 GeV$$

- Photon position resolution in the calorimeter: **2mm**

Detecting π^0 in the calorimeter checks its calibration

High luminosity measurement

Up to

$$L_{nucleon} = 4.10^{37} \, cm^{-2} s^{-1}$$

At ~1 meter from target
$$(\Theta_{v^*}=18 \text{ degrees})$$

Low energy electromagnetic background

Requires good electronics

Analysis status – preliminary

Time difference between the electron arm and the detected photon

Selection of events in the coincidence peak

Determination of the missing particle (assuming DVCS kinematics)

Check the presence of the missing particle in the predicted block (or region) of the Proton Array

π^0 electroproduction - preliminary

Invariant mass of 2 photons in the calorimeter

Good way to control calorimeter calibration

Missing mass² of ep \rightarrow e π ⁰x

2 possible reactions:

ep
$$\rightarrow$$
en ρ^+ , $\rho^+ \rightarrow \pi^0 \; \pi^+$

Missing mass² with LD₂ target

Time spectrum in the tagger (no Proton Array cuts)

