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INTRODUCTION:

Parton saturation at small x

• Recent years: Growing activity around systems and experiments DIS at
HERA, heavy-ion experiments at RHIC and LHC involving large number
of partons due to high energy and high number of participants

• High parton densities:

dN ch
AA

dη
(b) = a(η, b)Npart(b) + c(η, b)Ncoll(b).

A) Npart(b) ∝ A: number of participant nucleons, valence-like contribution.
B) Ncoll(b) ∝ A4/3: number of inelastic nucleon-nucleon collisions

• To get the right multiplicities at RHIC and LHC it is necessary to
lower the contribution of B

• Two different approaches for the initial state:

Geometrical approach: Interaction/percolation of strings
Saturation in high-density QCD: CGC
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STRING MODELS: PERCOLATION

(Armesto, Braun, Ferreiro, Pajares)

• Phenomenological model for the soft region

• In a collision color strings are streched between the colliding partons

• Strings = color sources of particles which are successively broken by
creation of qq̄ pairs from the sea

• Color strings = small areas in the transverse space filled with color field
created by the colliding partons

• If the density of strings increases ⇒ Ovelapping in the transverse space
Phenomenon of string fusion and percolation

η = Nst
S1
SA

S1 = πr2
0

r0 = 0.2 ÷ 0.3 fm
ηc = 1.1 ÷ 1.5.
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Percolation theory

• Consider N small circular discs (color sources: strings, partons) of radius
r onto a large circular manifold (the transverse nuclear plane) of radius R:

Density: η = Nπr2

πR2

• Percolation: at a critical value ηc of the density the cluster size diverges:
the size of the cluster reaches the size of the system

• ηc = 1.12 ÷ 1.175 (from MC, direct connectedness expansion and other methods)

• In our model: fixed radius for the independent color sources
r=0.2 - 0.3 fm which corresponds to a momentum around 1 GeV

• To estimate the density η, one needs to know the number of sources N
N depends on the energy

√
s and on the number of participant nucleons A

The condition to achieve percolation depends on A and s, η = η(A, x)

• Critical threshold for percolation: central Pb-Pb collisions at SPS,
Au-Au and lighter central collisions at RHIC, p-p collisions at LHC energies

4



From left to righ: Density of strings in the transverse space, from low energy
and/or low number of participants to high energies and/or high number of
participants. In the last circle we show percolation.
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The size of the color sources

If you look at a fast nucleon coming at you, what do you see?

It depends on who is looking

• Another nucleon sees a disc of radius r � 1 fm and a certain greyness.

• A hard photon with resolution scale Q−1 << 1 fm sees a swarm of partons.

How many there are depends on the resolution scale: given a finer scale,
you can see smaller partons, and there are more the harder you look.

The structure of an incoming nucleon seen for increasing resolution
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Partons in a nucleon: transverse size rT determined by their kT : rT ∼ 1/kT

The resolution scale Q−1 specifies the minimum k−1
T resolved

The probing photon sees all partons in the range 0 ≤ kT ≤ Q

It sees all the partons with a radius rT ≥ Q−1

1/Q 2

The partonic size is through the uncertainty relation determined
by its average transverse momentum, r2 ∼ 1/ < k2

T >, for a given
resolution scale, < k2

T >∼ Q2
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The percolation density depends on the number of sources N and their size

• Two models:

• Critical density (Armesto, Braun, Ferreiro, Pajares)

N calculated in the SFM, N = N(A, s)
Initial sources of a fixed size of r=0.2-0.3 fm ≡ momentum of 1 GeV

• Critical momentum (Nardi, Sazt, Digal)

N calculated through the WNM using P.D.F.’s for the nucleonic density
Instead of fixing the radius of the initially created sources, they
estimate the momentum of those sources that will lead to percolation

ηc =
Nπr2

c

πR2
=

N

Q2
cR

2

Condition for percolation: ηc = 1.12 ⇒ Critical momentum Q2
c = N

1.12R2

For central Pb-Pb collisions at SPS energies: Q2
c ≈ 1 GeV2

For central Au-Au collisions at RHIC: Q2
c ≈ 2.5 GeV2

The condition for percolation depends on A and s: N=N(A,s), Qc=Qc(A,x)
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Some remarks

• What we are trying is to determine under what conditions the
initial state configurations can lead to color connection, and more
specifically, if variations of the initial state can lead to a transition
from disconnected to connected color clusters.

• This is not a final state interaction phenomenon: the results of such
a study of the pre-equilibrium state in nuclear collisions do not depend on
the subsequent evolution and thus not require any kind of thermalization.

• When the density of strings becomes high the string color fields overlap
and individual strings fuse, forming a cluster which has a higher color
charge, corresponding to the sum of the color charges of the original strings.

• The string clusters break into hadrons according to their higher color.
As a result, there is a reduction of the total multiplicity. Also, as the
energy-momenta of the original strings are summed to obtain the energy-
momentum of the cluster, the mean transverse momentum is increased
compared to the one of the particles created from individual sources.
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Numerical results
(Armesto, Braun, Ferreiro, Pajares)

• For a cluster of n overlapping strings covering an area Sn:

Color charge of the cluster=Vectorial sum of the strings charges

�Qn =
n∑

i=1

�Q1i, 〈 �Q1i · �Q1j〉 = 0, �Q2
n = n�Q2

1,

Qn =

s
nSn

S1

Q1, µn =

s
nSn

S1

µ1, 〈p2
T〉n =

s
nS1

Sn

〈p2
T〉1.

For strings without interaction:

Sn = nS1, Qn = nQ1 → µn = nµ1, 〈p2
T〉n = 〈p2

T〉1

For strings with max overlapping:

Sn = S1, Qn =
√

nQ1 → µn =
√

nµ1, 〈p2
T〉n =

√
n〈p2

T〉1

• Moreover, one can obtain the analytic expression:

η =
NstringsS1

SA
, <

nS1

Sn
>=

η

1 − e−η
≡ 1

F (η)2
⇒

µ = Nstrings F (η)µ1 , < p2
T >=

1

F (η)
< p2

T >1
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A-dependence
(Armesto, Braun, Ferreiro, Pajares)

• Taking

Nstrings ∝ A4/3, SA ∝ A2/3, η =
NstringsS1

SA
∝ A2/3, F (η) ∝ 1√

η

we obtain

• Without interaction:

µAA = Nstrings µ1 ∝ A4/3, < p2
T >AA=< p2

T >1

• With clustering:

µAA = Nstrings F (η) µ1 ∝ A, < p2
T >AA=

1

F (η)
< p2

T >1∝ A1/3
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• Beyond the percolation point, one has a condensate, containing
interacting and hence color-connected sources of all scales kT ≤ Q

• The percolation point thus specifies the onset of color
deconfinement

• It says nothing about any subsequent thermalization
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THE COLOR GLASS CONDENSATE

(Iancu, Leonidov, McLerran)

• At high energy the QCD cross sections are controlled by small x gluons in
the hadron wavefunction, whose density grows rapidly with the energy (or
with decreasing Bjorken’s x) due to the enhancement of radiative process.

• Perturbative QCD: By resumming dominant radiative corrections at high
energy, the BFKL eq. leads to a gluon density that grows like a power of s
⇒ σ also grows like a power of s and violates Froissart bound.

• BFKL and DGLAP: Linear equations that neglet the interaction among
the small x gluons

With increasing energy, recombination effects favoured by the high
density of partons should become more important and lead to

eventual saturation of the parton densities.
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Gluon density at small x

2

x1010 1010

Q = 200 GeV

Q = 20 GeV 

xG(x,Q )

2 2
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= 5 GeV2Q
2

Gluon density grows

Low energy

High energy

• Increase at fixed Q2

• More rapid increase at larger Q2
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The saturation momentum

• Non-linear effects in the hadron wavefunction become important when the
interaction probability for the gluons becomes of O(1) (gluons overlap):

αsNc

Q2
× xG(x, Q2)

πR2
∼ 1

Transverse size of the gluon Density of gluons

• Equiv: For a given energy, saturation occurs for those gluons having a
sufficiently large transverse size r2

⊥ ∼ 1/Q2, larger than a critical value
1/Qs(x) ⇒
⇒ Gluons with momenta Q2 <∼ Q2

s(x) where

Q2
s(x) = αsNc

xG(x, Q2
s)

πR2
≡ (color charge)2

area

∼ A1/3x−λαs

16



• For sufficiently large energy (x small enough):

Q2
s(x) � Λ2

QCD andαs(Qs) 
 1

⇒ Weak coupling QCD

• But although the coupling is small the effects of the interactions are
amplified by the large gluon density:
At saturation: xG(x, Q2

s) ∼ 1/αs � 1 =⇒
large ocupation numbers
semi-classical regime [McLerran, Venugopalan (94)]

ordinary perturbation theory breaks down

• The strategy: To construct an effective theory in which the small-x
gluons are describe by classical color fields radiated by a random color
source, that of the fast partons with larger x

• The advantage: Non-linear effects in a classical context ⇒ Exact
calculations are possible
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Effective theory for the CGC

(Iancu, Leonidov, McLerran, Ferreiro)

• General idea: Fast partons (valence quarks with large longitudinal
momentum) are considered as a classical souce ρ that emits soft gluons
(with smaller longitudinal momenta) with are treated as classical color
fields A[ρ]

• Yang Mills eqs. describing soft gluon dynamics:

DνF
νµ = δµ+ρ(x−, x)

• Physical quantities, as the unintegrated gluon distribution, are obtained
as an average over ρ:

< Ai(X)Ai(Y ) >x =

∫
D[ρ] Wx[ρ] Ai[ρ](X)Ai[ρ](Y )

Ai(X)= classical solution for given ρ, F +i = δ(x−) i
gV (x⊥)(∂iV (x⊥)†) = ∂+Ai

Wx[ρ]= gauge-invariant weight function for ρ
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The Renormalization Group Equation

• ρ and its correlations change with increasing τ ≡ ln 1/x

∂Wτ [ρ]

∂τ
=

1

2

∫
x⊥,y⊥

δ

δρa
x

χab
xy[ρ]

δ

δρb
y

Wτ [ρ]

Jalilian-Marian, Kovner, Leonidov, Weigert, 97;

Iancu, Leonidov, McLerran, 2000

Functional diffusion equation. It encompasses previous evolution equations
by : Balitsky (96), Kovchegov (99), Weigert (2000)

χ depends upon ρ via Wilson lines:

V †(x⊥) ≡ Pexp
{

ig

∫
dx−A+(x−, x⊥)

}
; −∇2

⊥A+ = ρ
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Solutions

Physical quantities, as the gluon density, are obtained as an average over ρ

n(x, k⊥) ≡ 1
πR2

dN
dτ d2k⊥

∝ 〈F+i(k⊥)F+i(−k⊥)〉x

• Low density: high Q2 or low energy k⊥ � Qs(x)

n(x, k⊥) ∼ 1
k2
⊥

1
xωαs (Bremsstrahlung)

⇒ Gluon density grows both with 1/k2
⊥ and τ = ln 1

x

• High density: low Q2 or high energy k⊥ 
 Qs(x)

n(x, k⊥) ∼ 1
αs

ln
Q2

s(x)

k2
⊥

∝ ln 1
x

⇒ SATURATION: Gluon density increases linearly with τ and
logaritmically with the energy: Unitarity is restored
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Phenomenology at RHIC

(Kharzeev, Levin, Nardi; McLerran, Schaffner-Bielich, Venugopalan)

Density of partons at saturation:

xG(x, Q2
s) =

πR2
A Q2

s(x,A)

αs(Q2
s)

∼ Npart ln Npart

• πR2
A ∝ N

2/3
part = the nuclear overlap area

• Q2
s(x, A) ∝ N

1/3
part = the saturation momentum

• 1/αs(Q
2
s) ≈ ln(Q2

s/Λ2
QCD) ∼ lnNpart(evolution)

Transverse momentum spectra at saturation:
Intrinsic pT broadening in the partonic phase: Scaling relations:

< pT >2∼ 1

πR2
A

dN

dy
,

1

σ

dN

dηd2pT
=

1

αs
f(

p2
T

Q2
s

),
1

σ

dN

dyd2mT
=

1

αs
f(

mT

Q2
s

)
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PERTURBATIVE QCD POMERON

(Braun, Pajares)

Consider now the A-B interaction as governed by the exchange of pomerons:
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A typical diagram for the inclusive cross-section in nucleus-nucleus collisions

Its interaction is realized by the triple pomeron vertex
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Inclusive cross section in pQCD, taking A = B and constant nuclear density
for |b| < RA: convolution of two sums of fan diagrams (AGK rules satisfied
for BFKL pomerons interacting via the triple pomeron vertex Bartels and

Wuesthoff, Ciafaloni)

IA(y, k) = A2/3πR2
0

8Ncαs

k2

∫
d2reikr[∆ΦA(Y − y, r)][∆ΦA(y, r)],

where Φ(y, r) is the sum of all fan diagrams connecting the pomeron at
rapidity y and of the transverse dimension r with the colliding nuclei, one
at rest and the other at rapidity Y .

In the momentum space, function φA(y, r) = Φ(y, r)/(2πr2) satisfies the
BK equation

∂φ(y, q)

∂ȳ
= −Hφ(y, q) − φ2(y, q),

where ȳ = ᾱy, ᾱ = αsNc/π, αs and Nc are the strong coupling constant
and the number of colors, respectively, and H is the BFKL Hamiltonian
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This equation has to be solved with the initial condition at y = 0 determined
by the color dipole distribution in the nucleon smeared by the profile function
of the nucleus.

We take the initial condition in accordance with the Golec-Biernat
distribution saturation in CGC:

φ(0, q) = −1

2
aEi

(
− q2

0.3567 GeV2

)
,

with

a = A1/320.8 mb

πR2
0

.

Evolving φ(y, q) up to values ȳ = 3 we found the inclusive cross-section at
center rapidity for energies corresponding to the overall rapidity Y = Ȳ /ᾱ.
With Ȳ = 6 and αs = 0.2 this gives Y ∼ 31.
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Energy dependence
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k correspond to scaled overall rapidities Ȳ = 1, 3, 6. With the growth of energy, the

distributions are shifted towards higher values of k.

26



Rcol
A = IA(y,k)

A4/3I1(y,k)
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Rpart
A = IA(y,k)

AI1(y,k)
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At relatively small momenta the inclusive cross-sections are proportional to
A, that is to the number of participants

At larger momenta they grow with A faster, however noticeably slowlier
than the number of collisions, approximately as A1.1

The interval of momenta for which IA ∝ A is growing with energy, so
that one may conjecture that at infinite energies all the spectrum will be
proportional to A
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SHADOWING

(Capella, Kaidalov)

Dynamical, non linear shadowing

It is determined in terms of diffractive cross sections

It would lead to saturation at s → ∞
Controled by triple pomeron diagrams

Contribution to diffraction: positive

Contribution to the total cross-section: negative

Reduction of multiplicity from shadowing corrections in AB collisions:

Ssh =

∫
d2sfA(s)fB(b − s)

TAB(s)
, fA(b) =

TA(b)

1 + AF (s)TA(b)

Function F: Integral of the triple P cross section over the single P one:

F (s) = 4π

∫ ymax

ymin

dy
1

σP (s)

d2σPPP

dydt

∣∣∣∣
t=0

= C [exp (ymax) − exp (ymin)]

y = ln(s/M2), M2 = squared mass of the diffractive system

ymax = 1
2ln(s/m2

T ), ymin = ln(RAmN/
√

3), C = triple pomeron coupling
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A

B

y

R  (s)

R  (b−s)

y  =0
*

*

A

B
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b (fm) Shadow(ch) Shadow(J/ψ)

0. 0.4959 0.7482
1. 0.4962 0.7485
2. 0.4973 0.7493
3. 0.5003 0.7513
4. 0.5058 0.7550
5. 0.5145 0.7607
6. 0.5268 0.7687
7. 0.5423 0.7792
8. 0.5649 0.7928
9. 0.5954 0.8109
10. 0.6318 0.8321
11. 0.6830 0.8599
12. 0.7447 0.8909
13. 0.8072 0.9200

Shadowing corrections for Au+Au collisions at RHIC
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• Maximal
multiplicity
in absence
of shadowing:
dNAA/dy = A4/3

AGK cancellation
A dependence:
hard ≡ soft

• Multiplicity with
shadow corrections:
dNAA/dy = Aα

α = 1.13 at RHIC
α = 1.1 at LHC
AGK violated by triple-
P

33



Some similarities: CGC, strings and pomerons

• In the percolation approach when taking the saturation limit – all the strings

overlap into a single cluster that occupies the whole nuclear overlap area–

µAA = µn =

√
nSn

S1
µ1 =

√
NsSAA

S1
µ1 ∝ A , < p2

T >AA=
S1

SAA

< p2
T >1

µ1
µAA

Ns ∝ Ncoll ∝ A4/3 = number of strings, SAA ∝ A2/3 = nuclear overlap area

• In the CGC at saturation

dN

dy
∼ xG(x, Q2

s) ∼ πR2
A Q2

s(x,A)

αs(Q2
s)

∝ A , < pT >2∼ 1

πR2
A

dN

dy

πR2
A ∝ A2/3 = nuclear overlap area Q2

s(x, A) ∝ A1/3 = saturation momentum

• In the RFT with maximal shadowing and pomeron approach: IA ∝ A1.1
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Predictions for LHC

This work

Comparison of different

predictions for charged

hadron multiplicities in

central (b ≤ 3 fm) Pb-Pb

collisions at LHC energies

———— From:

Kharzeev, Levin, Nardi,

hep-ph/0408050

The original fig. is from:

Armesto, Pajares, hep-

ph/0002183

Prediction of SFM
and CGC coincides
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CONCLUSIONS

We have compared different models that takes into account saturation:
• semi-phenomenological fusing color sources including percolation
• QCD saturation through the CGC
• pQCD pomeron with saturation in the initial conditions.

Exchanged of elemental color sources –strings, partons or pomerons– lead
to a saturation in the initial conditions when the densities are high enough.

In nuclear collisions there is a sudden onset of large-scale color connection
Above a critical density the elemental objects form one large cluster
They lose their independent existence and their relation to parent nucleons

Percolation = onset of color deconfinement

It may be a prerequisite for QGP formation, it does not imply thermalization

The idea of an ideal QGP –weakly coupled plasma of quarks and gluons–
formed above a critical temperature Tc ∼ 160 MeV is not longer valid.
For moderate temperatures (1 ÷ 3) Tc the plasma is predicted by non-
perturbative lattice to be strongly coupled (sQGP)
Its source could be a saturated initial state of the type described here.
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Glasma

(Lappi, McLerran)

Glasma: highly coherent matter making in transition from Color Glass
Condensate to Quark Gluon Plasma

It is characterized, in a manner reminiscent of the Lund string model,
by the decay of a longitudinal electric and magnetic field into particles

This decay can happen both as classical radiation of the field and,
quantum pair production from the classical background

37



Conclusions

The perturbative QCD hard pomeron approach leads to multiparticle
production which qualitatively fully agrees with the color string approach
with fusion.

Damping of the multiplicities turns out to be of the same strength as in the
string picture, and also the average transverse momenta are found to rise
nearly as predicted by the latter model.

This overall agreement may appear to be astonishing in view of very different
dynamical pictures put in the basis of the two approaches and also quite
different domains of their applicability: soft for the string picture and hard
for the pomeron picture.

However, one may come to the conclusion that the dynamical difference
between the two approaches is not so unbridgeable. Two phenomena are
playing the leading role in both approaches:

One is fusion of exchanged elemental objects, strings in one picture and
pomerons in the other. This explains damping of multiplicities per one
initial elemental object.
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Second phenomenon is the rise of average transverse momentum with this
fusion.
It is generated by formation of strings of higher tension (color) in the string
scenario.
In the pomeron model this rise occurs due the growth of the saturation
momentum, which shifts the momentum distribution to higher momenta
with A (and Y ). Due to this shift non-linear effects in the pomerons in some
sense reproduce formation of strings of higher color in the string model.

So we find an agreement between predictions of these two models, pertaining
to completely different (in fact opposite) kinematical regions of secondaries,
about certain basic features of multiparticle spectra.

These results are not fully unexpected. Indeed similar predictions were
found previously in the framework of color glass condensate. Also in all
considered approaches scaling in the transverse momentum distribution was
observed. We consider this as a strong support for these predictions and
thereby for the models.
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NOTES
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EFFECTIVE THEORY FOR THE CGC

• General idea: Fast partons (valence quarks with large longitudinal
momentum) are considered as a classical souce ρ that emits soft gluons
(with smaller longitudinal momenta) with are treated as classical color fields
A[ρ]

• Yang Mills eqs. describing soft gluon dynamics:

DνF
νµ = δµ+ρ(x−, x)

• Physical quantities, as the unintegrated gluon distribution, are obtained
as an average over ρ:

< Ai(X)Ai(Y ) >x =

∫
D[ρ] Wx[ρ] Ai[ρ](X)Ai[ρ](Y )

Ai(X)= classical solution for given ρ

Wx[ρ]= gauge-invariant weight function for ρ
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Some characteristic of the source

The soft gluons (classical color fields) see the fast partons (random color
source) as an effective color charge which is:

• Static: E = q− =
q2
⊥

2q+ = 1
∆x+

The soft gluons have larger energies and shorter lifetimes

• Localized near the LC: λ− ∼ 1
p+, q+ 
 p+

For the soft gluons the fast partons appear sharply localized at the LC
within λ− ∼ 1

p+, q+ 
 p+

For the soft gluons the fast partons appear sharply localized at the LC
within a distance ∆x− ∼ 1

Λ+

• With a random density ρ(x−, x⊥) since this is the instantaneuos color
charge of the fast partons seen by the shortlived soft gluons at some
arbitrary time

This color charge acts as a source of soft gluons that can be treated in the
classical approximation
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What we are doing is a kind of Born-Oppenhaimer approximation:
1. We study the dynamics of the classical fields (Weizsacher-William field)
for a given configuration ρ of the color charges
2. We averages over all possible configurations

1. Classical solution:

F+i(x−, x⊥) = δ(x−) i
gV (x⊥)(∂iV (x⊥)†) = ∂+Ai

V †(x⊥) ≡ Pexp
{

ig
∫

dx−A+(x−, x)
}

;−∇2
⊥A+ = ρ

2. The weight function:

Wτ [ρ] is obtained by integrating out the fast partons, so it depends upon
the rapidity scale τ = ln(1/x) at which one considers the effective theory

With increasing energy (or decreasing x) new quantum modes become
relatively ”fast” and must be included in the color source seen by the
gluons. Thus, the classical description of the small-x gluons is to be seen
as an effective theory valid at a given value of x, and whose ”action” is
evoluting with x
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Non linear evolution and saturation

• When the rapidity τ is increase ny dτ (i. e., the hadron is further
accelerated) the quantum gluons with rapidity τ ′ in the interval τ < τ ′ <
τ + dτ must be incorporated in the effective theory, they become part of
the color glass

⇒ Change of the color source ρ that can be absorbed into an appropiated
”renormalization” of the weight function Wτ → Wτ+dτ

• We do that by integrating out the quantum modes in the background of
the color fields generated at the previous step of the evolution

⇒ We obtain a non-linear evolution equation for Wτ [ρ]
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THE RENORMALIZATION GROUP EQUATION

• ρ and its correlations change with increasing τ ≡ ln 1/x

∂Wτ [ρ]

∂τ
=

1

2

∫
x⊥,y⊥

δ

δρa
x

χab
xy[ρ]

δ

δρb
y

Wτ [ρ]
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χ = Σ

Jalilian-Marian, Kovner, Leonidov, Weigert, 97;

Iancu, Leonidov, McLerran, 2000

• Functional diffusion equation

• It encompasses previous evolution equations by :
Balitsky (96), Kovchegov (99), Weigert (2000)
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• χ depends upon ρ via Wilson lines:

V †(x⊥) ≡ Pexp
{

ig

∫
dx−A+(x−, x⊥)

}
; −∇2

⊥A+ = ρ

• Weak fields: high Q2 or low energy

V †(x⊥) ≈ 1 + igA+(x⊥) =⇒ BFKL equation.

• Strong fields: low Q2 or high energy

gA+ ∼ 1 =⇒ V 
 1 =⇒ Saturation

• Change of regime at Q2 ∼ Q2
s(x) ∼ x−λαs
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SOLUTIONS
Physical quantities, as the gluon density, are obtained as an average over ρ

n(x, k⊥) ≡ 1
πR2

dN
dτ d2k⊥

∝ 〈F+i(k⊥)F+i(−k⊥)〉x
• Low density: high Q2 or low energy k⊥ � Qs(x)

Weak fields: The Wilson lines can be expanded to the lowest order in A+

V †(x⊥) ≈ 1 + igA+(x⊥)

RGE reduces to BFKL equation:
n(x, k⊥) ∼ 1

k2
⊥

1
xωαs (Bremsstrahlung)

⇒ Gluon density grows both with 1/k2
⊥ and τ

• High density: low Q2 or high energy k⊥ 
 Qs(x)

Strong fields: The Wilson lines oscillate and in average V †(x⊥) ≈ 0

RGE simplifies: χ becomes independent of ρ, χ =
k2
⊥
π

n(x, k⊥) ∼ 1
αs

ln
Q2

s(x)

k2
⊥

∝ ln 1
x

⇒ SATURATION: Gluon density increases linearly with τ and logaritmically
with the energy: Unitarity is restored
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αs

kQSQCDΛ

k
1

k2

Q
S
2

αs
1 ln

1

N

Saturation with 1/k2

(Bremsstrahlung)
2~

QCDΛ QS(x QS(x k

N

)1

1x

ln

2x x1

x
x2

1

x
x2

1

<

Saturation with 1/x

)2

λ
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Geometric Scaling at HERA

(Staśto, Golec-Biernat, and Kwieciński, 2000)

• At saturation: n(x, k⊥) ∼ 1
αs

ln
Q2

s(x)

k2
⊥

• For x < 10−2 and Q2 <∼ 400GeV2, data show scaling:

σγ∗p(x, Q2) ≈ σγ∗p(R) , with R ≡ Q2

Q2
s(x)

where: Q2
s(x) = Q2

0x
−λ, Q2

0 = 1GeV2, λ � 0.3

10
-1

1

10

10 2

10 3

10
-3

10
-2

10
-1

1 10 10
2

10
3

E665

ZEUS+H1 high Q2 94-95
H1 low Q2 95
ZEUS BPC 95
ZEUS BPT 97

x<0.01

all Q2

τ

σ to
tγ*

p
[µ

b]

• This suggests : N (x, r⊥) ≈ N (
r2
⊥Q2

s(x)
)

— Natural at saturation (Q2 < Q2
s ∼ 1GeV2)

— Preserved by the BFKL evolution up to:

Q2 ≤ Q4
s

Λ2
QCD

∼ 100GeV2

Iancu, Itakura and McLerran, 2002;

Mueller and Triantafyllopoulos, 2002
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• The strings form clusters, each of them with a constant color field Ei = Qi/Si, where

Qi and Si correspond to the cluster color charge and the cluster area

• Schwinger formula for the production of q − q̄ pairs of mass mj in a uniform color field

with charge gj, per unit space-time volume:

dNq−q̄

dy
=

1

8π3

Z ∞

0

dττ

Z
d

2
xT |gjE|2

∞X
n=1

1

n2
exp

„
− πnm2

j

|gjE|

«

• The charge and the field of each cluster before the decay

Qi0 =

s
niSi

S1

Q10 , Ei0 =
Qi0

Si

=

s
niS1

Si

E10

ni= number of strings in the cluster, S1= area of each individual string, Si= total area

of the cluster, Q10 and E10= charge and field of the individual strings

• Taking into account the evolution of the field and the charge with the decay of the

cluster

Ei = Ei0

1

(1 + τ
τi0

)2
, Qi = Qi0

1

(1 + τ
τi0

)2

where τ ∼ 1/
√

Ei0

50



• We obtain

dNq−q̄

dy
∝

MX
i=1

Qi0

Z ∞

0

dxx
1

(1 + x)4

∞X
n=1

1

n2
exp

»
− πnm2

j

|gjEi0|
(1 + x)

2

–

where M is the total number of clusters
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