

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR.1751 - 57

Fifth International Conference on **PERSPECTIVES IN HADRONIC PHYSICS** Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies

22 - 26 May 2006

Hadron Physics at J-PARC

Shunzo KUMANO

High Energy Accelerator Research Organization (KEK) Institute of Particle and Nuclear Studies Theory Group 1-1-Oho, Ibaraki Tsukuba 305-0801 JAPAN

These are preliminary lecture notes, intended only for distribution to participants

Hadron Physics at J-PARC

Shunzo Kumano

High Energy Accelerator Research Organization (KEK) Graduate University for Advanced Studies (GUAS)

> shunzo.kumano@kek.jp http://research.kek.jp/people/kumanos/

Fifth International Conference on PERSPECTIVES IN HADRONIC PHYSICS: Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies

Trieste, Italy, May 26, 2006

Contents

Many topics at this workshop could be covered by J-PARC!

- (1) Introduction
- (2) Hadron Physics
 - Strangeness nuclear physics (1st experiment)
 - Exotic hadrons
 - Hadrons in nuclear medium
- Here V. V. Hard proces Nucleon spin Hard processes

(50 GeV recovery)

- (proton polarization)
- Quark-hadron matter (heavy ion)
- Summary (3)

Purposes of J-PARC hadron physics

Understanding of strongly interacting matter & Search for new state of matter

Quantum Chromodynamics (QCD)

- Asymptotic freedom, Factorization Perturbative QCD, Parton distribution functions, Nucleon spin, ...
- Color confinement Hadron spectroscopy, Quark-hadron matter
- Chiral symmetry

Hadrons in nuclear medium

Workshop on Hadron Structure at J-PARC Nov. 30 – Dec. 2, 2005, KEK, Tsukuba, Japan

Presentations are available from http://www-conf.kek.jp/J-PARC-HS05/program.html

This workshop is focused on hard processes, especially on first two days. Thank speakers for their contributions.

Note: This talk is not a summary of this workshop.

My personal impression on the J-PARC project:

Although strangeness nuclear physics (and neutrino physics) is rather well investigated as a J-PARC project, the "hadron-physics" part is not well studied, especially by using the primary beam.

We need your suggestions and contributions for the success of the project. Please visit KEK for discussions!

Strangeness Nuclear Physics

Exotic Hadrons

Hadrons in Nuclear Medium

Strangeness in hadron physics

(1) Probe of QCD dynamics

Bad point: It is difficult to describe hadrons with strangeness. Good point: Strange quark could be a good probe of QCD dynamics.

(2) New particles and nuclei

New hadronic many-body system by extending the flavor degrees of freedom.

(3) Strangeness as impurity

No Pauli blocking with u, d → could penetrate deep inside a nucleus (probe inside a nuclear medium)

New YN interactions \rightarrow **could lead to new forms of nuclei**

(possibly high-density nuclei)

Y. Akaishi, A. Dote, T. Yamazaki, Phys. Lett. B613 (2005) 140.
See also Phys. Rev. C70 (2004) 044313.

- 1s atomic state of kaonic hydrogen
- KN scattering analysis
- Assume: $\Lambda(1405) =$ bound state of KN \rightarrow Predictions of new kaonic nuclei

Recent criticisms in E. Oset and H. Toki, nucl-th/0509048: Treatment of $\Lambda(1405), \dots$

KEK-E471 experiment

T. Suzuki et al., Phys. Lett. B597 (2004) 263.

Recent progress in exotic hadrons

Meson qq **q**³ Baryon $q^2\bar{q}^2$ Tetraquark q⁴q Pentaquark **q**⁶ Dibaryon q¹⁰q e.g. Strange tribaryon Glueball gg

(Japanese ?) Exotics

- Θ⁺(1540): LEPS Pentaquark?
- S⁰(3115), S⁺(3140): KEK-PS Strange tribaryons?
- X (3872), Y(3940): Belle Tetraquark, DD molecule
- D_{sJ}(2317), D_{sJ}(2460): BaBar, CLEO, Belle Tetraquark, DK molecule

Hadron masses in nuclear medium

Origin of the nucleon mass: Why m_{quark} << m_{nucleon}? Chiral-symmetry breaking Order parameter: "quark condensate <qq>"

<qq>> depends temperature and density

<qq>> is not a direct observable, so look at nuclear-medium modification of hadron masses. Vector-meson masses vs. density

Modifications even at "normal nuclear density"

Brown-Rho, Hatsuda-Lee

18% reduction in ρ, ω masses at normal nuclear density

KEK-E325 Collaboration

 $(12 \text{ GeV}) p + A \rightarrow \rho, \omega, \phi + X (\rho, \omega, \phi \rightarrow e^+ + e^-)$

After background subtraction

T. Tabaru et al., nucl-ex/0603013

R. Muto et al., nucl-ex/0511019

M. Naruki et al., PRL 96 (2006) 092301

 $m(\rho) / m(0) = 1 - k \rho / \rho_0$

 $k = 0.092 \pm 0.002$

9% mass shifts

 \rightarrow continued at J-PARC

Hard Processes

Structure Functions

Neutrino Reactions

Flavor asymmetric antiquark distributions:
$$\overline{\mathbf{u}}/\overline{\mathbf{d}}$$

SK, Phys. Rep. 303 (1998) 183
Perturbative QCD contribution
 $q^{\pm} = q \pm \overline{q}, \quad P_{q^{\pm}} = P_{qq} \pm P_{q\overline{q}}$
 $\frac{\partial}{\partial(\ln Q^2)}q^{\pm}(x,Q^2) = \frac{\alpha_s}{2\pi}\int_x^1 \frac{dy}{y}P_{q^{\pm}}\left(\frac{x}{y}\right)q^{\pm}(y,Q^2) \quad (+ \text{ gluon term}) \quad \overline{q} = (q^+ - q^-)/2$
 \downarrow
 $\frac{\partial}{\partial(\ln Q^2)}[\overline{u}(x,Q^2) - \overline{d}(x,Q^2)] = \frac{\alpha_s}{2\pi}\int_x^1 \frac{dy}{y}\left[P_{qq}\left(\frac{x}{y}\right)\{\overline{u}(y,Q^2) - \overline{d}(y,Q^2)\} + P_{qq}\left(\frac{x}{y}\right)\{u(y,Q^2) - d(y,Q^2)\}\right]$
Therefore, $(\overline{u} - \overline{d})_{pQCD} = 0$ in LO
 $\neq 0$ in NLO
 $(\overline{u} - \overline{d})_{pQCD} \ll (\overline{u} - \overline{d})_{nonperturbative}$
Of course, it depends on the initial scale for the evolution.

 $\overline{u}/\overline{d}$ could be an appropriate quantity for testing nonperturbative aspects.

Flavor asymmetric antiquark distributions: $\overline{u} / \overline{d}$

Sawada@J-PARC-HS05

J-PARC proposal, J. Chiba et al. (2006)

http://www.acuonline.edu/academics /cas/physics/research/e906.html

This project is suitable for probing "peripheral structure" of the nucleon.

Nuclear corrections on parton distribution functions

Elastic Scattering: $A+B \rightarrow C+D$ at large p_T

Brodsky@J-PARC-HS05

Transition from hadron degrees of freedom to quark-gluon d.o.f.

Constituent counting rule

$$\frac{d\sigma}{dt}(AB \to CD) \sim s^{2-n} f(\theta_{c.m.})$$

 $n = n_A + n_B + n_C + c_D$ (total number of interacting elementary particles)

J-PARC:
$$p + p \rightarrow p + p$$

PRL 91 (2003) 022003

Generalized Parton Distributions (GPDs)

GPDs are defined by off-forward matrix element

 $\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p' \left| \bar{q}(-z/2)\gamma^{+}q(z/2) \right| p \right\rangle_{z^{+}=0,\bar{z}_{\perp}=0} = \frac{1}{2p^{+}} \left[H(x,\xi,\Delta^{2})\bar{u}(p')\gamma^{+}u(p) + E(x,\xi,\Delta^{2})\bar{u}(p')\frac{i\sigma^{+\mu}\Delta_{\mu}}{2M}u(p) \right]$

$$\xi^{+} = xp^{+}, P = \frac{1}{2}(p+p'), \xi = -\frac{\Delta^{+}}{2P^{+}}$$

k

Strikman@J-PARC-HS05

L. L. Frankfurt et al., PRL 84 (2000) 2589 Forward limit:PDFsFirst moments:Form factorsSecond moments:Angular momentum

Color Transparency

"Probe of dynamics of elementary reactions"

At large momentum transfer, a small-size component of the hadron wave function should dominate. This small-size hadron could freely pass through nuclear medium. (Transparent)

Tensor Structure in Proton-Deuteron Drell-Yan (Note: No polarized proton beam is needed!) SK@J-PARC-HS05 **b**₁ for spin-1 particles 0, only in S-wave $b_1 = 0$ 1st measurement of b₁: **Spin asymmetries** (HERMES) A. Airapetian et al., PRL 95 (2005) 242001. $A_{LL} = \frac{\sum_{a} e_{a}^{2} \left[\Delta q_{a}(x_{A}) \Delta \overline{q}_{a}(x_{B}) + \Delta \overline{q}_{a}(x_{A}) \Delta q_{a}(x_{B}) \right]}{\sum_{a} e^{2} \left[q_{a}(x_{A}) \overline{q}_{a}(x_{B}) + \overline{q}_{a}(x_{A}) q_{a}(x_{B}) \right]}$ M. Hino and SK, PR D59 (1999) 094026; D60 (1999) 054018. $A_{TT} = \frac{\sin^2 \theta \cos(2\phi)}{1 + \cos^2 \theta} \frac{\sum_a e_a^2 \left[\Delta_T q_a(x_A) \Delta_T \overline{q}_a(x_B) + \Delta_T \overline{q}_a(x_A) \Delta_T q_a(x_B) \right]}{\sum_a e_a^2 \left[q_a(x_A) \overline{q}_a(x_B) + \overline{q}_a(x_A) q_a(x_B) \right]}$ $A_{UQ_0} = \frac{\sum_a e_a^2 \left[q_a(x_A) \delta \overline{q}_a(x_B) + \overline{q}_a(x_A) \delta q_a(x_B) \right]}{\sum_a e_a^2 \left[q_a(x_A) \overline{q}_a(x_B) + \overline{q}_a(x_A) q_a(x_B) \right]}$ $\delta q_i = q_i^{0} - \frac{q_i^{+1} + q_i^{-1}}{2}$ Note: $\delta \neq$ transversity in my notation Advantage of the hadron reaction ($\delta \overline{q}$ measurement)

$$A_{UQ_0} (\text{large } x_F) \approx \frac{\sum_a e_a^2 q_a(x_A) \delta \overline{q}_a(x_B)}{\sum_a e_a^2 q_a(x_A) \overline{q}_a(x_B)}$$

 $\delta \overline{q} \leftrightarrow \int dx \ b_1$ F. E. Close and SK, PRD42, 2377 (1990).

Neutrino beam: Elastic vN scattering and Δs

Axial part of weak neutral current

 $= -\left(\frac{1}{\sqrt{2}}\right)$ $= -\left(\frac{1}{\sqrt{2}}\right)$ $= -\left(\frac{1}{\sqrt{2}}\right)$ $= \frac{d\sigma}{dQ^{2}} = \frac{G_{F}^{2}}{2\pi} \frac{Q^{2}}{E_{v}^{2}} \left(A \pm BW + CW^{2}\right) + f dv = 0$ $= A = \frac{1}{4} \left[G_{1}^{2}(1+\tau) - \left(F_{1}^{2} - \tau F_{2}^{2}\right)(1-\tau) + 4\tau F_{1}F_{2}\right]$ $= -\frac{1}{4} \left[G_{1}\left(F_{1} + \tau F_{2}\right)\right] \quad C = \frac{1}{16} \frac{M_{p}^{2}}{Q^{2}} \left[G_{1}^{2} + F_{1}^{2} + \tau F_{2}^{2}\right]$

Axial vector form factor

 $G_{1}(Q^{2}) = \frac{1}{2} \left[-G_{A}(Q^{2})\tau_{z} + G_{A}^{s}(Q^{2}) \right]$

Nonstrange part: $G_A(Q^2 = 0) = 1.2673 \pm 0.0035$ from neutron β decay

$$G_1^s(Q^2=0)=\Delta s$$

 $\langle N | A_{\mu}^{Z} | N \rangle = -\left(\frac{G_{F}}{\sqrt{2}}\right)^{1/2} \frac{1}{2} \langle N | \overline{u} \gamma_{\mu} \gamma_{5} u - \overline{d} \gamma_{\mu} \gamma_{5} d - \overline{s} \gamma_{\mu} \gamma_{5} u | N \rangle$ = $-\left(\frac{G_{F}}{\sqrt{2}}\right)^{1/2} \frac{1}{2} \langle N | -G_{A}(Q^{2}) \gamma_{\mu} \gamma_{5} \tau_{z} + G_{A}^{S}(Q^{2}) \gamma_{\mu} \gamma_{5} | N \rangle$ + for V, - for \overline{V}

$$V = 4(E_v / M_p - \tau), \quad \tau = Q^2 / 4M_p^2$$

J-PARC Miyachi@J-PARC-HS05

Liquid scintillators with different mixtures of hydrogen / carbon \rightarrow Remove nuclear effects $Q^2 \approx 0.15 - 0.75 \text{ GeV}^2$ $\Delta s = ? \pm 0.03$ [E734: $\delta(\Delta s)=0.08$] Neutrino-Nucleus Interactions in the Few-GeV Region (T2K) Sakuda@J-PARC-HS05

v-nucleus cross sections are not well known at $E_v=0.5-20$ GeV. (20% accuracy) For accurate oscillation measurements, a few % accuracy is needed.

→ Nuclear corrections in ¹⁶O are important!

Binding, Fermi motion, Pauli exclusion, NN correlation, PDF modification, ...

Attempt to describe DIS & resonance region

Empirical formula

0.4

0.3

0.4

0.5

C resonance f Kappel+Stuart

2(LO+HT:GEV94

F2(LO.GR704)

0.8

O A

1.0

1.00

0.85

Quark-Hadron Duality: The details are explained in W. Melnitchouk, R. Ent, C. Keppel, Phys. Rept. 406 (2005) 127.

Current status on nucleon spin $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta g + L_q + L_g$ Orbital angular momenta Gluon spin Quark and antiquark spin

Global analysis of DIS and RHIC data (AAC, hep-ph/0603213)

 $\Delta \Sigma = 0.27 \pm 0.07$

 $\Delta g = 0.31 \pm 0.32$

Gluon polarization is not determined.

Orbital angular momenta could be important.

• Higher-twist Qiu, Sterman; Koike@J-PARC-HS05

Single spin asymmetry D-meson production No single spin transfer: $gg \rightarrow c\overline{c}$, $q\overline{q} \rightarrow c\overline{c}$ $\rightarrow c \& \overline{c}$ are not polarized (no Collins mechanism)

In the region $x_F < 0$ J-PARC:sensitive to quark Sivers effectRHIC:sensitive to gluon Sivers effect

J-PARC Hadron Physics "after major upgrades" • Spin Physics Heavy-Ion Physics • Neutrino Factory (~30 GeV)

I explain just a few examples.

Polarized Drell-Yan $\Delta \overline{u} / \Delta \overline{d}$ asymmetry

J-PARC proposal, J. Chiba et al. (2006)

$$\vec{p} + \vec{p} \rightarrow \mu^+ \mu^- + X$$

 $\vec{p} + \vec{d} \rightarrow \mu^+ \mu^- + X$

The small-x part of the $\overline{u} / \overline{d}$ asymmetry has been established.

 → No information for polarized asymmetry for the light antiquark distributions
 (Model predictions are very different.)

> J-PARC could contribute in the medium-x region.

Quark-hadron matter

itucicus

Low-temperature & high-density region: J-PARC could investigate a different region of the phase diagram from the ones for RHIC and LHC. **Neutrino factory ~ 30 GeV (~15 years later?) Polarized neutrino-proton scattering (CC)** $W_{\mu\nu} = \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{a^2}\right)F_1 + \frac{\hat{p}_{\mu}\hat{p}_{\nu}}{p \cdot q}F_2 - i\varepsilon_{\mu\nu\lambda\sigma}\frac{q^{\lambda}p^{\sigma}}{2p \cdot q}F_3 \qquad \text{where } \hat{p}_{\mu} = p_{\mu} - \frac{p \cdot q}{a^2}q_{\mu}$ $+i\varepsilon_{\mu\nu\lambda\sigma}\frac{q^{\lambda}s^{\sigma}}{p\cdot q}g_{1}+i\varepsilon_{\mu\nu\lambda\sigma}\frac{q^{\lambda}(p\cdot q\,s^{\sigma}-s\cdot q\,p^{\sigma})}{(p\cdot q)^{2}}g_{2}$ $+ \left| \frac{\hat{p}_{\mu} \hat{s}_{\nu} + \hat{s}_{\mu} \hat{p}_{\nu}}{2p \cdot q} - \frac{s \cdot q \hat{p}_{\mu} \hat{p}_{\nu}}{(p \cdot q)^{2}} \right| g_{3} + \frac{s \cdot q \hat{p}_{\mu} \hat{p}_{\nu}}{(p \cdot q)^{2}} g_{4} + (-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^{2}}) \frac{s \cdot q}{p \cdot q} g_{5}$ $g_5^{\nu p} + g_5^{\overline{\nu}p} \simeq -(\Delta u_{\nu} + \Delta d_{\nu})$ new structure functions g₃, g₄, g₅ be careful about "various" definitions of g₃, g₄, g₅ ! $\frac{d(\sigma_{\lambda_{p}=-1}^{CC}-\sigma_{\lambda_{p}=+1}^{CC})}{dx\,dy} = \frac{G_F^2 Q^2}{\pi (1+Q^2/M_W^2)^2 xy} \left\{ \left[-\lambda_\ell y(2-y) x g_1^{CC} - (1-y) g_4^{CC} - y^2 x g_5^{CC} \right] \right\}$ $+2xy\frac{M^{2}}{Q^{2}}\left[\lambda_{\ell}x^{2}y^{2}g_{1}^{CC}+\lambda_{\ell}2x^{2}yg_{2}^{CC}+\left(1-y-x^{2}y^{2}\frac{M^{2}}{Q^{2}}\right)xg_{3}^{CC}-x\left(1-\frac{3}{2}y-x^{2}y^{2}\frac{M^{2}}{Q^{2}}\right)g_{4}^{CC}-x^{2}y^{2}g_{5}^{CC}\right]\right\}$ $0 \text{ at } Q^2 >> M^2$

Summary

J-PARC will be a flagship facility in (Japanese) hadron and nuclear physics communities.

- Hypernuclear physics
- Hadron spectroscopy
- Hadrons in nuclear medium
- Structure functions
- Nucleon spin
- Heavy-ion physics

Your support is important for success of the hadron project at J-PARC!