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The BBG expansion

(b)

Two and three hole-line diagrams 1n terms
of the Brueckner G-matrixs







Graphical representation of the Brueckner
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The ladder series for the three-particle
scattering matrix




Three hole-line contribution
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Evidence of convergence
. The final EOS 1s independent on the choice

of the single particle potential
. The three hole-line contribution 1s small

1n the continuous choice




Alternative methods

The Coupled Cluster Method

Ansatz on the the exact ground state W in terms of the unperturbed one ®

T) = °|®)

) 1
/ / /
§ - 3 m(kl,kz...kn|Sn|k1,k2...kn)akrjakrj...akfakn...akzakl
kl,kz...kn,k’l,k’z...k{[1 )

k7 s are hole momenta and all the k'’ s are particle momenta.
(®|T) = 1.

The functions S, are expected to describe the n-body correlations in the ground state.




»Structure of the wave function

Let us consider only Sy for simplicity and let us assume that it can be considered local in
coordinate space,

S (ri — rj) = Xij-

Then the correlated ground state can be written

where the product runs over all possible distinct pairs of particles and

fiy = exp(2xy).

In general, however, the functions S, are highly non-local in coordinate space and the ex-
pression for the ground state wave function cannot be written in such a simple form. The
eigenvalue equation for the exact ground state ¥ can be re-written as a (non-hermitean)
eigenvalue equation for the unperturbed ground state ¢ with a modified hamiltonian, trans-
formed according to a similarity transformation generated by S

e SHe® |®) = E|®)




The energy in the CCM scheme

The equations for the total energy F and for the S, can be obtained by multiplying systematically
by n particle-n hole states. The multiplication by (®| gives a simple expression for the total energy.
If only two-body interaction is present, one gets

E = (®leSHe® |®) = Eq + (®|{V +][V,S;] }|®)

all the other terms in the expansion vanish. Therefore, in principle the exact total energy can be
obtained from the knowledge only of the exact two particle - two hole amplitude 5.

1
E=Eoty Y (kuke[Walkike)

ki,ko<kp
(k1ko|Walkiks) = (kika|{V + VSa}|kika) = (kika|V|kika) + Z (kika|V|k k5) (k' kb|Sa |k ko)

K, K, >kp

Of course, the amplitude S, is connected with the higher order amplitudes Ss....5,..... These
equations are the constitutive ”Coupled Cluster” equations, which are equivalent to the eigenvalue
equation for the ground state. Approximations can be obtained by truncating these chain of equa-
tions to a certain order m, i.e. neglecting S, for n > m. The meaning of the truncation can be
read from the ansatz for ¥, it amounts to consider correlated n particle n hole components in the
ground state up to n = m, while higher order components with n > m are just antisymmetrized
products of the lower ones ( note the exponential forms, which produces components of arbitrary

higher orders ).



The CCM scheme from the variational principle

This form of the CCM equations can be also obtained trom the variational principle, i.e. by
demanding that the mean value of the hamiltonian in the ground state W is stationary under an
arbitrary variation of the state vector orthogonal to V.

5|0 = e 5'5Se 5| W)

where 05 corresponds to an arbitrary variation of the function S,,. Such a variation is orthogonal
to U,

However, the CCM equations, as they stand, cannot be applied to calculations in nuclear matter.
The main correlations in nuclear systems come from the strong short range repulsive core, and this
part of the NN interaction requires special treatment. This must be incorporated systematically in
the correlation functions \5,,. otherwise no truncation of the expansion would be feasible.

Problem of the hard core

The simplest way to proceed is to renormalize the original NN interaction and introduce an
effective interaction which takes into account the two-body short range correlations from the start.
In the BBG expansion this is done by introducing the G-matrix, and a similar procedure can be
followed within the CCM scheme. In the modified CCM equations, one introduces the effective
interaction

.1 S S
W — 5 Y " (kika|v|kska)ay, a, (e_sak4akses)c
{ki}

The subscript ¢ indicates ordered product, i.e. no af with k < kp or a; with k& > kp are retained.



Incorporating the “"G-matrix” in the CCM scheme

The operator W can be also expanded in n particle - n hole operators

. 1
W =3 > m(k'l,k’2...k’n|Wn|k1,k2...kn)a(k’l)Ta(kz)T....a(k’n)Ta(kn)...a(kz)a(kl)
n kg ko..knkj k.. ki,

vskip 0.3 cm The functions W,, are related with the functions S,,. Schematically this relation can
be written

W, = vin2 +VSn_1 +VSy + Z VS . e

k<n-—2

Together with the previous relationship, a closed set of equations is then obtained, which is again
equivalent to the original eigenvalue problem for the ground state. The ground state energy is still
given by the same equation since the relation between W5 and 53 still holds. The truncation at
order m corresponds now to neglecting the functions W,, and \S,, for n > m. If one truncates the
expansion at m = 2, only W5 and S5 are retained, the quantity W5 can be readily identified with
the on-shell G-matrix of the BBG expansion and the function S, with the corresponding defect
function. If the self-consistent single particle potential is introduced, one then gets at this level
exactly the Brueckner approximation.

As in thed BBG expansion, the G-matrix can be introduced in all the terms of the Coupled-
Cluster expansion. In this case each term of the expansion coincides with one diagram in the BBG
method.

Since the CCM is based on the ansatz for the ground state wave function, it is likely that the
same structure of the ground state is underlying the BBG expansion. At Brueckner level the ground
state is then given by

Wpr) = €2|®)

with S the Brueckner defect function.



The variational method in its practical form

The variational method

The variational acquires a particular form in nuclear physics because of the peculiarities of the
NN interaction. The strong repulsion at short distance has been treated by introducing a Jastrow-
like trial wave function. In the simple case of a central interaction the trial ground state wave
function is written as

where ¢ is the unperturbed ground state wave function, properly antisymmetrized, and the product
runs over all possible distinct pairs of particles. The similarity with the wave function of the CCM
method is apparent and indicates a definite link with BBG and CCM methods. The correlation
function f(rj;) is here determined by the variational principle, i.e. by imposing that the mean value
of the hamiltonian gets a minimum ( or in general stationary )

o WH)
5 (|

The problem of non-central correlations




Channel dependent correlation factors

In principle this is a functional equation for the correlation function f, which however can be
written explicitly in a closed form only if additional suitable approximations are introduced. A
practical and much used method is to assume a parametrized form for f and to minimize the energy
with respect to the set of parameters which constrain its form. The function f(r;;) is assumed to
converge to 1 at large distance and to go rapidly to zero as rij; — 0, with a shape similar to the
the defect function. For nuclear matter it is necessary to introduce a channel dependent correlation
factor, which is equivalent to assume that f is actually a two-body operator ﬁ‘ij. In principle, the
condition of energy minimum (or extremal) should produce a set of Euler-Lagrange equations
which determine the correlation factors. In practice, a viable explicit form can be used only for
the two-body cluster terms. If the two-body NN interaction is local and central, its mean value is
directly related to the pair distribution function g(r)

<V >= %p/d?’r v(r) g(r)

where

g(r rg) = J M2 d®r; W (ry, ra...)|?
1 —1I2) —
SIL;d3r; | W (ry, ra....)|?
The main job in the variational method is to relate the pair distribution function to the correlation

factors F. In general this cannot be done exactly, and one has to rely on some suitable expansion.
The expansion is in the quantity

h(r) =1 —F(r)”
which is directly related to the defect function.

The pair distribution function



Summary of the formal comparison

1. The CCM and BBG are essentially equivalent, which indicates that
the

w.f. 1S ot;,the type o
P=¢"@ ", if §=§, one gets the Brueckner approximation

Once the single particle potential 1s introduced, the methods
are not variational at a given truncation.

2. The main differences in the variational method

a) The correlation factors are local and momentum independent
(eventually gradient terms).

b) No single particle mean field is introduced, so that the meaning
of “clusters” is quite different

¢) Chain summations include long range correlations
Short range 3-body cluster calculated in PRC 66 (2002) 0543308



Pure neutron matter
Two-body forces only.
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HHJ : Astrophys. J. 525, L45
(1999
BBG : PRC 69, 018801 (2004)
AP : PRC 58, 1804 (1998)




' -_’-.vaf and BBG up to 0.6 fm-3 (symmetric and neutron
~ _matter).

4. The many-body treatment of nuclear matter EOS can be
considered well understood. Main uncertainity is TBF at high
density (above 0.6 fm-3).
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Hyperon influence on hadronic EOS
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CAVEAT

This picture 1s too simplified .

It neglects the 1sotopic effect. Nuclear matter
inside neutron stars 1s highly asymmetric and the
possible transition to quark matter 1s located at
quite different densities than in symmetric matter.
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Including Quark matter S —

—

Since we have no theory which describes both confined and
deconfined phases, we uses two separate EOS for baryon
and quark matter and assumes a first order phase transition.

a) Baryon EOS. BBG
AP
— HHIJ
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b) Quark matter EOS. MIT bag model
Nambu-Jona Lasinio

Coloror dielectric model
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The three baryon EQOS for beta-stable neutron star matter
in the pressure-chemical potential plane.




MIT bag model. “Naive version”

Q= —

T
M [ 1473 242 — 3) + In(z, + n,)]

3m e {2 [ﬂqa’q In(z, + ﬂq)] - _3’ + 2In(n,)

+ 4 ln( )[nqzq 111(%""74)]}

Mg

my , ftg : q quark mass and chemical potential.
Tg = \/#3 —mZ/m,
Ny = \/1 + 27 = pg/my

s : QCD fine structure constant

Z(Qq . 3 I‘qPq) + B
q

50 B
q
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Density dependent bag “constant”




Density profiles of different
phases
MIT bag model




Evidence for “large” mass ?

Nice et al. ApJ 634, 1242 (2005)
PSR J0751+1807 M=21+/-0.2

Ozel, astro-ph /0605106
EXO 0748 — 676 M > 1.8

Quaintrell et al. A&A 401, 313 (2003)
NS in VelaX-1 1.8<M<?2
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3 2 out s 3
Agr° + Agr°

a4, = Non-perturbative corrections ;
a, =p- Strange quark mass

2
£2QM= - a2tu +Beﬁ

a, = 1 corresponds to the usual MIT bag model



APR + Phenomenological QM EoS

APR only
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300 —p——— . . .
hadronic

Energy per Baryon (MeV)

In any case one needs an additional repulsion in
Quark matter at high density




NJL Model

Leptonic contribution from electrons and muons and a quark contribution.

‘Ceff = ﬁ(w”—ﬁ%)%b I ‘thi + cqq’

L:qq = H Z Z (@Z i")’sTA)\AI C'QBT)(IPTC i’ysTA/\Al ’l,b) s

A=2,57 A'=25,7

Lo = G b + Givr)]

a=0

K [detf(zZ(l +75)¢) + det; (&(1 —75)¢)] .

Parameter adjusted to reproduce masses and decay constants
of the pseudoscalar meson nonet.

H=d

The model 1s questionable at high density where the cutoff
can be comparable with the Fermi1 momentum
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Including Color Superconductivity in NJL
Steiner,Reddy and Prakash 2002
Buballa & Oertel 2002

Application to NS
CT + GSI, PLB 562,,153 (2003)
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NJL, the quark current masses as a function of density




Materia neutronica (n =n/2)
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Equivalence between NJL and MIT bag model above chiral
transition (two flavours). For NJL B = 170 MeV

The pressure is zero at zero density ! (no confinement)
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. CDM ———
MIT. B(p)

The CDM model : the equation of state for symmetric matter
C. Maieron et al., PRD 70, 043010 (2004)

The model is confining
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The CDM model : maximum mass of neutron star
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The effective Bag constsnt in the CDM model




Some (tentative) conclusions

1. The transition to quark matter in NS looks likely,
but the amount of quark matter depends on the quak

matter model.

2. If the “"observed” high NS masses (about 2 solar mass)
have to be reproduced, additional repulsion is needed

with respect to “naive” quark models.
The situation resembles the one at the beginning of NS
physics with the TOV solution for the free neutron gas
The confirmation of a mass definitely larger than 2
would be a major breakthrough

3. Further constraints can come from other observational
data (cooling, glitches ....... )
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The Equation of State including the mixed phase

(Glendenning construction)
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APR + bag model QM EoS

APR only
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Transition to quark matter 1n neutron stars
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