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Algebraic Morse theory and the weak factorization theorem

Jarosław Włodarczyk∗

Abstract. We develop a Morse-like theory for complex algebraic varieties. In this theory a
Morse function is replaced by a C∗-action. The critical points of the Morse function correspond
to connected fixed point components. “Passing through the fixed points” induces some sim-
ple birational transformations called blow-ups, blow-downs and flips which are analogous to
spherical modifications.

In classical Morse theory by means of a Morse function we can decompose the manifold
into elementary pieces – “handles”. In algebraic Morse theory we decompose a birational map
between two smooth complex algebraic varieties into a sequence of blow-ups and blow-downs
with smooth centers.

Mathematics Subject Classification (2000). Primary 14E05.

Keywords. Birational maps, blow-ups, C∗-actions, toric varieties.

1. Introduction

We shall work over an algebraically closed field K of characteristic zero. We denote
by K∗ the multiplicative group of K .

In this paper we outline our proof of the following theorem:

Theorem 1.1 (The Weak Factorization Theorem). 1. Let f : X ��� Y be a birational
map of smooth complete varieties over a field of characteristic zero, which is an
isomorphism over an open set U . Then f can be factored as

X = X0
f0��� X1

f1��� · · · fn−1��� Xn = Y,

where each Xi is a smooth complete variety and fi is a blow-up or blow-down at a
smooth center which is an isomorphism over U .

2. Moreover, if X \ U and Y \ U are divisors with simple normal crossings, then
each Di := Xi \ U is a divisor with simple normal crossings and fi is a blow-up or
blow-down at a smooth center which has normal crossings with components of Di .

3. There is an index 1 ≤ r ≤ n such that for all i ≤ r the induced birational

map Xi
f0��� X is a projective morphism and for all r ≤ i ≤ n the map Xi

f0��� Y is
projective morphism.
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4. The above factorization commutes with any automorphisms φX of X, and φY
of Y such that f � φX = φY � f .

The theorem was proven in [38] and in [3] in a more general version. The above
formulation essentially reflects the statement of the theorem in [3].

The weak factorization theorem extends a theorem of Zariski, which states that
any birational map between two smooth complete surfaces can be factored into a
succession of blow-ups at points followed by a succession of blow-downs at points.
A stronger version of the above theorem, called the strong factorization conjecture,
remains open.

Conjecture 1.2 (Strong Factorization Conjecture). Any birational map f : X ��� Y
of smooth complete varieties can be factored into a succession of blow-ups at smooth
centers followed by a succession of blow-downs at smooth centers.

Note that both statements are equivalent in dimension 2. One can find the formu-
lation of the relevant conjectures in many papers. Hironaka [17] formulated the strong
factorization conjecture. The weak factorization problem was stated by Miyake and
Oda [30]. The toric versions of the strong and weak factorizations were also conjec-
tured by Miyake and Oda [30] and are called the strong and weak Oda conjectures.
The 3-dimensional toric version of the weak form was established by Danilov [12]
(see also Ewald [14]). The weak toric conjecture in arbitrary dimensions was proved
in [36] and later independently by Morelli [27], who also claimed to have a proof
of the strong factorization conjecture (see also Morelli [28]). Morelli’s proof of the
weak Oda conjecture was completed, revised and generalized to the toroidal case by
Abramovich, Matsuki and Rashid in [4]. A gap in Morelli’s proof of the strong Oda
conjecture, which went unnoticed in [4], was later found by K. Karu.

The local version of the strong factorization problem was posed by Abhyankar in
dimension 2 and by Christensen in general; Christensen has solved it for 3-dimensional
toric varieties [8]. The local version of the weak factorization problem (in character-
istic 0) was solved by Cutkosky [9], who also showed that Oda’s strong conjecture
implies the local version of the strong conjecture for proper birational morphisms [10]
and proved the local strong factorization conjecture in dimension 3 ([10]) via Chris-
tensen’s theorem. Finally Karu generalized Christensen’s result to any dimension and
completed the argument for the local strong factorization ([22]).

The proofs in [38] and [3] are both build upon the idea of cobordism which was
developed in [37] and was inspired by Morelli’s theory of polyhedral cobordisms [27].
The main idea of [37] is to construct a space with a K∗-action for a given birational
map. The space called a birational cobordism resembles the idea of Morse cobordism
and determines a decomposition of the birational map into elementary transformations
(see Remark 2.6). This gives a factorization into a sequence of weighted blow-
ups and blow-downs. One can view the birational maps determined by cobordisms
also in terms of VGIT developed in papers of Thaddeus ([34]) and Dolgachev–Hu
([13]). As shown in [37] the weighted blow-ups which occur in the factorization have
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locally a natural toric and combinatorial description which is crucial for their further
regularization.

The two existing methods of regularizing centers of this factorization are π -
desingularization of cobordisms as in [38] and local torification of the action as in [3].

The present proof is essentially the same as in [38]. Instead of working in full
generality and developing the suitable language for toroidal varieties we focus on
applying the general ideas to a particular construction of a smooth cobordism. The
reader can find also a more general and extended version of this proof in [39]. The
π -desingularization is a desingularization of geometric quotients of aK∗-action. This
can be done locally and the procedure can be globalized in the functorial and even
canonical way. The π -desingularization makes all the intermediate varieties (which
are geometric quotients) smooth, and also the connecting blow-ups have smooth
centers.

The proof of Abramovich, Karu, Matsuki and the author [3] relies on a subtle
analysis of differences between locally toric and toroidal structures defined by the
action of K∗. The Abramovich–de Jong idea of torification is roughly speaking to
construct the ideal sheaves whose blow-ups (or principalizations) introduce the struc-
ture of toroidal varieties in neighborhoods of fixed points of the action. This allows
one to pass from birational maps between intermediate varieties in the neighborhood
of fixed points to birational toroidal maps. The latter can be factored into a sequence
of smooth blow-ups by using the same combinatorial methods as for toric varieties.
Combining all the local factorizations together we get a global factorization.

For simplicity we restrict our considerations to projective varieties. We will not
discuss here compatibility with divisors and functorial properties.

2. Birational cobordisms

2.1. Definition of a birational cobordism. Recall some basic definitions from
Mumford’s GIT theory.

Definition 2.1. LetK∗ act on X. By a good quotient we mean a variety Y = X//K∗
together with a morphism π : X→ Y which is constant onG-orbits such that for any
affine open subset U ⊂ Y the inverse image π−1(U) is affine and π∗ : OY (U) →
OX(π

−1(U))K
∗

is an isomorphism. If additionally for any closed point y ∈ Y its
inverse limit π−1(x) is a single orbit we call Y := X/K∗ together with π : X→ Y a
geometric quotient.

Remark 2.2. A geometric quotient is a space of orbits while a good quotient is a
space of equivalence classes of orbits generated by the relation that two orbits are
equivalent if their closures intersect.

Definition 2.3. Let K∗ act on X. We say that limt→0 tx exists (respectively
limt→∞ tx exists) if the morphism Spec(K) → X given by t 	→ tx extends to
Spec(K∗) ⊂ A1 → X (or respectively Spec(K∗) ⊂ P1 \ {0} → X).
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Definition 2.4 ([37]). LetX1 andX2 be two birationally equivalent normal varieties.
A birational cobordism or simply a cobordism B := B(X1, X2) between them is a
normal variety B with an algebraic action of K∗ such that the sets

B− := {x ∈ B | lim
t→0

tx does not exist

and

B+ := {x ∈ B | lim
t→∞ tx does not exist}

are nonempty and open and there exist geometric quotients B−/K∗ and B+/K∗ such
that B+/K∗ 
 X1 and B−/K∗ 
 X2 and the birational map X1 ��� X2 is given by
the above isomorphisms and the open embeddings of B+ ∩B−/K∗ into B+/K∗ and
B−/K∗ respectively.

Remark 2.5. An analogous notion of cobordism of fans of toric varieties was intro-
duced by Morelli in [27].

Remark 2.6. The above definition can also be considered as an analog of the no-
tion of cobordism in Morse theory. Let W be a cobordism in Morse theory of two
differentiable manifolds X and X′ and f : W → [a, b] ⊂ R be a Morse func-
tion such that f−1(a) = X and f−1(b) = X′. Then X and X′ have open neigh-
borhoods X ⊆ V ⊆ W and X′ ⊆ V ′ ⊆ W ′ such that V 
 X × [a, a + ε)

and V ′ 
 X′ × (b − ε, b] for which f|V : V 
 X × [a, a + ε) → [a, b] and
f|V ′ : V ′ 
 X′ × (b − ε, b] → [a, b] are the natural projections on the second co-
ordinate. Let W ′ := W ∪V X × (−∞, a + ε) ∪V ′ X′ × (b − ε,+∞). One can
easily see that W ′ is isomorphic to W \ X \ X′ = {x ∈ W | a < f (x) < b}. Let
f ′ : W ′ → R be the map defined by glueing the function f and the natural projection
on the second coordinate. Then grad(f ′) defines an action on W ′ of a 1-parameter
group T 
 R 
 R∗

>0 of diffeomorphisms. The last group isomorphism is given by
the exponential.

 

W+

W−

Figure 1. Cobordism in Morse theory.

Then one can see that W ′− := {x ∈ W ′ | limt→0 tx does not exist} and W ′+ :=
{x ∈ W ′ | limt→∞ tx does not exist} are open and X and X′ can be considered as
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quotients of these sets by T . The critical points of the Morse function are T -fixed
points. “Passing through the fixed points” of the action induces a simple birational
transformation similar to spherical modification in Morse theory (see Example 2.7).

Example 2.7. Let K∗ act on B := Al+m+rK by

t (x1, . . . , xl, y1, . . . , ym, z1, . . . , zr )

= (ta1 · x1, . . . , t
al · xl, t−b1 · y1, . . . , t

−bm · ym, z1, . . . , zr ),

where a1, . . . , al, b1, . . . , bm > 0. Set x = (x1, . . . , xl), y = (y1, . . . , ym), z =
(z1, . . . , zr ). Then

B− = {p = (x, y, z) ∈ Al+m+rK | y �= 0},
B+ = {p = (x, y, z) ∈ Al+m+rK | x �= 0}.

Case 1. ai = bi = 1, r = 0 (Atiyah, Reid). One can easily see that B//K∗ is
the affine cone over the Segre embedding Pl−1 × Pm−1 → Pl·m−1, and B+/K∗ and
B−/K∗ are smooth.

The relevant birational mapφ : B−/K∗ ��� B+/K∗ is a flip for l, m ≥ 2 replacing
Pl−1 ⊂ B−/K∗ with Pm−1 ⊂ B+/K∗. For l = 1, m ≥ 2, φ is a blow-down, and for
l ≥ 2, m = 1 it is a blow-up. If l = m = 1 then φ is the identity. One can show that
φ : B−/K∗ ��� B+/K∗ factors into the blow-up of Pl−1 ⊂ B−/K∗ followed by the
blow-down of Pm−1 ⊂ B+/K∗.

Case 2. General case. For l = 1, m ≥ 2, φ is a toric blow-up whose exceptional
fibers are weighted projective spaces. For l ≥ 2, m = 1, φ is a toric blow-down. If
l = m = 1 then φ is the identity. The birational map φ : B−/K∗ ��� B+/K∗ factors
into a weighted blow-up and a weighted blow-down.

 

B+

B−

Figure 2. Affine Cobordism.

Remark 2.8. In Morse theory we have an analogous situation. In cobordisms with
one critical point we replace Sl−1 by Sm−1.

2.2. Fixed points of the action. Let X be a variety with an action of K∗. Denote
by XK

∗
the set of fixed points of the action and by C(XK

∗
) the set of its irreducible

fixed components. For any F ∈ C(XK
∗
) set

F+(X) = F+ = {x ∈ X | lim
t→0

tx ∈ F }, F−(X) = F− = {x ∈ X | lim
t→∞ tx ∈ F }.
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Example 2.9. In Example 2.7,

F = {p ∈ B | x = y = 0}, F− = {p ∈ B | x = 0}, F+ = {p ∈ B | y = 0}.
Lemma 2.10. If F is the fixed point set of an affine variety U then F , F+ and
F− are closed in U . Moreover the ideals IF+, IF− ⊂ K[V ] are generated by all
semiinvariant functions with positive (respectively negative) weights.

Proof. Embed U equivariantly into affine space An with linear action and use the
example above. �

2.3. Existence of a smooth birational cobordism

Proposition 2.11. Let φ : X ��� Y be a birational map between smooth projective
varieties. Then φ factors asX← Z→ Y , where Z→ X and Z→ Y are birational
morphisms from a smooth projective variety Z.

Proof. Let �(X, Y ) ⊂ X × Y be the graph of φ and Z be its canonical resolution of
singularities [17]. �

It suffices to construct the cobordism and factorization for the projective morphism
Y → X.

Proposition 2.12 ([37]). Let ϕ : Y → X be a birational morphism of smooth projec-
tive varieties with the exceptional divisorD. Let U ⊂ X, Y be an open subset where
ϕ is an isomorphism. There exists a smooth projective variety B with a K∗-action,
which contains fixed point components isomorphic to X and Y such that

• B = B(X, Y ) := B \ (X ∪ Y ) is a cobordism between X and Y ;

• U ×K∗ ⊂ B− ∩ B+ ⊂ B;

• there are K∗-equivariant isomorphisms X− 
 X × (P1 \ {0}) and Y+ 

OY (D);

• X− \X = B+ and Y+ \ Y = B−
In further considerations we shall refer to B as a compactified cobordism.

Proof. We follow here the Abramovich construction of cobordism. Let � ⊂ OX be
a sheaf of ideals such that Y = Bl�X is obtained from X by blowing up of � . Let z
denote the standard coordinate on P1 and let �0 be the ideal of the point z = 0 on P1.
SetW := X×P1 and denote by π1 : W → X, π2 : W → P1 the standard projections.
Then J := π1

∗(� ) + π2
∗(�0) is an ideal supported on X × {0}. Set W ′ := BlJW .

The proper transform of X × {0} is isomorphic to Y and we identify it with Y . Let
us describe Y locally. Let f1, . . . , fk generate the ideal � on some open affine set
U ⊂ X. Then after the blow-up Y → X at � the inverse image of U is a union of
open charts Ui ⊂ Y , where

K[Ui] = K[U ][f1/fi, . . . , fk/fi].
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Now the functions f1, . . . , fk, z generate the ideal J on U × A1 ⊂ W . After the
blow-up W ′ → W at J, the inverse image of U × A1 is a union of open charts
Vi ⊃ Y , where

K[Vi] = K[U ][f1/fi, . . . , fk/fi, z/fi] = K[Ui][z/fi]
and the relevant Vz which does not intersect Y . Then Vi = U+

i 
 Ui × A1 where
z′ := z/fi is the standard coordinate on A1. The action of K∗ on the factor U
is trivial while on A1 it is standard given by t (z′) = tz. Thus the open subset
Y+ = ⋃

U+
i = ⋃

Vi ⊂ W ′ is a line bundle overY with the standard action ofK∗. On
the other hand the neighborhoodX− := X×(P1 \{0}) ofX ⊂ W remains unchanged
after the blow-up of J. We identifyX withX×{∞}. We defineB to be the canonical
desingularization ofW . Then B := B \X \Y . We get B−/K∗ = (Y+ \Y )/K∗ = Y ,
while B+/K∗ = (X+ \X)/K∗ = X. �

Figure 3. Compactified cobordism.

Remark 2.13. The Abramovich construction can be considered as a generalization of
the Fulton–Macpherson construction of the deformation to the normal cone. If we let
� = �C be the ideal sheaf of the smooth center then the relevant blow-up is already
smooth. On the other hand this is a particular case of the very first example in [37]
of a cobordism which is a K∗-equivariant completion of the space

L(Y,D;X, 0) := OY (D) ∪U×K∗ X × (P1 \ {0}).
Another variant of our construction is given by Hu and Keel in [21].

2.4. Collapsibility

Definition 2.14 ([37]). Let X be a cobordism or any variety with a K∗-action.

1. We say that F ∈ C(XK
∗
) is an immediate predecessor of F ′ ∈ C(XK

∗
) if there

exists a nonfixed point x such that limt→0 tx ∈ F and limt→∞ tx ∈ F ′.
2. We say that F precedes F ′ and write F < F ′ if there exists a sequence of

connected fixed point set components F0 = F,F1, . . . , Fl = F ′ such that
Fi−1 is an immediate predecessor of Fi (see [5]).
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3. We call a cobordism (or a variety with aK∗-action) collapsible (see also Morelli
[27]) if the relation< on its set of connected components of the fixed point set
is an order. (Here an order is just required to be transitive.)

Definition 2.15 ([3], [37]). A function χ : C(XK
∗
) → Z is strictly increasing if

χ(F ) < χ(F ′) whenever F < F ′.

2.5. Existence of a strictly increasing function for Pk and B. The space Pk =
P(Ak+1) splits according to the weights as

Pk = P(Ak+1) = P(Aa1 ⊕ · · · ⊕ Aar )

where K∗ acts on Aai with the weight ai . Assume that a1 < · · · < ar . Let xai =
[xi,1, . . . , xi,ri ] be the coordinates on Aai . The action of K∗ is given by

t[xa1, . . . , xar ] = [ta1xa1, . . . , t
ar xar ].

It follows that the fixed point components of (Pk)K
∗

are P(Aai ). We define a strictly
increasing function χP : C(PK

∗
)→ Z by

χP(P(Aai )) = ai.

We see that for x = [xa0, . . . , xar ], limt→0 tx ∈ P(Aamin), limt→∞ tx ∈ P(Aamax),
where

amax = max{a | xa �= 0}, amin = min{a | xa �= 0}.
Then P(Aai ) < P(Aaj ) iff ai < aj .

By the Sumihiro theorem ([33]), we embed B equivariantly into a projective
space Pk . Then every fixed point component F in C(BK

∗
) is contained in P(Aa) ∈

C((Pk)K
∗
) and we put χB(F ) = χP(P(Aa)) = ai. The function χP is strictly in-

creasing on C((Pk)K
∗
) and the function χB is strictly increasing on C(BK

∗
). This

implies

Lemma 2.16. A compactified cobordism B is collapsible.

2.6. Decomposition of a birational cobordism

Definition 2.17 ([3], [37]). A cobordism B is elementary if any F �= F ′ ∈ C(BK
∗
)

are incomparable with respect to >.

The function χF defines a decomposition of C(BK
∗
) into elementary cobordisms

Bai := B \
( ⋃
χB(F )<ai

F− ∪
⋃

χB(F )>ai

F+
)
,

where a1 < · · · < ar are the values of χB . This yields

Lemma 2.18. 1. (Ba1)− = B−, (Bar )+ = B+.

2. (Bai+1)− = (Bai )+ = B \ ( ⋃
χB(F )≤ai F

− ∪⋃
χB(F )≥ai+1

F+
)
.

3.χ(F ) = ai for any F ∈ C(Bai ).
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F+2

F1

F−0

Figure 4. Elementary birational cobordism.

Figure 5. “Handle”-elementary cobordism in Morse Theory.

2.7. Decomposition of Pk . Set A≥ai := Aai⊕· · ·⊕Aar , A>ai := Aai+1 ⊕· · ·⊕Aar ,
and define A<ai , A≤ai analogously.

Lemma 2.19. P(Aai )
+ = P(A≥ai ) and P(Aai )

− = P(A≤ai ).

Lemma 2.20. Set Pai := Pk \ ( ⋃
χP(F )<ai

F− ∪⋃
χP(F )>ai

F+
)
. Then

Pai = Pk \ P(A>ai ) \ P(A<ai ), (Pai )+ = Pk \ P(A≥ai ) \ P(A<ai )

(Pai )− = Pk \ P(A>ai ) \ P(A≤ai ).

Lemma 2.21. Bai = B ∩ Pai , (Bai )− = B ∩ (Pai )−, (Bai )+ = B ∩ (Pai )+.

2.8. GIT and existence of quotients for Pk . The sets Pai can be interpreted in terms
of Mumford’s GIT theory. Any lifting of the action of K∗ on Pk = P(Ak+1) to Ak+1

is called a linearization. Consider the twisted action on Ak+1,

tr (x) = t−r · t (x).
The twisting does not change the action on P(Ak+1) and defines different lineariza-
tions. If we compose the action with a group monomorphism t 	→ tk the weights of the
new action tk(x) will be multiplied by k. The good and geometric quotients for t (x)
and tk(x) are the same. Keeping this in mind it is convenient to allow linearizations
with rational weights.

Definition 2.22. A point x ∈ Pk is semistable with respect to tr , written x ∈ (Pk, tr )ss,
if there exists an invariant section s ∈ �(OPk+1(n)tr ), for some n ∈ N such that
s(x) �= 0.
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Lemma 2.23 ([3]). Pai = (Pk, tai )
ss, (Pai )− = (Pk, tai− 1

2
)ss, (Pai )+ = (Pk, tai+ 1

2
)ss.

Proof. x ∈ Pai iff either xai �= 0 or xaj1 �= 0 and xaj2 �= 0 for aj1 < r = ai < aj2 .

In both situations we find a nonzero tr -invariant section si = xi or sj1j2 = x
b1
j1
x
b2
j2

for
suitable coprime b1 and b2.

x ∈ (Pai )− iff xaj1 �= 0 and xaj2 �= 0 for aj1 < ai ≤ aj2 (or equivalently

aj1 < r = ai − 1/2 < aj2 ). As before there is a nonzero tr -invariant section xb1
j1
x
b2
j2

for suitable coprime b1 and b2. �

It follows from GIT theory that (Pk, tr )ss//K∗ exists and it is a projective variety.
By Lemma 2.21 and the above we get

Corollary 2.24. There exist quotients πai : Bai → Bai //K
∗ and πai− = Bai− →

(Bai )−/K∗, πai+ = (Bai )+ → (Bai )+/K∗.

2.9. Local description

Proposition 2.25 ([37]). Let Ba be a smooth elementary cobordism. Then for any
x ∈ F0 there exists an invariant neighborhood Vx of x and a K∗-equivariant étale
morphism (i.e. locally analytic isomorphism) φ : Vx → Tanx , where Tanx 
 AnK is
the tangent space with the induced linear K∗-action, such that in the diagram

(Ba)−/K∗ ⊃ Vx//K
∗ ×Tanx//K∗ Tanx−/K∗ 
 Vx−/K∗ → Tanx−/K∗

↓ ↓ ↓
Ba//K

∗ ⊃ Vx//K
∗ → Tanx//K∗

↑ ↑ ↑
(Ba)+/K∗ ⊃ Vx//K

∗ ×Tanx//K∗ Tanx+/K∗ 
 Vx+/K∗ → Tanx+/K∗

the vertical arrows are defined by open embeddings and the horizontal morphisms
are defined by φ and are étale.

Proof. By taking local semiinvariant parameters at the point x ∈ F0 one can construct
an equivariant morphism φ : Ux → Tanx 
 AnK from some open affine invariant
neighborhood Ux such that φ is étale at x. By Luna’s Lemma (see [Lu], Lemme 3
(Lemme Fondamental)) there exists an invariant affine neighborhood Vx ⊆ Ux of the
point x such thatφ|Vx is étale, the induced mapφ|Vx/K∗ : Vx//K∗ → Tanx//K∗ is étale
and Vx 
 Vx//K

∗ ×Tanx//K∗ Tanx . This defines the isomorphisms Vx//K∗ ×Tanx//K∗
Tanx−/K∗ 
 Vx−/K∗. Note that (Ba)− = Ba \ ⋃

F+
F∈C(BK

∗
)

and Vx ∩ F+ =
(Vx ∩ F)+. (Both sets are closed and irreducible.) Thus (Vx)− = Vx ∩ (Ba)− and
we get the horizontal inclusions. �

Proposition 2.26 ([37]). There is a factorization of the morphism φ : Y → X given
by Y = (Ba1)−/K∗ ��� (Ba1)+/K∗ = (Ba2)−/K∗ ��� · · · ��� (Bak−1)+/K∗ =
(Bak )−/K∗ ��� (Bak )+/K∗ = X.
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Remark 2.27. The birational maps (Ba)−/K∗ ��� (Ba)+/K∗ are locally described
by Example 2.7. Both spaces have cyclic singularities and differ by the composite
of a weighted blow-up and a weighted blow-down. To achieve the factorization we
need to desingularize quotients as in for instance case 1 of the example. It is hopeless
to modify weights by birational modification of smooth varieties. Instead we want to
view Example 2.7 from the perspective of toric varieties.

3. Toric varieties

3.1. Fans and toric varieties. LetN 
 Zk be a lattice contained in the vector space
NQ := N ⊗Q ⊃ N .

Definition 3.1 ([11], [31]). By a fan � in NQ we mean a finite collection of finitely
generated strictly convex cones σ in NQ such that

• any face of a cone in � belongs to �,
• any two cones of � intersect in a common face.

If σ is a face of σ ′ we shall write σ � σ ′.
We say that a cone σ in NQ is regular if it is generated by a part of a basis

of the lattice e1, . . . , ek ∈ N , written σ = 〈e1, . . . , ek〉. A cone σ is simplicial if
it is generated over Q by linearly independent integral vectors v1, . . . , vk , written
σ = 〈v1, . . . , vk〉
Definition 3.2. Let � be a fan and τ ∈ �. The star of the cone τ and the closed star
of τ are defined as follows:

Star(τ,�) := {σ ∈ � | τ � σ },

Star(τ,�) := {σ ∈ � | σ ′ � σ for some σ ′ ∈ Star(τ,�)}.
To a fan � there is associated a toric variety X� ⊃ T , i.e. a normal variety on

which a torus T acts effectively with an open dense orbit (see [23], [12], [31], [15]).
To each cone σ ∈ � corresponds an open affine invariant subset Xσ and its unique
closed orbit Oσ . The orbits in the closure of the orbit Oσ correspond to the cones of
Star(σ,�). In particular, τ � σ iff Oτ ⊃ Oσ .

The fan � is nonsingular (resp. simplicial) if all its cones are nonsingular (resp.
simplicial). Nonsingular fans correspond to nonsingular varieties.

Denote by
M := Homalg.gr.(T ,K

∗)

the lattice of group homomorphisms to K∗, i.e. characters of T . The dual lattice
Homalg.gr.(K

∗, T ) of 1-parameter subgroups of T can be identified with the latticeN .
Then the vector space MQ := M ⊗Q is dual to NQ = N ⊗Q.
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The elements F ∈ M = N∗ are functionals onN and integral functionals onNQ.
For any σ ⊂ NQ we denote by

σ∨ := {F ∈ M | F(v) ≥ 0 for any v ∈ σ }
the set of integral vectors of the dual cone to σ . Then the ring of regular functions
K[Xσ ] is K[σ∨].

We call a vector v ∈ N primitive if it generates the sublattice Q≥0v∩N . Primitive
vectors correspond to 1-parameter monomorphisms.

For any σ ⊂ NQ set

σ⊥ := {m ∈ M | (v,m) = 0 for any v ∈ σ }.
The latter set represents all invertible characters on Xσ . All noninvertible characters
are in σ∨ \ σ⊥ and vanish on Oσ . The ring of regular functions on Oσ ⊂ Xσ can be
written as K[Oσ ] = K[σ⊥] ⊂ K[σ∨].
3.2. Star subdivisions and blow-ups

Definition 3.3 ([23], [31], [12], [15]). A birational toric morphism or simply a toric
morphism of toric varieties X� → X�′ is a morphism identical on T ⊂ X�,X�′ .

By the support of a fan � we mean the union of all its faces, |�| = ⋃
σ∈� σ .

Definition 3.4 ([23], [31], [12], [15]). A subdivision of a fan � is a fan � such that
|�| = |�| and any cone σ ∈ � is a union of cones δ ∈ �.

Definition 3.5. Let� be a fan and 
 be a ray passing in the relative interior of τ ∈ �.
Then the star subdivision 
 ·� of � with respect to 
 is defined to be


 ·� = (� \ Star(τ,�)) ∪ {
 + σ | σ ∈ Star(τ,�) \ Star(τ,�)}.
If � is nonsingular, i.e. all its cones are nonsingular, τ = 〈v1, . . . , vl〉 and 
 =
〈v1 + · · · + vl〉 then we call the star subdivision 
 ·� nonsingular.

Proposition 3.6 ([23], [12], [31], [15]). Let X� be a toric variety. There is a
1-1 correspondence between subdivisions of the fan � and proper toric morphisms
X�′ → X� .

Remark 3.7. Nonsingular star subdivisions from 3.5 correspond to blow-ups of
smooth varieties at closures of orbits ([31], [15]). Arbitrary star subdivisions cor-
respond to blow-ups of some ideals associated to valuations (see Lemma 5.20).

4. Polyhedral cobordisms of Morelli

4.1. Preliminaries. By NQ+ we shall denote a vector space NQ+ ≈ Qk containing
a lattice N+ 
 Zk , together with a primitive vector v0 ∈ N+ and the canonical
projection

π : NQ+ → NQ 
 NQ+/Q · v0.
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Definition 4.1 ([27]). A cone σ ⊂ NQ+ is π -strictly convex if π(σ) is strictly convex
(contains no line). A fan � is π -strictly convex if it consists of π -strictly convex
cones.

In the following all the cones in NQ+ are assumed to be π -strictly convex and
simplicial. The π -strictly convex cones σ in NQ+ split into two categories.

Definition 4.2. A cone σ ⊂ NQ+ is called independent if the restriction of π to σ is
a linear isomorphism (equivalently v0 �∈ span(σ )). A cone σ ⊂ NQ+ is called depen-
dent if the restriction of π to σ is a lattice submersion which is not an isomorphism
(equivalently v0 ∈ span(σ )).

A dependent cone is called a circuit if all its proper faces are independent.

Lemma 4.3. Any dependent cone σ contains a unique circuit δ.

4.2. K∗-actions and NQ+. The vector v0 = (a1, . . . , ak) ∈ NQ+ defines a 1-para-
meter subgroup tv0 := t

a1
1 . . . t

ak
k acting on T and all toric varieties X ⊃ T . Denote

by M+ the lattice dual to N+. Then the lattice N := N+/Z · v0 is dual to the lattice
M := {a ∈ M+ | (a, v0) = 0} of all the characters invariant with respect to the
group action. The natural projection of cones π : σ → σ� defines the good quotient
morphism

Xσ = SpecK[σ∨] → Xσ//K
∗ = SpecK[σ∨ ∩M] = SpecK[(σ�)∨] = Xσ� .

Lemma 4.4. A cone σ is independent iff the geometric quotientXσ → Xσ/K
∗ exists

or alternatively if Xσ contains no fixed points. The cone σ is dependent if Oσ is a
fixed point set.

Proof. Note that the setXK
∗

σ is closed and if it is nonempty then it containsOσ . Then
a point p ∈ Oσ is fixed, i.e. tv0p = p, iff for all functionals F ∈ σ⊥ (i.e. xF (p) �= 0)
we have xF (p) = xF (tv0p) = tF (v0)xF (p).

Then for all F ∈ σ⊥ ⊂ span(σ )⊥ we have F(v0) = 0 so v0 ∈ span(σ ). �

Corollary 4.5. A cone δ ∈ � is a circuit if and only ifOδ is the generic orbit of some
F ∈ C(XK

∗
� ).

Proof. Oσ is fixed with respect to the action ofK∗ if σ is dependent. ThusOσ ⊂ Oδ
where δ is the unique circuit in σ (Lemma 4.3). �

4.3. Morelli cobordisms

Definition 4.6 (Morelli [27], [4]). A fan � in NQ+ ⊃ N+ is called a polyhedral
cobordism or simply a cobordism if the sets of cones

∂−(�) := {σ ∈ � | there is p ∈ int(σ ) so that p− ε · v0 �∈ |�| for all small ε > 0},
∂+(�) := {σ ∈ � | there is p ∈ int(σ ) so that p + ε · v0 �∈ |�| for all small ε > 0}
are subfans of � and π(∂−(�)) := {π(τ) | τ ∈ ∂−(�)} and π(∂+(�)) := {π(τ) |
τ ∈ ∂+(�)} are fans in NQ.
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4.4. Dependence relation. Let σ = 〈v1, . . . , vk〉 be a dependent (simplicial) cone.
Then, by definition v0 ∈ span(v1, . . . , vk)where v1, . . . , vk are linearly independent.
There exists a unique up to rescaling integral relation

r1v1 + · · · + rkvk = av0, where a > 0. (∗)
Definition 4.7 ([27]). The rays of σ are called positive, negative and null vectors,
according to the sign of the coefficient in the defining relation.

Remark 4.8. Note that the relation (∗) defines a unique relation

r ′1w1 + · · · + r ′kwk = 0 (∗∗)
where wi are generating vectors in the rays π (〈vi〉), r ′iwi = riπ(vi). In particular
r ′i/ri > 0.

Lemma 4.9. Let σ = 〈v1, . . . , vk〉 be a dependent cone. Then an independent face
τ is in ∂+(σ ) (resp. τ ∈ ∂+(σ )) if τ is a face of 〈v1, . . . , v̌i , . . . , vk〉 for some index i
such that ri < 0 (resp. ri > 0).

Proof. By definition τ ∈ ∂+(σ ) there exists p ∈ int(τ ) such that for any sufficiently
small ε > 0, p + εv0 /∈ σ . Write p = ∑

αivi = ∑
ri>0 αivi +

∑
ri<0 αivi +∑

ri=0 αivi , where αi ≥ 0. Then one of the coefficients in

p + εv0 =
∑
ri>0

(αi + riε)vi +
∑
ri<0

(αi + riε)vi +
∑
ri=0

(αi + riε)vi

is negative for small ε > 0. This is possible if αi = 0 for some index i with ri < 0.
�

Lemma 4.10. A cone τ is in ∂+(σ ) iff there exists F ∈ σ∨ ∩ τ⊥ such that F(v0) < 0.

Proof. If τ ∈ ∂+(σ ) then there exists p ∈ int(τ ) for which p + εv0 /∈ σ . Hence
there exists F ∈ σ∨ such that F(p + εv0) < 0 for small ε > 0. Then F(p) = 0 and
F(v0) < 0. Since p ∈ int(τ ) we have F|τ = 0. �

Corollary 4.11. ∂+(σ ) (resp. ∂−(σ )) is a fan.

Proof. By the lemma above, if τ ∈ σ+ then every face τ ′ of τ is in σ+. �

Lemma 4.12. Let σ be a dependent cone in NQ+. Then B := Xσ is a birational
cobordism such that

• (Xσ )+ = X∂−(σ ), (Xσ )− = X∂+(σ ).

• (Xσ )+/K∗ ∼= Xπ(∂−(σ )), (Xσ )−/K∗ ∼= Xπ(∂+(σ )).

• π(∂−(σ )) and π(∂+(σ )) are both decompositions of π(σ).

• There is a factorization into a sequence of proper morphisms (Xσ )+/K∗ →
(Xσ )//K

∗ ← (Xσ )−/K∗.
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Proof. We have p ∈ Oτ where Oτ ⊂ (Xσ )− iff lim tv0p /∈ Xσ . This is equivalent
to existence of a functional F ∈ σ∨ for which xF (tv0p) = tF (v0)xF (p) has a pole at
t = 0. This means exactly that xF (p) �= 0 and F(v0) < 0. The last condition says
F|τ = 0 and F(v0) < 0, which is equivalent to τ ∈ ∂+(σ ).

Suppose that x ∈ π(σ). Then π−1(x) ∩ σ is a line segment or a point. Let
y = sup{π−1(x) ∩ σ }. Then y ∈ int(τ ), where τ ≺ σ and y + εv0 /∈ σ , which
implies that τ ∈ ∂+(σ ). Thus every point in π(σ) belongs to a relative interior of
a unique cone π(τ) ∈ π(∂+(σ )). Since π|τ is a linear isomorphism and ∂+(σ ) is
a fan, all faces of π(τ) are in π(∂−(σ )). Finally, π(∂+(σ )) and π(∂−(σ )) are both
decompositions of π(σ) corresponding to toric varieties (Xσ )−/K∗ = Xπ(∂+(σ )) and
(Xσ )+/K∗ = Xπ(∂−(σ )). �

The above yields

Lemma 4.13. B = Xσ is an elementary cobordism with a single fixed point compo-
nent F := Oδ , where δ = 〈vi | ri �= 0〉 is a circuit. Moreover (Xσ )+ = X∂−(σ ) =
Xσ \Oσ+ , where

σ+ := 〈vi | ri > 0〉, σ− := 〈vi | ri < 0〉.
In particular F+ = (Oδ)

+ = Oσ+ and F− = (Oδ)
− = Oσ− .

4.5. Example 2.7 revisited. The cobordism Xσ from the lemma generalizes the
cobordism B = Al+m+rK ⊃ T = (K∗)l+m+r from Example 2.7. The action of
K∗ determines a 1-parameter subgroup of T which corresponds to a vector v0 =
[a1, . . . , al,−b1, . . . ,−bm, 0, . . . , 0]. The cobordism B is associated with a nonsin-
gular cone � ⊂ NQ, while B− and B+ correspond to the fans ∂+(�) and ∂−(�)
consisting of the faces of � visible from above and below respectively.

The quotients B+/K∗ , B−/K∗ and B//K∗ are toric varieties corresponding to
the fans π(∂+(�)) = {π(σ) | σ ∈ ∂+(�)}, π(∂−(�)) = {π(σ) | σ ∈ �−} and π(�)
respectively, where π is the projection defined by v0.

The relevant birational map φ : B−/K∗ −→ B+/K∗ for l, m ≥ 2 is a toric flip
associated with a bistellar operation replacing the triangulation π(∂−(�)) of the cone
π(�) with π(∂+(�)).

π

π
v0

Figure 6. Morelli cobordism
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4.6. π -nonsingular cones

Definition 4.14 (Morelli). An independent cone τ is π -nonsingular if π(τ) is non-
singular. A fan � is π -nonsingular if all independent cones in � are π -nonsingular.
In particular a dependent cone σ is π -nonsingular if all its independent faces are
π -nonsingular.

Lemma 4.15. Let σ = 〈v1, . . . , vk〉 be a dependent cone and wi be primitive
generators of the rays π(vi). Let

∑
r ′iwi = 0 be the unique relation (∗∗) be-

tween vectors wi . Then the ray 
 := π(σ+) ∩ π(σ−) is generated by the vector∑
r ′i>0 r

′
iwi =

∑
r ′i<0 −r ′iwi and
·π(∂+(σ )) = 
·π(∂−(σ )). Ifσ is aπ -nonsingular

dependent cone then the ray 
 defines regular star subdivisions of π(∂+(σ )) and
π(∂−(σ )).
Proof. Note that π(∂+(σ )) \π(∂−(σ )) are exactly the cones containing π(σ+). That
is, π(∂+(σ )) \ π(∂−(σ )) = Star(π(σ+), π(∂+(σ ))). This gives 
 · π(∂+(σ )) =
(π(σ+) ∩ π(σ−)) ∪ {
 + τ | τ ∈ π(σ+) ∩ π(σ−)} = 
 · π(σ−). Assume now
that σ is π -nonsingular and all the coefficients r ′i are coprime. By Lemma 4.9 and
the π -nonsingularity the set of vectors w1, . . . , w̌i , . . . , wk where r ′i �= 0 is a basis
of the lattice π(σ) ∩ N . Thus every vector wi , where r ′i �= 0, can be written as an
integral combination of others. Since the relation (∗∗) is unique it follows that the
coefficient r ′i is equal to±1. Thus 
 is generated by the vector

∑
r ′i>0wi =

∑
r ′i<0wi

and determines regular star subdivisions. �

Corollary 4.16. If σ is dependent then there exists a factorization

(Xσ )−/K∗ φ−←− �((Xσ )−/K∗, (Xσ )+/K∗) φ+−→ (Xσ )+/K∗,

where �((Xσ )−/K∗, (Xσ )+/K∗) is the normalization of the graph of (Xσ )−/K∗ →
(Xσ )+/K∗. If σ is π -nonsingular the morphisms φ−, φ+ are blow-ups of smooth
centers.

Proof. By definition �((Xσ )−/K∗, (Xσ )+/K∗) is a toric variety. By the universal
property of the graph (dominating component of the fiber product) it corresponds to
the coarsest simultaneous subdivision of both π(σ−) and π(σ+), that is, to the fan
{τ1 ∩ τ2 | τ1 ∈ π(σ−), τ2 ∈ π(σ+)} = 
 · π(σ−) = 
 · π(σ+). �

4.7. The π -desingularization lemma of Morelli and centers of blow-ups. For any
simplicial cone σ = 〈v1, . . . , vk〉 in N set

par(σ ) := {v ∈ σ ∩Nσ | v = α1v1 + · · · + αkvk,where 0 ≤ αi < 1},
par(σ ) := {v ∈ σ ∩Nσ | v = α1v1 + · · · + αkvk,where 0 ≤ αi ≤ 1}.

We associate with a dependent cone σ and an integral vector v ∈ π(σ) a vector
Mid(v, σ ) := π−1

|∂−(σ )(v) + π−1
|∂+(σ )(v) ∈ σ ([27]), where π|∂−(σ ) and π|∂+(σ ) are the

restrictions of π to ∂−(σ ) and ∂+(σ ).
We also set Ctr−(σ ) := ∑

ri<0wi , Ctr+(σ ) := ∑
ri>0wi .
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Lemma 4.17 (Morelli [27], [28], [4]). Let � be a simplicial cobordism in N+.
Then there exists a simplicial cobordism � obtained from � by a sequence of star
subdivisions such that � is π -nonsingular. Moreover, the sequence can be taken so
that any independent and already π -nonsingular face of� remains unaffected during
the process. All the centers of the star subdivisions are of the form π−1

|τ (par(π(τ)))
where τ is independent, and Mid(Ctr±(σ ), σ ), where σ is dependent.

Remark 4.18. It follows from Lemma 4.17 that π -desingularization can be done for
an open affine neighborhood of a point x of F ∈ C(BK

∗
) on the smooth cobordism B

which is étale isomorphic with the tangent space Tanx . We need to show how to
globalize this procedure in a coherent and possibly canonical way. This will replace the
tangent space Tanx in the local description of flips defined by elementary cobordisms
(as in Proposition 2.25) with π -nonsingular Xσ .

By Corollary 4.16 we get a factorization into a blow-up and a blow-down at smooth

centers: (Ba)−/K∗ φ−←− �((Ba)−/K∗, (Ba)+/K∗) φ+−→ (Ba)+/K∗.

5. π -desingularization of birational cobordisms

5.1. Stratification by isotropy groups on a smooth cobordism. LetB be a smooth
cobordism of dimension n. Denote by �x the isotropy group of a point x ∈ B.
Define the stratum s = sx through x to be an irreducible component of the set
{p ∈ B | �x = �p}.

We can find �x-semiinvariant parameters in the affine open neighborhood U of x
such that �x acts nontrivially on u1, . . . , uk and trivially on uk+1, . . . , un.

After suitable shrinking of U the parameters define an étale �x-equivariant mor-
phism ϕ : U → Tanx = An. By definition the stratum s is locally described by
u1 = · · · = uk = 0. The parameters u1, . . . , uk determine a �x-equivariant smooth
morphism

ψ : U → TanB,x/Tans,x = Ak.

We shall view Ak = Xσ as a toric variety with a torus Tσ and refer to ψ as a toric
chart. This assigns to a stratum s the cone σ and the relevant group �σ acting
on Xσ . Then Luna’s [24] fundamental lemma implies that the morphisms φ and ψ
preserve stabilizers, the induced morphism ψ� : U//�x → Xσ//�σ is smooth and
U 
 U//�x ×Ak//�x

Ak .
The invariant �x can be defined for Xσ = Ak and determine the relevant

Tσ -invariant stratification Sσ on Xσ . By shrinking U we may assume that the strata
on U are inverse images of the strata on Xσ . Any stratum sy on U through y after
a suitable rearrangement of u1, . . . , uk is described in the neighborhood U ′ ⊂ U

of y by u1 = · · · = u� = 0, where �y ≤ �x acts nontrivially on u1, . . . , u� and
trivially on u�+1 . . . , uk, uk+1, . . . , un. The remaining �y-invariant parameters at y
are u�+1 − u�+1(y), . . . , un − un(y). Then the closure of sy is described on U by
u1 = · · · = u� = 0 and contains sx . This shows
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Lemma 5.1. The closure of any stratum is a union of strata.

We can introduce an order on the strata by setting

s′ ≤ s iff s′ ⊆ s.

Lemma 5.2. If s′ ≤ s then there exists an inclusion iσ ′σ : σ ′ ↪→ σ onto a face
of σ . The inclusion iσ ′σ defines a �σ ′-equivariant morphism of toric varietiesXσ ′ →
Xσ ′ × 1 ↪→ Xσ ′ × T ⊂ Xσ , where Tσ ′ × T = Tσ and �σ ′ ⊂ Tσ ′ . Moreover we
can write Xσ ∼= Xσ ′ × Ar where �σ ′ acts trivially on Ar and nontrivially on all
coordinates of Xσ ′ 
 A�.

In the above situation we shall write

σ ′ ≤ σ.
The lemma above immediately implies

Lemma 5.3. If τ < σ (that is, τ ≤ σ , τ �= σ) then �τ � �σ .

Consider the stratification Sσ on Xσ . Every stratum sτ ∈ Sσ , where τ ≤ σ , is a
union of orbits Oτ ′ . Set

τ := {τ ′ | Oτ ′ ⊂ sτ }.
Lemma 5.4. Any cone from the set τ ′ ∈ τ can be expressed as τ ′ 
 τ×〈e1, . . . , er〉 ⊂
σ , and Xτ ′ = Xτ × As × T r−s where �τ acts trivially on Ar × T r−s .
Lemma 5.5. We have �τ = �τ ′ := {g ∈ �σ | for all x ∈ Oσ ′ , gx = x} for any
τ ′ ∈ τ .

5.2. Local projections

Definition 5.6. A cone σ in NQ is of maximal dimension if dim σ = dimNQ.

Every cone σ in NQ defines a cone of maximal dimension in NQ ∩ span{σ } with
lattice N ∩ span{σ }. We denote it by σ . There is a noncanonical isomorphism

Xσ = Xσ ×Oσ .
The vector space span {σ } ⊂ NQ corresponds to a subtorus Tσ ⊂ Tσ defined as
Tσ := {t ∈ Tσ | tx = x for x ∈ Oσ }. ThenOσ is isomorphic to the torus Tσ /Tσ with
dual lattice σ⊥ ⊂ MQ.

Lemma 5.7. If � ⊂ Tσ acts freely on Xσ = Xσ ×Oσ then

Xσ/� = Xσ ×Oσ/�,
where Oσ 
 Oσ/� if � is finite, while Oσ/� is isomorphic to a torus of dimension
dimOσ − 1 if � = K∗.
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Proof. By assumption � ∩ Tσ is trivial. Hence � acts trivially on Xσ and Xσ/� =
Xσ ×Oσ/�. �

Let πσ : (σ,Nσ )→ (σ�,N�
σ ) denote the projection corresponding to the quotient

map Xσ → Xσ//�σ .

Lemma 5.8. If τ ≤ σ then πτ (τ ) 
 πσ (τ).

Proof. Xτ ×Oτ is an open subvariety in Xσ and �τ acts trivially on Oτ . We have

(Xτ ×Oτ)/�τ = Xτ/�τ ×Oτ = Xπτ (τ) ×Oτ .

�σ /�τ acts freely on (Xτ × Oτ)/�τ = Xπτ (τ) × Oτ . Thus by the previous lemma
Xπσ (τ)

∼= Xπτ (τ) ×Oτ/�σ . �

Lemma 5.9. Let � be a subgroup of �σ , and π� : σ → σ� be the projection cor-
responding to the quotient Xσ → Xσ/�. For any τ ≤ σ and τ ′ ∈ τ we have τ ′ =
τ ⊕ 〈e1, . . . , ek〉 where 〈e1, . . . , ek〉 is regular and π�(τ ′) = π�(τ)⊕ 〈e1, . . . , ek〉.

Proof. Xτ ′ = Xτ ×Ak ×Oτ ′ where the action of �τ ∩� on Ak ×Oτ is trivial. Thus
Xτ ′/�τ = Xτ/�τ ×Ak ×Oτ ′ . Now �/(�τ ∩�) acts freely onOτ ′ ⊂ sτ and we use
Lemma 5.7. �

5.3. Independent and dependent cones. By Lemma 5.8 there exists a lattice iso-
morphism jτσ : πτ (τ )→ πσ (τ), where τ ≤ σ . Thus the projections πτ and πσ are
coherent and related: jτσπτ = πσ .

Case 1: �σ = K∗. The action of K∗ on Xσ corresponds to a primitive vector
vσ ∈ Nσ . The invariant characters M�

σ ⊂ Mσ are precisely those F ∈ M�
σ such that

F(vσ ) = 0. The dual morphism is a projection πσ : Nσ → Nσ/Z · vσ = N�
σ .

The quotient morphism of toric varieties Xσ → Xσ/�σ corresponds to the pro-
jection σ → πσ (σ ).

Case 2: �σ ∼= Zn. The invariant characters M�
σ ⊂ Mσ form a sublattice of dimen-

sion dim(M�
σ ) = dim(Mσ ), where Mσ/M

�
σ 
 Zn. The dual morphism defines an

inclusion π : Nσ ↪→ N�
σ . The projection σ → πσ (σ ) is a linear isomorphism which

does not preserve lattices. This gives

Lemma 5.10. Xτ is independent iff �τ is finite. Xσ is dependent iff �σ = K∗.

Definition 5.11. Let �σ be a decomposition of a cone σ ∈ �. A cone τ ∈ �σ is
independent if πσ |τ is a linear isomorphism. A cone τ is dependent if πσ |τ is not a
linear isomorphism.
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5.4. Semicomplexes and birational modification of cobordisms. By glueing cones
σ corresponding to strata along their faces we construct a semicomplex �, that is, a
partially ordered set of cones such that for σ ≤ σ ′ there exists a face inclusion
iσσ ′ : σ → σ ′.

Remark 5.12. The glueing need not be transitive: for σ ≤ σ ′ ≤ σ ′′ we have
iσ ′σ ′′ iσσ ′ �= iσσ ′′ . Instead, there exists an automorphism ασ of σ such that iσ ′σ ′′ iσσ ′ =
iσσ ′′ασ .

For any fan � denote by Vert(�) the set of all 1-dimensional faces (rays) in �.
Denote by Aut(σ ) the automorphisms of σ inducing �σ -equivariant automorphisms.

Definition 5.13. By a subdivision of � we mean a collection � = {�σ | σ ∈ �} of
subdivisions �σ of σ such that:

1. If τ ≤ σ then the restriction �σ|τ of �σ to τ is equal to �τ .

2. All rays in Vert(�σ ) \ Vert(σ ) are contained in
⋃
τ≤σ int(τ ).

3. �σ is Aut(σ )-invariant.

Remark 5.14. Condition 3 is replaced with a stronger one in the following proposi-
tion.

Lemma 5.15. If τ ′ ∈ τ , τ ′ ≺ σ ∈ � then Vert(�σ|τ ′) \ Vert(τ ′) ⊂ τ and

�σ|τ ′ = �σ|τ ⊕ 〈e1, . . . , ek〉 = �τ × 〈e1, . . . , ek〉.

Lemma 5.16. For every point x ∈ B \ (B+ ∩ B−), x ∈ s′ there exists a toric chart
x ∈ Uσ → Xσ , with �σ = K∗, corresponding to a stratum s ⊂ s′ . In particular the
maximal cones of � are circuits.

Proof. Let τ correspond to a stratum s′  x. By definition of cobordism limt→0 tx =
x0 or limt→∞ tx = x0 exists. The point x0 is K∗-fixed and belongs to a stratum s,
with �s = �σ = K∗. Since U is a K∗-invariant neighborhood of x0 it contains an
orbit K∗ · x and the point x. Moreover s′ ⊃ s and τ ≤ σ . �

Lemma 5.17. Let σ be the cone corresponding to a stratum s on B and x ∈ s. Then
X̂x = Spec Ôx,B 
 (Xσ × Adim(s))∧ ∼= SpecK[[x1, . . . , xk, . . . , xn]].

Set X̃σ := (Xσ × Adim(s))∧ and let Gσ denote the group of all �σ -equivariant
autorphisms of X̃σ .

The subdivision�σ of σ defines a toric morphism and induces a proper birational
�σ -equivariant morphism

X̃�σ := X�σ ×Xσ X̃σ → X̃σ .
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Proposition 5.18. Let � = {�σ | σ ∈ �} be a subdivision of � such that:

For every σ ∈ � the morphism X̃�σ → X̃σ is Gσ -equivariant. (1)

Then � defines a K∗-equivariant birational modification f : B ′ → B such that for
every toric chart ϕσ : U → Xσ there exists a �σ -equivariant fiber square

Uσ ×Xσ X�σ 
 f−1(Uσ ) → X�σ

↓ f ↓
Uσ → Xσ .

(2)

Definition 5.19. A decomposition � of � is canonical if it satisfies condition (1).

Proof. The above diagrams define open subsets f−1
σ (Uσ ) together with proper bi-

rational �σ -equivariant morphisms f−1
σ (Uσ ) → Uσ . Let s′ ≤ s be a stratum cor-

responding to the cone τ ≤ σ . By Lemma 5.15, the restriction of the diagram (2)
defined by Uσ → Xσ to a neighborhood Uτ of y ∈ s′ determines a diagram defined
by the induced toric chart Uτ → Xτ and the decomposition �τ of τ . In order to
show that the f−1

σ (U) glue together we need to prove that for x ∈ s and two different
charts of the form ϕ1,σ : U1,σ → Xσ and ϕ2,σ : U2,σ → Xσ where x ∈ U1,σ , U2,σ
the induced varieties V1 := f−1

1,σ (U1,σ ) and V2 := f−1
2,σ (U2,σ ) are isomorphic over

U1,σ ∩ U2,σ . For simplicity assume that U1,σ = U2,σ = U by shrinking U1,σ and
U2,σ if necessary. The charts ϕ1,σ , ϕ2,σ : U → Xσ are defined by the two sets of
semiinvariant parameters, u1

1, . . . , u
1
k and u2

1, . . . , u
2
k with a nontrivial action of �σ .

These sets can be extended to full sets of parameters u1
1, . . . , u

1
k, uk+1, . . . , un and

u2
1, . . . , u

2
k, uk+1, . . . , un where �σ acts trivially on uk+1, . . . , un, and uk+1 . . . , un

define parameters on the stratum s at x. These two sets of parameters define étale
morphisms ϕ1,σ , ϕ2,σ : U → Xσ × An−k and fiber squares

ϕi,σ : Vi → X�σ × An−k
↓ ↓

ϕi,σ : U → Xσ × An−k.

Suppose the induced �-equivariant birational map f : V1 ��� V2 is not an isomor-
phism over U .

Let V be the graph of f which is a dominating component of the fiber product
V1 ×U V2. Then either V → V1 or V → V2 is not an isomorphism (i.e. collapses a
curve to a point) over some x ∈ s ∩ U . Consider an étale �σ -equivariant morphism
e : X̂x → U . Pull-backs of the morphisms Vi → U via e define two different
nonisomorphic �σ -equivariant liftings Yi → X̂x , since the graph Y of Y1 ��� Y2
(which is a pull-back of V ) is not isomorphic to at least one Yi . But these two
liftings are defined by two isomorphisms ϕ̂1, ϕ̂2 : X̂x 
 X̃σ . These isomorphisms
differ by some automorphism g ∈ Gσ , so we have ϕ̂1 = g � ϕ̂2. Since g lifts to the
automorphism of X̃�σ we get Y1 
 Y2 
 X̃�σ , which contradicts the choice of Yi .
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Thus V1 and V2 are isomorphic over any x ∈ s and B ′ is well defined by glueing
pieces f−1

σ (U) together. We need to show that the action ofK∗ onB lifts to the action
of K∗ on B ′.

Note that B ′ is isomorphic to B over the open generic stratum U ⊃ B+ ∪ B− of
points x with �x = {e}. By Lemma 5.16 every point x ∈ B \ (B+ ∩ B−) is in Uσ ,
with �σ = K∗. Then the diagram (2) defines the action of K∗ on f−1(Uσ ). �

5.5. Basic properties of valuations. Let K(X) be the field of rational functions
on an algebraic variety or an integral scheme X. A valuation on K(X) is a group
homomorphism μ : K(X)∗ → G from the multiplicative group K(X)∗ to a totally
ordered groupG such thatμ(a+b) ≥ min(μ(a), μ(b)). By the center of a valuationμ
on X we mean an irreducible closed subvariety Z(μ) ⊂ X such that for any open
affine V ⊂ X, intersecting Z(μ), the ideal IZ(μ)∩V ⊂ K[V ] is generated by all
f ∈ K[V ] such that μ(f ) > 0 and for any f ∈ K[V ], we have μ(f ) ≥ 0. Each
vector v ∈ NQ defines a linear function on M which determines a valuation val(v)
on a toric variety X� ⊃ T .

For any regular function f = ∑
w∈M awxw ∈ K[T ] set

val(v)(f ) := min{(v,w) | aw �= 0}.
If v ∈ int(σ ), where σ ∈ �, then val(v) is positive for all xF , whereF ∈ σ∨\σ⊥.

In particular we get
Z(val(v)) = Oσ iff v ∈ int σ.

If v ∈ σ then val(v) is a valuation on R = K[Xσ ] = K[σ∨], that is, val(v)(f ) ≥ 0
for all f ∈ K[σ∨] \ {0}. We construct ideals for all a ∈ N which uniquely determine
val(v):

Ival(v),a = {f ∈ R | val(v)(f ) ≥ a} = (xF | F ∈ σ∨, F (v) ≥ a) ⊂ R.

By glueing Ival(v),a for all v ∈ σ and putting �val(v),a|Xσ = OXσ if v /∈ σ we construct
a coherent sheaf of ideals �val(v),a on X�.

Lemma 5.20 ([23]). The star subdivision 〈v〉 · � corresponds to the normalized
blow-up of �val(v),a on X� for a sufficiently divisible a ∈ N.

5.6. Stable vectors. Let g : X→ Y be any dominant morphism of integral schemes
(that is, g(X) = Y ) and μ be a valuation ofK(X). Then g induces a valuation g∗(μ)
on K(Y) 
 g(K(Y )) ⊂ K(X): g∗μ(f ) = μ(f � g).
Definition 5.21. Let � be the semicomplex defined for the cobordism B. A vector
v ∈ int(σ ), where σ ∈ �, is called stable if for every σ ≤ σ ′, val(v) isGσ ′-invariant
on X̃σ ′ .

Lemma 5.22. If X̃�σ → X̃σ is Gσ -equivariant and val(v) is Gσ -invariant then
X̃〈v〉·�σ → X̃σ is Gσ -equivariant.
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Proof. The morphism X̃〈v〉·�σ → X̃�σ is a pull-back of the morphism X〈v〉·�σ →
X�σ . Thus, by Lemma 5.20, X̃〈v〉·�σ → X̃�σ is a normalized blow-up of �val(v),a on
X̃�σ . But the latter sheaf is Gσ -invariant. �

Proposition 5.23. Let � = {�σ | σ ∈ �} be a canonical subdivision of � and v be
a stable on �. Then 〈v〉 ·� := {〈v〉 ·�σ | σ ∈ �} is a canonical subdivision of �.

5.7. Convexity

Lemma 5.24. Let val(v1) and val(v2) be Gσ -invariant valuations on Xσ . Then all
valuations val(v), where v = av1 + bv2, a, b ≥ 0, a, b ∈ Q, are Gσ -invariant.

Proof. Let � = 〈v1〉 · 〈v2〉 · σ be a subdivision of σ . Then by Lemma 5.22, the
morphism X̃� → X̃σ is Gσ -equivariant. The exceptional divisors D1 and D2
of the morphism are Gσ -invariant and correspond to one-dimensional cones (rays)
〈v1〉, 〈v2〉 ∈ �. The cone τ = 〈v1, v2〉 ∈ D corresponds to the orbit Oτ whose
closure is D1 ∩ D2 and thus the generic point is Gσ -invariant. The action of Gσ
on X̃σ induces an action on the local ring X̃�,Oτ at the generic point of Oτ and on
its completion K(Oτ )[[τ∨]]. Note that for any v ∈ τ , val(v)|K(Oτ ) = 0. For any
F ∈ τ∨ = τ∨

τ⊥ the divisor (xF ) of the character xF on X̂τ := SpecK(Oτ )[[τ∨]]
is a combination n1D1 + n2D2 for n1n2 ∈ Z. Since D1 and D2 are Gσ -invariant,
the divisor (xF ) = n1D1 + n2D2 is Gσ -invariant, that is, for any g ∈ G, we have
gxF = ug,F · xF where ug,F is invertible onK(Oτ )[[τ∨]]. Thus for every v ∈ τ and
g ∈ G we have

g∗(Ival(v),a) = g∗(xF |F ∈ σ∨, F (v) ≥ a)
= (ug,F x

F |F ∈ σ∨, F (v) ≥ a) = Ival(v),a.

Thus val(v) is Gσ -invariant on K(Oτ )[[τ∨]] and on its subring OX̃�,Oτ
. The latter

ring has the same quotient field as X̃σ so val(v) is Gσ -invariant on X̃σ . �

Lemma 5.25. Let σ ∈ � and v1, v2 ∈ σ be stable vectors. Then all vectors v =
av1 + bv2 ∈ σ , where a, b ∈ Q>0, are stable.

5.8. Basic properties of stable vectors

Lemma 5.26. Let Tan0 = An = Tana0
0 ⊕ Tana1

0 ⊕ · · · ⊕ Tanak0 denote the tangent
space of X̃σ = SpecK[[u1, . . . , un]] at 0 and its decomposition according to the
weight distribution. Let d : Gσ → GL(Tan0) be the differential morphism defined
as g 	→ dg. Then d(Gσ ) = GL(Tana1

0 )× · · · ×GL(Tanak0 ).

Lemma 5.27. Let v ∈ σ , where σ ∈ �, be an integral vector such that for any
g ∈ Gσ , there exists an integral vector vg ∈ σ such that g∗(val(v)) = val(vg). Then
val(v) is Gσ -invariant on X̃σ .
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Proof. Set W = {vg | g ∈ G}. For any natural number n, the ideals Ival(vg),a
are generated by monomials. They define the same Hilbert–Samuel function k 	→
dimK(K[X̃σ ]/(Ival(vg),a + mk)), where m ⊂ K[X̃σ ] denotes the maximal ideal. It
follows that the set W is finite. On the other hand since Ival(vg),a are generated by
monomials they are uniquely determined by the ideals gr(Ival(vg),a) in the graded ring

gr(OX̃σ ) = OX̃σ /m⊕m/m2 ⊕ · · · .
The connected group d(Gσ ) acts algebraically on gr(OX̃σ ) and on the connected
component of the Hilbert scheme with fixed Hilbert polynomial. In particular it acts
trivially on its finite subsetW and consequently d(Gσ ) preserves gr(Ival(vg),a) andGσ
preserves Ival(vg),a . �

Let R ⊂ K be a ring contained in the field. We can order valuations by writing

μ1 > μ2 if μ1(a) ≥ μ2(a) for all a ∈ R and μ1 �= μ2.

A cone σ defines a partial ordering: v1 > v2 if v1 − v2 ∈ σ . Both orders coincide for
K[Xσ ] ⊂ K(Xσ ): v1 > v2 iff val(v1) > val(v2).

Lemma 5.28. Let σ be a cone in NQ
σ with the lattice of 1-parameter subgroups

Nσ ⊂ N
Q
σ and the dual lattice of characters Mσ . Let μ be any integral (or rational)

valuation centered on Oτ , where τ � σ . Then the restriction of μ to Mσ ⊂ K(X̃σ )
∗

defines a functional on τ∨ ⊆ M
Q
σ corresponding to a vector vμ ∈ int τ such that

F(vμ) = μ(xF ) for F ∈ Mσ and μ ≥ val(vμ) on X̃σ .

Proof. Iμ,a ⊇ (xF | μ(xF ) ≥ a) = (xF | F(vμ) ≥ a) = Ival(vμ),a . �

Lemma 5.29. Let � ⊂ �σ be a finite group acting on X̃σ . Let π : NQ → (N�)Q de-
note the projection corresponding to the geometric quotient X̃σ → X̃π(σ) = X̃σ /�.
Then val(v) is Gσ -invariant on X̃σ iff val(π(v)) is Gσ -invariant on X̃π(σ).

Proof. (⇒) val(v) is Gσ -invariant on K[X̃σ ] and it is invariant on K[X̃σ ]� .
(⇐) Note that π defines an inclusion of same dimension lattices N ↪→ N� and

M� ↪→ M .
Assume that val(π(v)) is Gσ -invariant. It defines a functional on the lattice M�

and its unique extension toM ⊃ M� corresponding to val(v). Since g∗(val(π(v))) =
val(π(v)), we have g∗(val(v))|M� = val(v)|M� and consequently g∗(val(v))|M =
val(v)|M. By Lemma 5.28, g∗(val(v)) ≥ val(v) for all g ∈ Gσ . Thus val(v) ≥
g−1∗ (val(v)) for all g−1 ∈ Gσ . Finally g∗(val(v)) = val(v). �

5.9. Stability of centers from par(π(τ)). In the following let�σ be a decomposi-
tion of σ ∈ � such that X̃�σ → X̃σ is Gσ -equivariant, τ ∈ �σ be its face and � be
a finite subgroup of �σ . Denote by π : (σ,Nσ )→ (σ�,N�

σ ) the linear isomorphism
and the lattice inclusion corresponding to the quotient Xσ → Xσ/� = Xπ(σ).
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Lemma 5.30. Assume that for any g ∈ Gσ , there exists a cone τg ∈ �σ such that

g · (Oτ ) = Oτg . Let v ∈ int(π(τ)) ∩ N�
σ be an integral vector such that val(v) is

not Gσ -invariant on X̃σ /�. Then there exist integral vectors v1 ∈ int(π(τ)) and
v2 ∈ π(τ) such that

v = v1 + v2.

Moreover if there exists v0 ∈ π(σ) (not necessarily integral) such that val(v0) is
Gσ -invariant and v > v0 on π(σ) then v1 > v0 on π(σ).

Proof. If val(v) is not Gσ -invariant on X̃σ /� then by Lemma 5.27 there exists an
elementg ∈ Gσ such thatμg := g∗(val(v)) is not a toric valuation. By the assumption

μg is centered on Oπ(τg). Then by Lemma 5.28 it defines vg ∈ int π(τg) such
that μg(xF ) = F(vg) for F ∈ σ∨. Moreover μg > val(vg). Then the valuation

g−1∗ (val(vg)) is centered on Oπ(τ). Thus it defines an integral v1 ∈ int(π(τ)) such
that v ≥ v1 on π(τ) and v2 := v − v1. Then

val(v) = g−1∗ (μg) > g−1∗ (val(vg)) ≥ val(v1).

Note also that if v ≥ v0 thenμg = g∗(val(v)) ≥ val(v0) and val(vg) ≥ val(v0). Thus
also val(v1) ≥ val(v0). �

Lemma 5.31. All valuations val(v), where v ∈ 
, 
 ∈ Vert(�σ ) \ Vert(σ ), are
Gσ -invariant.

Proof. Let v
 be the primitive generator of 
 ∈ Vert(�σ ) \ Vert(σ ). The ray 

corresponds to an exceptional divisorD
. By the definition there is no decomposition
v
 = v1+v. Thus by the previous lemma (for � = {e}), val(v) isGσ -invariant. �

Lemma 5.32. For any τ ≤ σ , the closure of the orbit Oτ ⊂ X̃σ is Gσ -invariant.

Proof. By Lemma 5.2, the ideal of Oτ ⊂ X̃σ is generated by all functions with
nontrivial �σ -weights. �

Lemma 5.33. The valuations val(v), where v ∈ par(π(τ)), areGσ -invariant on X̃�σ .
Moreover v ∈ int(π(σ0)), for some σ0 ≤ σ .

Proof. Let v ∈ par(π(τ)), where π(τ) ∈ π(�) is a minimal integral vector such
that val(v) is not Gσ -invariant. We may assume that v ∈ int(π(τ)) passing to its
face if necessary. Let σ ′ ∈ σ0 be a face of σ such that v ∈ int π(σ ′). In particular
π(σ ′) ⊂ π(τ). Then π(�σ )|π(σ ′) = π(�σ )|π(σ0) ⊕ 〈e1, . . . , ek〉 by Lemmas 5.9
and 5.15 and v ∈ par(π(τ)) ⊂ π(σ0). Thus σ ′ = σ0 and v ∈ int(π(σ0)). Let

π(τ) = 〈v1, . . . , vk, w1, . . . , w�〉,
where v1, . . . , vk ∈ Vert(π(τ)) and w1, . . . , w� ∈ Vert(π(�)) \ Vert(π(σ )). By
Lemma 5.31, val(w1), . . . , val(w�) are Gσ -invariant. Write

v = α1v1 + · · · + αkvk + αk+1w1 + · · · + αk+�w�,
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where 0 < αi < 1. Note that

v ≥ v0 = αk+1w1 + · · · + αk+�w�
and Oπ(σ0) ⊂ X̃π(σ) is Gσ -invariant. By Lemma 5.30 for v ∈ π(σ0) ≤ π(σ) and
v > v0 we can find integral vectors v′, v′′ ∈ π(σ) such that v = v′ + v′′, v′ ≥ v0.
Then

v′′ := v − v′ ≤ v − v0 = α1v1 + · · · + αkvk.
Thus v′′ ∈ par〈v1, . . . , vk〉 ⊆ par(π)(τ ). Write v′′ := β1v1 + · · · + βkvk , where
βi ≤ αi . Then

v′ = v−v′′ = (α1−β1)v1+· · ·+ (αk−βk)vk+αk+1w1+· · ·+αk+� ∈ par(π(τ)).

By the minimality assumption, val(v′) and val(v′′) are Gσ -invariant and it follows
from Lemma 5.24 that val(v) = val(v′ + v′′) is Gσ -invariant. �

Corollary 5.34. Let � = {�σ ∈ �} be a decomposition of �. Let τ ∈ �σ be an
independent face. Then the vectors in (πσ|τ )

−1(par(πσ (τ ))) are stable.

Proof. Put � = �τ . Let π : (σ,Nσ ) → (σ,N�
σ ) be the linear isomorphism and a

lattice inclusion corresponding to the quotient Xσ → Xσ/�. Then by Lemma 5.8,
π(τ) 
 πτ (τ ) 
 πσ (τ) and by Lemma 5.33 vectors in (πσ|τ )

−1(par(πσ (τ ))) =
π−1(par(π(τ))) are stable. �

Corollary 5.35. 1. Assume that for any g ∈ Gσ , there exists τg ∈ �σ such that

g(Oτ ) = Oτg . Then Oτ is Gσ -invariant. Moreover all valuations val(v), where
v ∈ par (τ ) ∩ int(τ ), are Gσ -invariant.

2. Let τ ∈ �σ be an independent cone such that Oτ is Gσ -invariant. Then for
any v ∈ π−1

σ (par (π(τ)) ∩ int(π(τ))) the valuation val(v) is Gσ -invariant.

Proof. 1. Let τ = 〈v1, . . . , vk〉 and v = α1v1 + · · · + αkvk , where 0 < αi ≤ 1,
be a minimal vector in int(τ ) ∩ par (τ ) such that val(v) is not Gσ -invariant. Then
by Lemma 5.30, the vector v can be written as v = v′ + v′′, where v′, v′′ < v,
v′ ∈ int(τ ), v′′ ∈ τ . Thus v′ = α′1v1 + · · · + α′kvk where 0 < α′i ≤ αi ≤ 1 and
v′′ = α′′1v1+· · ·+α′′k vk , where 0 ≤ α′′i = αi−α′i < 1. Then v′ ∈ int(τ )∩par (τ ) and
v′′ ∈ par(τ ). By Corollary 5.34, val(v′′) is Gσ -invariant on X̃σ . By the minimality
assumption val(v′) is Gσ -invariant. Since v = v′ + v′′, the valuation val(v) is Gσ -
invariant on X̃σ and its center Z(val(v)) equals Oτ .

2. Let π : N → N� be the projection corresponding to the quotient Xσ →
Xσ/�τ . Then π(τ) 
 πσ (τ). The proof is now exactly the same as the proof in 1
except that we replace X̃�σ with X̃�σ /�τ . �

Corollary 5.36. Let δ ∈ �σ be a circuit. Then Oδ is Gσ -invariant.

Proof. By Corollary 4.5, Oδ is an irreducible component of a Gσ -invariant closed
subscheme X̃K

∗
�σ . Thus by the previous corollary it is Gσ -invariant. �
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5.10. Stability of Ctr+(σ ). In the sequel δ = 〈v1, . . . , vk〉 ∈ �σ is a circuit. Let
� ⊂ �σ = K∗ be a finite group. Denote by π (resp. π�) the projection corresponding
to the quotientXδ → Xδ//K

∗ (resp.Xδ → Xδ/�). Write π(δ) = 〈w1, . . . , wk〉 and
let

∑
r ′i>0 r

′
iwi = 0 be the unique relation between vectors (∗∗) as in Section 4.4. Set

Ctr+(δ) = ∑
r ′i>0wi ∈ par(π(δ+)) ∩ int(π(δ+)), where δ+ = 〈vi | ri > 0〉.

Denote by X̂δ the completion of X̃�σ atOδ . By Corollary 5.36, the generic point
Oδ ∈ X̃�σ isGσ -invariant and thusGσ acts on X̂δ . MoreoverK[X̂δ] = K(Oδ)[[δ∨]]
is faithfully flat over a OX̃�σ ,Oδ

. Also, ÔXπ�(�),Õπ�(δ)
= K(Õπ�(δ))[[π�(δ)∨]] is

faithfully flat over OXπ�(�),Õπ�(δ)
and we get

Lemma 5.37. The valuation val(v), where v ∈ π�(δ), is Gσ -invariant on X̂δ/� iff
it is Gσ -invariant on X̃�σ /�.

Lemma 5.38. Oδ−,Oδ+ ⊂ X̂δ and Oδ−,Oδ+ ⊂ X̃�σ are Gσ -invariant.

Proof. By Lemmas 4.13 and 2.10, the ideal I
Oδ+

⊂ K[X̂σ ] of Oδ+ = (Oδ)
+ is

generated by functions with positive weights. �

Proposition 4.12, Lemma 4.13 and the above imply:

Corollary 5.39. The morphisms φ̂− : (X̂δ)−/K∗ → X̂δ//K
∗ and φ̂+ : (X̂δ)+/K∗ →

X̂δ//K
∗ are Gσ -equivariant, proper and birational.

Lemma 5.40. The vector v :=Mid (Ctr+(δ), δ)=π−1
|∂−(δ)(Ctr+(δ))+π−1

|∂+(δ)(Ctr+(δ))
is stable.

Proof. Set v− := π−1
|∂−(δ)(Ctr+(δ)) and v+ := π−1

|∂+(δ)(Ctr+(δ)). By Lemma 5.38,

Oδ+ ⊂ X̃�σ is Gσ -invariant and, by Corollary 5.35(2) and Lemma 5.37, val(v+)
is Gσ -invariant on X̃σ and on X̂δ . Hence the valuation val(v+) descends to a Gσ -
invariant valuation val(π(v+)) on X̂δ//K∗ = K(Oδ)[[δ∨]]K∗

. By Corollary 5.39,
val(π(v−)) = val(π(v+)) is Gσ -invariant on (X̂δ)+/K∗ = X̂∂−(δ)/K

∗ = X̂π(∂−(δ)).
Let � ⊂ K∗ be the subgroup generated by all subgroups �τ ⊂ K∗, where τ ∈ ∂−(δ).
Then K∗/� acts freely on X∂−(δ)/� = (Xδ)+/�. Let j : (Xδ)+/� → (Xδ)+/K∗
be the natural morphism. Let π� : δ→ π�(δ) be the projection corresponding to the
quotient Xδ → Xδ/�. By Lemma 5.7, for any τ ∈ ∂−(σ ), the restriction of j to
Xτ/� ⊂ (Xδ)+/� is given by j : Xτ/� = Xτ/� ×Oτ/�→ Xτ/K

∗ = Xτ/� ×
Oτ/K

∗. Thus �val(π�(v−)),a = ĵ∗(�val(π(v−)),a), where ĵ : (X̂δ)+/�→ (X̂δ)+/K∗ is
the natural morphism induced by j . Since the morphism ĵ isGσ -equivariant it follows
that val(π�(v−)) is Gσ -equivariant on (X̂δ)+/�. Since (X̂δ)+ ⊂ X̂δ is an open Gσ -

equivariant inclusion and � is finite we get that the morphism (X̂δ)+/� ⊂ (X̂δ)/� is
an open Gσ -equivariant inclusion. Thus the valuation val(π(v−)) is Gσ -equivariant

on X̂δ/� and on X̃�σ /� (Lemma 5.37). Finally, by Lemma 5.29, val(v−) it is Gσ -
equivariant on X̃�σ . Thus by the convexity val(v) = val(v+ + v−) isGσ -equivariant
on X̃�σ . �
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5.11. π -desingularization of cobordisms. Let δ1, . . . , δk ∈ � be the circuits in�.
Note that common faces of distinct circuits are independent. Also, every independent
τ ∈ � is a face of some circuit τ < δ. Thus π -desingularization of circuits δi will
determine π -desingularization of all faces in �. Apply Morelli π -desingularization
to δ1 to get �σ1

1 := 〈vr1〉 . . . 〈v1〉 · δ1. This defines a canonical subdivision �1 of �,
where�1 := 〈vr1〉 . . . 〈v1〉 ·�. Next apply the π -desingularization to the subdivision
�
σ2
1 of σ2 to get �σ2

2 := 〈vr2〉 . . . 〈vr1+1〉 · �σ2
1 and �2 = 〈vr2〉 . . . 〈vr1+1〉 · �1.

Continue the process for other circuits to get the π -nonsingular subdivision �k =
〈vrk 〉 . . . 〈v1〉 ·� of �.

5.12. Proof of the Weak Factorization Theorem. The decomposition � of � is
obtained by a sequence of star subdivisions at stable centers (Lemmas 5.40, 5.34).
By Propositions 5.23 and 5.18, � defines a birational projective modification
f : Bπ → B. The modification does not affect points with trivial stabilizers B− =
X− \ X and Y+ \ Y (see Proposition 2.12). This means that (Bπ)− = B− and
(Bπ)+ = B+ and Bπ is a cobordism between X and Y . Moreover Bπ admits a
projective compactification Bπ = Bπ ∪ X ∪ Y . The cobordism Bπ ⊂ Bπ admits
a decomposition into elementary cobordisms Bπa , defined by the strictly increasing
function χBπ . Let F ∈ C((Bπa )

K∗
) be a fixed point component and x ∈ F be a point.

By Proposition 5.18 the modification f : Bπ → B is locally described for a toric
chart φσ : U → Xσ by a smooth �σ -equivariant morphism φ�σ : f−1(U)→ X�σ .
Then by Lemma 4.4, φ�σ (x) is inOδ , where δ ∈ �σ is dependent and π -nonsingular.
In particular the cone σ ∈ � is also dependent and �σ = K∗. So we locally have a
smooth K∗-equivariant morphism

φδ : Vx → Xδ,

where Vx ⊂ φ−1
�σ (Xδ) is an affine K∗-invariant subset of Bπa . This gives a diagram

(Bπa )−/K∗ ⊃ Vx−/K∗ → Xδ−/K∗�⏐ψ− �⏐ �⏐φ−
�((Bπa )−/K∗, (Bπa )+/K∗) ⊃ �(Vx−/K∗, Vx+/K∗) → �(Xδ−/K∗, Xδ+/K∗)⏐�ψ+ ⏐� ⏐�φ+

(Bπa )+/K∗ ⊃ Vx+/K∗ → Xδ+/K∗

with horizontal arrows smooth. Here �(X−/K∗, X+/K∗) denotes the normaliza-
tion of the graph of a birational map X−/K∗ ��� X+/K∗ for a relevant cobordism
X. We use functoriality of the graph (a dominated component of the fiber product
X−/K∗ ×X//K∗ X+/K∗). By Corollary 4.16 the morphisms φ− and φ+ are blow-ups
at smooth centers. Thus ψ− and ψ+ are locally blow-ups at smooth centers so they
are globally blow-ups at smooth centers.
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[5] Białynicki-Birula, A., Świȩcicka, J., Complete quotients by algebraic torus actions. In
Group actions and vector fields, Lecture Notes in Math. 956, Springer-Verlag, Berlin 1982,
10–21.

[6] Bierstone, E., and Milman, D., Canonical desingularization in characteristic zero by blow-
ing up the maximum strata of a local invariant. Invent. Math. 128 (1997), 207–302.

[7] M. Brion and C. Procesi,Action d’un tore dans une variété projective. in Operator algebras,
unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progr.
Math. 92, Birkhäuser, Boston 1990, 509–539.

[8] Christensen, C., Strong domination/weak factorization of three dimensional regular local
rings. J. Indian Math. Soc. 45 (1981), 21–47.

[9] Cutkosky, S. D., Local factorization of birational maps. Adv. in Math. 132 (1997), 167–315.

[10] Cutkosky, S. D., Local factorization and monomialization of morphisms. Astérisque 260
(1999).

[11] Danilov, V. I., The geometry of toric varieties. Russian Math. Surveys 33 (1978), 97–154.

[12] Danilov, V. I., Birational geometry of toric 3-folds. Math. USSR-Izv. 21 (1983), 269–280.

[13] Dolgachev, I. V., and Hu,Y., Variation of geometric invariant theory quotients. Inst. Hautes
Études Sci. Publ. Math. 87 (1998), 5–56.

[14] Ewald, G., Blow-ups of smooth toric 3-varieties. Abh. Math. Sem. Univ. Hamburg 57
(1987), 193–201.

[15] Fulton, W., Introduction to Toric Varieties. Ann. of Math. Stud. 131, Princeton University
Press, Princeton 1993.

[16] Hartshorne, R., Algebraic Geometry. Grad. Texts in Math. 52, Springer-Verlag, New York,
Heidelberg 1977.

[17] Hironaka, H., On the theory of birational blowing-up. Harvard University Ph.D. Thesis,
1960.

[18] Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic
zero. Ann. of Math. 79 (1964), 109–326.

[19] Hu, Y., The geometry and topology of quotient varieties of torus actions. Duke Math. J. 68
(1992), 151–184; Erratum ibid. 68 (1992), 609.

[20] Hu, Y., Relative geometric invariant theory and universal moduli spaces. Internat. J. Math.
7 (1996), 151–181.



30 Jarosław Włodarczyk
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