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1. REVIEW ON IDEALISTIC EXPONENTS AND INFINITELY NEAR SINGULARITIES

We will be working on singular objects given in a smooth irreducible algebraic
scheme Z of dimension n > 2 over a perfect base field K. An idealistic exponent
E = (J,b) will be nothing but a pair of a coherent ideal sheaf J C Oz and a positive
integer b. However we will later add far deeper meanings to it which are algebraic
on one hand and geometric on the other.

Example 1.1. An / G K[x], ̂  0, with a system of variables x = (x\, • • • ,xn) defines
a hypersurface F = Spec(K[x}/fK[x\) in an affine space Z = Spec(K[x\) of dimen-
sion n. For a positive integer b, a pair E = (J, b) with J = /K[x] will be associated
with problems on those singular points of multiplicities > b of P, especially with
that of eliminating all such singular points by means of sequences of suitable blow-
ups over the ambient space Z. Naturally the most interesting case is when b is the
maximum of the multiplicities of F at the points £ of Z, which are

mult^F) = ordt(f),£eZ.

But for some technical reason, we need to consider the cases of arbitrary b > 0. To
be more precise but only primarily so, we will view E as being the totality of all
those infinitely near singularities of multiuplicities > b which mean those points
of multiplicities > b of the transforms of F by permissible blow-ups. A blow-up
with center D will be said to be permissible for E if D is smooth and ord^(f) > b
for all £ € D. To be furthermore precise, we will need to consider the same of
E[t] = (J[t],b) on Z[t] where t is any finite system of additional indeterminates
and Z[t] = Spec(K[x,t]) and J[t] = JOz[t\- The reason for the needs will be
made apparent by the key technical theorems, especially the theorem of Numerical
Exponents, [11], [12],[13].

Definition 1.1. For E = (J,b), we define

ord(-(E) = ordi=(J)/b and Sing(E) = {C € Z | ordM(E) > 1},

which is called the singular locus of E.

Now, back to the general case of E — (J, b) on Z, we set out some basic defini-
tions:

Definition 1.2. A blow-up TT : Z' —> Z with center D C Z is said to be permissible
for E if
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(1) D is a smooth irreducible closed subschema of Z, and
(2) D is contained in the singular locus Sing(E) of Def.(l.l).

Definition 1.3. The transform E' — (J', b) of E = (J, b) by a permissible blow-up
~K : Z' —> Z with center D C Z is defined by letting

where I(D, Z) denotes the ideal sheaf defining D C Z. It should be noted that,
assuming D ^ Z, the ideal I(D, Z)Oz> is locally everywhere nonzero principal and
divides JOz> because of the pemissibility condition of Def.(1.2). Hence J' C Oz- If
D = Z, then we define Z' to be empty so that the above definition is still logically
valid.

Remark 1.1. Assume that a proper blow-up IT : Z' —> Z is permissible for both
Ei = (Ji,k),i = 1,2, Let E/ be the transform of Et by IT. Then E{ n £"2' is
equivalent to the transform of E\ n E% by 7r.

Having the definition of permissibility and transform, we can naturally extend
the notion of permissibility to successive blow-ups for E. We can thus speak of
permissibility of LSB's which are defined below.

Definition 1.4. An LSB over Z, a short form of a sequence of local smooth blow-
ups, is defined to be the following diagram:

7Tr_i 7T r^2

Zr —> Ur^i C 2/ r_] —>

u
A-i

-> UiCZi ^ UocZo = Z
U U
Dl Do

where Ui is an open subscheme of Zi, D, is a regular closed subscheme of Ui and
the arrows mean: TTJ : /?i+i —> Ui is the blowing-up with center D{.

Definition 1.5. Pick any finite system of indeterminates t = (ti,--- ,ti). Let
Z[t] = Spec(K[t]) xK Z and £[t] = (J[t],b) with J[t] = JOZ[ t ] with respect to the
canonical projection. We then define the following t-indexed disjoint union:

6(15) = | J the set I all those LSBs over Z[t) which are permissible for E[t] \

which will be called the totality of infinitely near singularities of E on Z. We then
define the inclusion relations for any two Ej,j — 1, 2, as follows:

E\ C E-2 (symbolically)

C &(E2) (set-theoretically)

Vt, an LSB is permissible for E\[t] = > it is permissible for



SINGULARITIES 3

We then define equivalence relation by saying that

Ei ~ E-2 •$=> Ei C E2 and Ei D E2-

Finally we shall use the notation r\aEa for any number of idealistic exponents Ea,
meaning that we have an idealistic exponent F such that

na6(Ea) = &(F)

in the set-theoretical sense (for every t indivisually as above).

What follows are most of the elementary but basic facts on relations among
idealistic exponents, whose proofs are more or less straight forward.

[Fact 1] (Je,e6) ~ {J,b) for every positive integer e.
[Fact 2] For every common multiple m of b% and 62 > w e have

In particular if b\ = 62 = b (= m) and J\ c ,h then we have (Ji,b) D {J2,b).
It also follows that the intersection of any finite number of idealisitic exponents is
equivalent to an idealistic exponent.

[Fact 3] We always have

The reversed inclusion does not hold in general. However, if Sing(Ji,bi + 1) are
both empty for i = 1,2, then the left hand side becomes equivalent to the right
hand side. Moreover, we always have

(J,b) c ( J f c A ) . i < k < r, => (J,b) c ( ] J J k , J 2 h )
l<k<r l<k<r

[Fat 4] Let us compare two idealistic exponents having the same ideal but
different 6's, say F\ = (J, bi) and F2 = (J, 62) with 61 > 62. Then we have

1) Ft c F2,
2) For any LSB permissble for Fj., and hence so for F2, their final transforms

differ only by a locally principal non-zero factor supported by the union of the
exceptional divisors.

To be precise, their final transforms being denoted by Fj* = (Jf, b\)
and F2 = ( J | , 62)1 "we have J% = MJl where M is a positive power
product of the ideals of the strict transforms of the exceptional di-
visors created by the blowing-ups belonging to the LBS.

Remark 1.2. Incidentally, changing the number b turns out to be a useful technique
in connection with the problem of transforming singular data into normal crossing
data which appears in a process of desingularization.

[Fact 5] We have (Ji,b) D (J2,b) if J\ is contained in the integral closure of
J2 in the sense of integral dependence (after Oscar Zariski) defined in the theory of
ideals. Recall the definition:

For ideals Hi,i = 1,2, in a commutative ring I?, Hi is integral over
j?2 in the sense of the ideal theory if and only if Y^a>o HfTa is
integral over J2a>o H^T11 in the sense of the ring theory, where T
is an indeterminate over R. In our case, since Z is regular and
hence normal, if TT : Z —> Z is any proper birational morphism
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such that Z is normal and J'iO^ is locally non-zero principal, then
the direct Image "n*{J%O£) '1S equal to the integral closure of J<2- As
an example of such n, we could take the normalized blowing-up of
J2, i.e., the blowing-up of J2 followed by normalization.

Let us now recall what we called the Three Key Theorems in my paper [12] which
are technically useful in the general theory of infinitely near sigularities. See also
[11] and [13] for the details with proofs.

We let Difff = Diff%JK, which denotes the Oz-module of all those differential
operators of orders < i from Oz into itself, which are acting trivially in K.

The first Key Tech:

Theorem 1.1 (Differentiation Theorem, or Diff theorem). For every Oz-submodule
T> of Diffz , we have the following inclusion in the sense of infinitely near singu-
larities

(VJ,b-i) 3 (J,b) meaning &(DJ,b-i) D &(J,b)
which is equivalent to saying that

&(J,b) f] G(VJ,b-i) = 6(J,b).

Incidentally the last equality will often be expressed symbolically as

(J,b)

Quite generally, let W C Z be a regular irreducible closed subscheme W of
an excellent scheme Z. In this paper Z Is assumed to be of finite type over a
field K and hence Is excellent and regularity of a subscheme is equivalent to Its
smoothness because K is perfect. Just for the sake of generality, we make the
following definition for a general W C Z as above, thinking of such a case in which
Z may be an arithmetic scheme which is of finite type over the ring of integers Z.

Definition 1.8. Given idealistic exponents E = (J,b) on Z and F = (H,a) on W,
F is called an ambient reduction of E from Z to W if the following condition is
satisfied:

Pick any finite system of indeterminates t = (t\, • • • ,tr) and any
LSB over Z[t], subject to one condition that all the centers of the
LSB are contained in the respective strict transforms ofW[t], which
therefore induces an LSB over W\t). The condition is that the LSB
on Z[t] is permissible for E[t] if and only if the induced LSB on W[t)
is permissible for F[t).

It should be noted here that every LSB over W[t] extends to an LSB over Z[t]
(with only non-uniqueness of open restrictions in the latter) and it is hence an
induced LSB from Z[t] to W[t].

Remark 1.3. The author does not know the existence of an ambient reduction in the
arithmetic case in general according to the above definition, while in the algebraic
case its existence Is proven constructively and universally as in the second technical
therein given below.
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The second Key Tech:

Theorem 1.2 (Ambient Reduction Theorem). Back to the case in which Z is of
finite type over a perfect base field K of any characteristic, we consider an idealistic
exponent E — (J,b) in Z. We let 0 = 6! and let

ji =

j=0

Then, for every smooth irreducible closed subscheme W C Z, F = (J 'Oiy, 6') is
an ambient reduction of E from Z to W.

Definition 1.7. We say that an ambient reduction F of E from Z to W is an
ambient equi-reduction, or ambient equivalent reduction if the following condition
is satisfied:

Pick any finite system of indeterminates t = (t\, • • • ,tr) and any
LSB over Z[t]. If it is permissible for E, then all the centers of the
LSB are necessarily contained in the respective strict transforms of
W[t], which therefore induces an LSB over W[t]. Moreover F is
an ambient reduction fron Z to W in the sense of Def.(1.6).

Let us again go back to the case in which Z is of finite type over a perfect base
field K.

The third Key Tech:

Theo rem 1.3 (Numerical Exponent Theorem). Let Wi,i = 1,2, he two smooth
irreducible closed, subschemes of Z having the same dimension. Let Fi = (J,;,Ct), be
an idealistic exponent on Wi,i = 1,2. Assume that we have an idealistic exponent
E = (J, b) on Z of which F\ is an ambient equi-reduction from Z to W for i = 1,2.
Then, for every £ € Z, we have the following eequivalence:

C € Wi and ord^(l'i) > c\ 4=^> ^ l f 2 and

Moreover if so then we have

Corollary 1.4. Consider two idealistic exponents E% = (Ji,bi),i = 1,2, on Z. If

G(Ei) C &(E2),i.e.,eUj1)
b2 + (J2) i>\6i62) = &(Ei), then we have

h ~ b2

for every £ £ Z for which the first fractional number > 1.

Remark 1.4. In the above theorem on numerical exponents, it is important that we
make use of auxiliary variables t in the definition of inclusion and equivalence among
idealisitic exponents. For instance, consider a plane curves X C Z = Spec(C{x,y})
defined by equations fi = yb — xCi with integers 1 < b < c,. Consider E{ =
(fiC[x,y],b) on Z. We can then prove easily that
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(1) We have the equality of the integral parts

b J l b '

if and only if the following statement holds:
For every LSB over Z, it is permissible for E\ if and only if it is
so for JE?2-

(2) We have the equality

Si - Si
b ~~~ b

if and only if the following statement holds:
For every t and every LSB over Z[t], it is permissible for Ei[t] if
and only if it is so for B% [t] •

The difference is apparent depending upon whether we make use of t or not.

2. CHARACTERISTIC ALGEBRA OF SINGULARITY

The results of this paper were all originally published in my paper [12] and later
reproduced in [13].

Definition 2 .1 . As before let us make use of E^ = ( j " , bs) where 6" = 6! arid

Then the characteristic algebra of E = (J, b) on Z, denoted by p(E), is the integral
closure of the subalgebra

(2.1) 2^(J»)°T6Q C }^OZT() = OZ\T]

where T is a dummy variable whose powers indicate degrees of the homogeneous
parts. In general the integral closure of a graded subalgebra is graded and hence
we can write

0=0

with coherent ideal sheaves Jmax(a) C Oz, Va, where ,/maa;(0) = Oz-

Incidentally, since Z is regular, Oz[T] of (2.1) is clearly integrally closed in its
field of fractions which is the function field of Z[T] and hence we could have said
that p(E) is the integral closure of Oz[(Jr)Tb'} in the function field of Z[T).

Remark 2.1. According to the above definition, for every non-negative integer a, the
ideal sheaf J-maxifl) consists of exactly those h € Oz which satisfy monic equations
of the form:

Remark 2.2. It follows from the above definition that p(E) is finitely presented as
(Pz-algebra.
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Remark 2.3. The characteristic algebra of E defined above turns out to be a
generalization of the first characteristic exponent for a plane curve. Just to get
an idea about it, consider the case in which K is an algebraically closed field of
characteristic zero and we are given a plane curve X in Z — Spec(JK\x,y\) defined
by / G K[x, J/],T^ 0. Let m > 0 be the maximum of the multiplicities of X, i.e.,
TO = max{ ordn(f) | r\ £ Z }. For simplicity let us assume that ord^(f) = m with
the origin £ = (0,0) and that if we write

f(x,y) = "S^ CijXlyj with c-^ € K

then we have

(1) Com ¥= 0,
(2) if S = min{ ^z^ | i > 0, Cij ^ 0 } then <5 < oo and the first Newton

segmental polynomial Ylij-s(m-j)=iCiox'ly:' *s n o* a n m"*h power of any
polynomial in K[x,t/].

These conditions can be always gained by taking a suitable biregular transformation
of Z except for the case in which / is an m-th power up to a unit multiple and
8 = oo. The rational number <5 is called the first characteristic exponent of the
plane curve. In this case p(E) — Y^,T=o Jmax(a)Ta with E = (fK[x,y],m) is as
follows:

Jrnax(a) = { xhf \ - + j > a,i > 0, j > 0 }, Vo > 0.

Incidentally this assertion fails to be true in general when char(K) = p > 0.

Theorem 2.1. We have other characterizations of the same p(E) for E = (J,b),
every one of which can be taken as it's definition.

(1) p(E) is the integral closure of the Oz-subalgebra ofOz[T] generated by the
set

It is the same as saying that p(E) is the integral closure of the following
Oz-subalgebra ofOz'[T)

E
(2) p(E) is the smallest among those Oz-subalgebras G of Oz[T] which have

the following properties:
(a) Oz C G and JTb C G.
(b) For every pair of integers c > d > 0, if I is a coherent ideal sheaf in

Oz such that ITC c G then we have (Diff{?ll)Tc-d C G.

(c) G is integrally closed in Oz\T]. In particular, for every integer rn > 0
we have

fTk £ G <=>• fmTmk € G,Vk.

As for the above property (b), we use the following

Lemma 2.2. For every c = YliZo(b ~ i)ai with a 6 Z Q and for every d < c,

Diffz
d)(ii(D<Kfffjr

•i=0
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is contained in

-ro Pi(b-i)=c-d i = 0

In cotrast against the algebraic nature of p(E) shown in both Def.(2.1) and
Th.(2.1), we have a quite different way of defining the same p(E), which is geometic
in the sense of infinitely near singularities defined by means of of successive blow-
ups, or more precisely by LSBs over Z[t] with various t (see Defs. (1.4) and (1.5)

)•

Theorem 2.3. For every a G Zo , the ideal sheaf Jmax(a) of Def.(2.1) can be defined
as follows:

Jmax(a) = [j{ ideals I | 6 ( J » 3 &(J\h) }.

In fact, there always exists the maximal one among all such ideals I as above with
respect to the set-theoretical inclusion relation.

Remark 2.4. This theorem, asserting that the algebraic definition (2.1) of p(E) is
equivalent to the geometric one of Th.(2.1), was proven in the paper [12], in which
the geometric characterization was taken as its definition rather than the algebraic
one done here. For the detail of its proof, the reader should refer to the proofs of
Lemmas 2.1 - 2.2 and the equality (b) of page 918 of [12], included in the proof of
what was called Main Theorem, there.

3. STRATEGY FOR, INDUCTION (1)

From now on we will assume that we are given a normal crossing data, simply
called NC, in the ambient scheme Z.

Definition 3.1. An NC means a finite system of hypersurfaces T = (Fi, • • • , Fs)
in Z satisfying the following conditions:

(1) For each j , Tj is a smooth irreducible closed hypersurface in Z,
(2) Tj^Tkiij^k, and
(3) F has only normal crossings everywhere in Z, i.e., for every point 77 € Z

we can finid a regular system of parameters z = (z\, • • • ,zn) of the local
ring Qz,r\ such that if 77 € Tj then there exists k, 1 < k < n, with which the
ideal of F^ in Oz,-ri is generated by Zk-

Definition 3.2. For a point £ G Z, a regular system of parameters x = {x\, • • - , xn)
of Oz& will be said F- adapted if every F7- passing though £ is defined by an ideal
generated by one of the Xj's. A smooth subscheme D C Z is said to have (only)
normal crossings with F at £ € Z if there exists a F- adapted regular system of
parameters x of Oz,(_ such that the ideal of D at £ is generated by a subsystem
of x. If this is true at every point of D, then we simply say that D has normal
crossings with F. An ideal I in Oz,i is said to be T-monomial if there exists a
F-adapted regular system of parameters x of Oz,£ in terms of which I is generated
by a monomial in x.

Definition 3.3. A blow-up IT : Z' —» Z with center D is said to be permissible for
F if D is smooth irreducible and have normal crossings with F. The transform T1
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of F by IT is defined to be

r' = (ri , . - . ,r; ,r ' i + 1 )
such that

(1) F^ is the strict transform of F,; by IT for every i, 1 < i < s,
(2) T's+1 is the exceptional divisor ir~l(D).

We can thus speak of whether a sequence of blow-ups over Z is (successively)
permissible for T or not.

We write |TJ for the set-theoretical union of the F.j, 1 < i < s, which is a closed
subset of Z.

Definition 3.4. A blow-up will be said to be proper if the center is closed. A
sequence of blow-ups will be said to be proper if the blow-ups are all successively
proper.

We then propose to give an affirmative answer to the following Desingularization
Problems:

Problem(l.n):
Let n be the dimension of Z and let E = (J,b) be an idealistic exponent with

J ^ (0) on Z. The question is then about the existence of a finite proper sequence
of blow-ups over Z, permissible for both E and T, such that the final transforms
E = (J,b) of E is nonsingular, i.e., Sing(E) = 0.

At this point we present one of the many steps in our process of solving the above
problem. It is a problem reduction which will be repeatedly used later in the proof
of desingularization by induction. It concerns with the comparison of two idealistic
exponents having the same ideal but different base numbers. Keep in mind that
we have a common V and its transforms whenever we apply permissible sequences
of blow-ups. We thus have

Lemma 3.1. Let us compare E = (•/,&) and E* = (J,m) where 0 < b < m. Then
the following statements are true.

(1) / / an LSB of Def.(1.4) over Z[t] is permissible for E*[t] then so it is for
E\t] for every t. In other words, E* C 15.

(2) For any pair of E\ = (Ji,&i) and E$ = {Ji,m{) having m/b = m\/b\, if
J5q ~ E then E* ~ E{ in the sense of Def.(1.5).

(3) After every finite sequence of blow-ups permissible for E* and hence per-
missible for E, say it : Z —> Z, the final transform E = (J, b) of E by IT
differs from the final E* = (J*, rn) of E* by a factor of the following form,:
There exists a T-monomial A C O% such that AJ* = J everywhere in Z,
where T denotes the final tansform ofT by w.

(4) If moreover rn = max{ordn(J) | rj S Z} > b and Sing(E*) = 0, then

A^J) = ordn(J*) < m, VTJ G Sing(E).
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Proposition 3.2. Given any idealistic exponent F = (I,b) in Z,
F* will denote the associated idealistic exponent (I, m) with m =
max {ordn(I) \ r\ G Z}.

Suppose that the Problem(J.n) had been affirmatively solved for every F* =
(I*, TO) in Z, then for any idealistic exponent E = (J, b) on Z, there exists a finite
proper sequence of blow-ups, permissible for E and T, such that J of the final
transform E = (J, b) of E is a T-monomial at every point of Sing(E), where T
denotes the final transform ofT.

For a proof of this proposition, we will write F* for F = (/, c) to means F* =
(/,c*) where c* = rnax{ordr,(I),\?r}}. Now, given E — (J,b), we apply the supposi-
tion of the proposition to E* in the manner of the lemma (3.1) repeatedly as follows.
Write E(0) = (J(0), 6(0) for E = (J, b) and E(0)* = (J(0), 6(0)*). Apply the lemma
(3.1) to E(0)* and accordingly we find a sequence of blowups TT(0) : Z(1) —> Z(0).
We let E(0)* = (J(0)*,b(0)*) and E{0) = (1(0), 6(0)) be the final transforms of
£"(0)* and £"(0) by TT(O), respectively, so that Sing(E(0)*) = 0. We also have a
r(0-monomial A(1) with J(0) = A(l)J(0)* in the sense of Lern.(3.1). We let

m(l) = max{ ordc{J(0)*) \ ( G Sing{E{0)) C Z{\)}

so that ro(l) < m(0). If m(l) = 0, then J(0) = A(l) at every point of Sing(E(Q))
and we are done. If m(l) > 0 then we proceed as follows: Let us define

E(l) = £(0)n(J(0y,m(l)) ~ (J(0)* + J(0),m(l))

where the last equivalence is because J(0)r/ D J(0)*v locally at every rj € Sing(E(0)).
Write J(l) = j(0)* + J(0) and £(1) = (J(l),6(l)) with 6(1) = m(l). We then
apply Lem.(3.1) to £"(!)* in the same manner as above. We obtain a sequence
of blowups ?r(2) : Z(2) —> Z(l), permissible for E(l)*, We also obtain the
transforms E{1)* = (J(l)*,rn(l)) and E(l) = (J(l),fr(l)) of J5(l)* and E(l),
respectively, so that Sing(E(l)*) = 0. Similarly m(2) and i?(2) are obtained with
m(2) < m(l)as before. Repeat the same process again if necessary. The inequalities
m > m(l) > m2) > • • • > 0 cannot continue forever.

The usefulness of the above reduction is as follows.

Remark 3.1. Consider that J of E — (J, b) is already F-monomial at every point of
Sing(E). We then have an explicit procedure which eliminates all the singularities
of E, thus giving an affirmative answer to the problem Prob.(3) stated in the
beginning of this section.

In fact, let us denote trii = ordr^J), 1 < i < s. Define k > 0 to be the smallest
length among those of all subsystems S of [1, s] such that

P| Ti ^ 0 and Ylmi - b'- so that f] r?: C Sin9(E)-
i£S ieS i£S

Pick any such S of length k and apply the blow-up with center riigsTj (or its
connected, components one after another) to Z. This process stops after a finite
number of steps and leads to the situation in which the final transform of E has no
singular points.
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Remark 3.2. We could make the last process more canonical by choosing S =
(ii, • • • , ik) of lenght fc as follows:

(1) n t e S r t / 0 and ^^smi>b,
(2) ii < i2 < • • • < h, and
(3) (ii, • • • , ife) is the lexicographically smallest among those 5 having the above

two properties.

4. STRATEGY FOR INDUCTION (2)

Prom now on, we look at singular data locally at a closed point f; £ Z. We let
R = Qz,£, M = max(R) and K = R/M. For an element / G R, we will use the
symbol iriM(f) for the M-adic initial form, of / , which means the class of / modulo
Mk+l where k = ordM(f). (If k = oo, then iriM(f) = 0.) This residue field K is
also a perfect field because it is a finite algebraic extension of the perfect field K.
We assume dirn(R) = n. We will need the following lemma which will be called
initial decomposition lemma, in which if the characteristic of K is zero then we must
understand pe = 1 for all non-negative integers e. However our primary interest
lies in the case of char(K) = p > 0.

Lemma 4.1. Given any non-zero ideal J C R "with ord^iJ) = m > 0, we can
find a regular system of parameters y = (t/i, • • • , yn) of R, an integer r, 1 < r < n,
and a sequence of powers q-i = pe*, e,; > 0,1 < i < r, which satisfy the following
conditions: Letting iji = inM(yi),Vi, and y — (t/i, • • • ,yn), we have

(1) rn > qi > q2 > • • • > qr > 1,

(2) for each i, 1 < i < r, 3Pj € Diffj£}K
q% and 3/j € J such that ord,M{fi) =

rn and inM(Difi) — f/f%
(3) for every f € J with ordf^if) = rn, we have iriM(f) 6 K{vT>" •' >l/rr]]^-

Corollary 4.2, Let p(E) = J2j>o ̂ max{j)T^ with E = (J,m) where J and in are
the same as above. Then for every g <£ Jmax{d) with d > 1 and ord,M.{9) = d, we
have a regular system of parameters y = [y\, • • • , yn) of R, an integer r, 1 < r < n,
and a sequence of powers qi — pei,Ci > 0,1 < i < r, satisfying the following
conditions:

(1) for every i we have Qi < d and 3 ft S Jmax{Qi) such that

9i = yf' + higher order terms € yf + M'h+1

(2) and

9- E c « I I ^ ^ «E

with suitably chosen ca € R, Va.

Thanks to the lemma (4.1) and corollary (4.2) above, we obtain

Theorem 4.3. Consider E = (J,b) on Z and let rn = max{ordri(J) | rj G Z}.
Let E* = (J,m) and write p(E*) = J2j>o Jmax(j)Tj. Pick any closed point £ €
Sing(E*) so that ord^(J) = rn. Let R — Oz,£ an<i M = max(R). Then we can find

(1) a local coordinate system y = (y%, • • • , yn) of Z, centered at £,
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(2) an integer r with 0 < r < n, a system of non-negative powers of the cftor(K)

ft=pe\ei>--->er >0

and a system of elements gi € Jmax{o.i)i

9i = yf + (higher order terms) G yf + Mqi+l

such that for every a > 0

Ma+1

It follows that we obtain the following type of equivalence which holds within a
sufficiently small neighborhood of £ G Z:

E- ~ ( r ) E i ) f ) F

where Ei = ig-iO'z, ft),1 < i < r, and F = (I, a) with ord^(I) > a, which make
sense within a neighborhood of £ £ Z.

Remark 4.1. In the above Th.(4.3), If there exists no a with a = ]T^=
for a given a, we then must have ord^(Jmax(a)) > a. In particular, we have
ord^(Jmax(k)) > k for all fc < qr.

Remark 4.2. The existence of F of Th.(4.3) is due to the fact that p(E*) is finitely
presented as O^-aigebra, although its uniqueness is not true in general.

Proposi t ion 4.4. By the properties listed above of the decomposition of Th.(4-3),
we have the uniqueness of the following objects:

(1) the system of numbers defined by

q€(£T) = ( n , n - r , < 7 i , - - - ,qr)

which is also denoted by q^(E).
(2) For each d > 0 the n-module Jmax(d)^ C Md/Md+1, which is defined to be

Jmax (d)s + Md+1 modulo Jrnax (d)l + Md+1

where, with i(d) = rnin{ i \ qi < d } ,

( )
d = I3t(«i)<»<rQ«9>

(3) The flag of «(£)- sub spaces

M/M2DFi D,--- , 3 F i C F w = (0) with Fj= V yiK(0
i>r(J-l)

where y-i = inM{Vi) denotes the class in M/M2 and r(0) = 0 and qt =
Qr(i) > 5 r ( i ) + i - Qr(2) > ••• = qr(k-i) > 9 r ( f c - i ) + i = 1r • The yt 's are those

selected by Th.(4-3).
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Remark 4,3. This concerns with the globalization of the invariants q^(E*). Let 5
be the smooth part of the set of points i] G Z with ordv(E*) = 1 or ordn(J) = m.
It is an open dense subset of a closed subset in Z. Let I be the idea induced by the
diagonal ideal into Z x^ S. The graded algebra by the powers of I corresponds to
the family of tangent spaces to Z parametrized by the points of S. In it we have
the family of homogeneous ideals JOzxS mod Jm+1 parametrized by the points
of S. In this way we can describe the upper semicontinuity of qr,(E*),T] G S, and
an algebraic cj-stratification of S.

5. STRATEGY FOR INDUCTION (3)

We will now proceed to formulate our inductive approach in terms of the sequence
q^(E*) of Prop.(4.4) for an idealistic exponent E = (J, h) in Z, where Z is an n-
dimensional smooth irreducible scheme of finite type over a perfect base field K of
characteristic p > 0. Recall that E* is (J,m) with rn = max{ordr](J) \ r/ G Z}.

Our definition of ordering among systems of numbers is lexicographical. Namely,
we say that

(ai,a2,- • • ,ai) < (&i,b2, • • • ,bm)

if and only if there exists an integer k > 1 such that Oj = 6j, Vi < k, and Ofe < bk,
where b^ = oo when k > m. (Think of adjoining a tail of unlimited length of
repeated oo to every sequence.)

Let us now begin to examine the effects of permissible sequence of blow-ups to
q^(E*). Let us recall the decomposition of Th.(4.3) and the notation used there.
We let R = Oz,( and M = max(R).

Lemma 5.1. Let us pick q = pe with e > 1 and a regular system of parameters
V = (yii •' • i Un) of R- le-t us pick any g & M of the following form.

g — y^1 4- higher order terms € y^ + Mg+1

If I C it is a prime ideal such that R/I is regular and g G Iq, then there exists an
element h € M2 such thatyi — h G / . Moreover it follows thathq + (g — y1

9) G IqM.

Corollary 5.2. / / a proper blow-up n : Z' —> Z with center D passing through £
is permissible for Ei of Th.(4.3), then we. have yi 6 I(D, Z){. + M2 with the same
i where I(D,Z)^ denotes the ideal of D C Z at £.

Remark 5.1. Let yt — hi = z,; with Z{ € I and hi G M2 where I = I(D,Z)^. In
terms of the notation of Th.(4.3), the sequence q^(E*) remains unchanged when z,-t

takes the place of t/j in the expression of §{. IS IT of Cor.(5.2) is permissible for E*
and hence so it is for every one of the E{, then we can let z-i take the place of t/,;
for all i in such a way that q^(E*) remains unchanged. Indeed the decomposition
of Th.(4.3) itself is unchanged.

Lemma 5.3. Keep the notation and assumptions of both Lem.(5.1) and Rem.(5.1).
If a closed point £' G 7r^x(^) c Z' belongs to the singular locus Sing{E'i) of the
transform E'{ of Ei by TT, then we have z.t — yi — hi with hi G M2 such that

(zi)R' C I'M' for the same i,

where R' = Oz>,z>, M' = max(R') and I' = I(D',Z')e = IR' with D' = -n~~l(D)
which is the exceptional divisor of IT .
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Remark 5.2. The key point of the proof of this lemma Is that If we write §i = z^+fi
then

9i e i«* => f t € iqi n Mqi+1 = lqiM,

so that
(fi)R' c I"1'"MR' c I"HM'.

If / ' = (v)R' with v<= I then

and therefore we must have v~~1Zi G M',

Lemma 5.4. Maintain all the notation and assumptions of Lewi, (5.3) for all i, 1 <
i < r. In particular we are assuming £' G Sing(E'i),Wi. Pick a regular sys-
tem, of parameters z = {z%,--- ,zn) of R such that Zi = yi — /ij, 1 < i < r,
I — {z\,--- ,zc)R,r < c < n, and (zT+i)R! = I'. Let y[ = Zi/zT+1 G M',1 < i < r.
Then the system {y'i,--- ,y'r,v,w) extends to a regular system of parameters y' of
R' where v = zr+l = y'r+l and w - (z c + 1 , --- ,zn) = (y'c+1r • • ,y'n)- Moreover,
with g[ = v~qigi for each i, 1 < i < r, either one of the following is true:

(1) ^(^el*+1

(2) ord,M' (g'i — (y'j)qi j — Qi an<i iiiM' \9i ~~ {y'%)9i) effectively contains variables

y'j) with j,r + 1 < j < n. In other words, it is not a polynomial in

Remark 5.3. A proof of the last assertion of the lemma can be reduced to the
following fact. Let us take the M-adic completion R of R. Letting K denote the
algebraic closure of IK in R, we have R = K[[Z\] with z — (z\, • • • , zn) of Lem.(5.4).
Let us write gi = z^' + fn + fa where

(1) fu G z(r)qiK[[z]], w i t h z(r) = (zlt • • • , z r ) , a n d
(2) f a G E . 3 C Z 5 , \p\<ch z ( r ) 0 4 \ z r + 1 , •••, zn}}

We then must have fn G {z)z{r)'liK\\z\\1 i.e., a linear combination of the monomials
of degree q-i with coefficients in MR. It follows that ord^,(zr^_9

l' fn) > qi, where
M' = M'R! with the completion R! of R'.

Remark 5.4. In the last case of Lem.(5.4), we apply the initial decomposition lemma
Lem.(4.1) to the transform g't. We then find a component whose initial is a g-power
of a variable independent of those y'itl < i < r, where q is a power of p which is at
most (jj. This is seen by means of Rent,(8.3). It therefore follows that the second
number of the q must then decrease lexicographically.

Theorem 5.5. Let us consider a proper blow-up n : Z' —> Z with center D passing
through £ and assume that TT is permissible for E* of 7%. (4.3). We can then change
V%i 1 fi i 5~ r, °f Th.(4.3), if necessary, in such a way thai

(1) we have yi € I(D,Z)^,\/i,
(2) inM{yi) is unchaned for all i, and
(3) the properties of the idealistic decomposition of Tft.(4.3) are preserved.

Theorem 5.6. Under the same assumptions as Th.(5.5), if a closed point £' G
TT^1(C) belongs to Sing(E*') of the transform E*' of E* by it, then we can choose
those yu l<i<r,of Th. T:before-q-trans andv G I(D, Z){, with (v)R' = I(D', Z')^
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in such a way that (y{, • • • ,y'r,v) with ij\ = v~1yi,\/i, can be extended to a regular
system of parameters ofOz',£'- In other words, the exceptional divisor n^1 (D) has
normal crossings with the strict trandforms in Z' of the hypersurfaces defined by
j/t = 0 in Z for 1 < i < r, .

We will follow the * symbol of Prop(3.2).

Theorem 5.7. If a proper blow-up TT : Z' —> Z with center D with £ G D is
permissible for E* of Th.(4.3) and if a closed point £' € ft~1(O belongs to the
Sing(E*') of the transform E*' of E* by -K, then we have

q^(E*') < q^(E*) in the sense of lexicographical ordering.

Moreover, if q^>(E*') = q^(E*) then the component-by-component transformation
of a q$(E*) by means of TT is such a decomposition of q^(E*') in the sense of
Th.(4.3).

In view of Lem.(3.1), Prop.(3.2), Rem.(3.1), Th.(4.3), Ths.(5.5)+(5.6)+(5.7)
and Prop(4.4), we now propose to search for an affirmative answer to the following
second stage of Desingularization Problems:

Problem(II.q):
Let Z and E - (J,b) be as before, say Sing(E) ^ $. Let E* = (J,m) with

m — max{ ord^(J) | r\ £ Z } . The new task is then to prove the existence of a
finite proper sequence of blow-ups over Z, permissible for both 15* and T, such that
we have a strict inequality q(E*) < ^(E*) in the lexicographical ordering provided
Sing(E*) ^ 0, where 15* denotes the final transform of E* by the sequence of
blow-ups.

Remark 5.5. In order to make our inductive proof to work out, we have essentially
two type of easy cases to start with as follows:

(1) (The case of ambient reduction.) If qr = 1, then we make repeated use of
the ambient reduction by means of Ths.(1.2+1.7):
(a) Firstly, if the local smooth hypersurface W : gr = 0 has normal cross-

ings with the given NC which we called T then we apply the Th.(1.7)
to the given E from Z to W together with the NC in W which is
induced by T. This makes our task reduced to the Problem(I. n — 1).

(b) If otherwise, we apply Th.(1.2) from Z to each of the Fj and solve
Problem(l. n — 1) in Fj for each i, 1 < i < s. Thanks to Th.(5.6) which
garrantees the normal crossings with all new exceptional divisors, our
probelm is the previous case.

(2) (The case of zero dimension.) When we have r = n in q ,̂ not only that
the Sing(E*) is isolated at £ but also there exists a unique canonical way
of resolving all the infinitely near singulaities E* above £ by a finite succes-
sion of blow-ups with zero-dimenional centers (starting with £ as the first
center).

6. REVIEW ON DIFFERENTIATIONS

In this section we consider a base field which may not be perfect for the sake of
technical convenience needed later. Let us use a symbol L for the base field, instead
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of the earlier symbol IK which was assumed to be perfect. The same symbol Z will
be used for an ambient scheme which is irreducible and smooth of finite type over
L. We let n = dim Z.

Pick a closed point ^ G Z whose residue field K(£) is separable algebraic over L.
Let R = Qz£, M = max(R) and K = R/M. Pick any regular system of parameters
of R, say x = (xi, • • • ,xn). Knowing that K(£) is separable algebraic over L, we
can find a system of differential operators of R into itself, {d^ = d-x ,a G ZQ1},
uniquely determined by x, such that

(6.1) _ _
I 0 if otherwise

We thus obtain a system of free generators

{d(a\a G Z£} for the R-module DiffzA = DiffR/h = [JDiffR
uJh )

Remark 6.1. The reference to x is essential in the definition of c4 and the abbre-
viated symbol d^' is used only when x is set and dear by the context.

Let us define the following notation:

(6.2) Diffgl* — DiffJ?,^ = { d G Diff^L | d(c) = 0,Vc G L. }

Remark 6.2. There exists a unique direct sum decomposition:

where the elements of the first summand are meant to be the multiplication, by
elements / G R, which will be sometimes expressed as / I .

We will let di denote the partial derivation by x» with respect to x,

(6.3) di = d(5i),l < i < n ,

where Si is the one whoose components are one in the (i — th) and zero in the others.
Let DerR/i, denote the i?~module of derivations which is freely generated by those
di. Note that

(6.4) DerR/L = Diff£fc C ^

Remark 8.3. The O^-module Derz denotes the sheaf of all derivations from Oz
into itself, which is coherent and whose stalk Derz^ at the point £ is freely generated
as O.z,f-module by the following system of derivations:

{d%, 1 < i f; n, } which is the same as {d^a', \a\ = 1},

because K(^) is separable algebraic over L. (See Eq.(6.1) and Eq.(6.3).) Therefore
the free generation by the same system extends to hold at every point within a
sufficently small neighborhood of £ € Z,

In this paper, our primary interest is in the case of p > 0 in which much richer
contents will be seen in notions and reasonings. However p = 0 is not excluded.
When p = 0, the powers pe, e > 0, should normally be understood to be 1, except
for few exceptional cases which will be specifically mentioned. For instance, we
have the Probenius map p from any L-algebra into itself, which send / i—> f"p when
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p > 0. For p = 0, however, p will better be understood as the zero map rather than
the Identity map.

We have special kind of differential operators which are derived from derivations
by means of Frobenius map p. We let

(6.5) R(e) = hpe(R) for every integer e > 0.

Note that R(e) is an algebraic local ring over the base field L, for L is purely
inseparable over pe(IL), and that if L is perfect then R(e) = pe(R).

Definition 6.1 . Assume that p > 0. For an integer e > 0, we define

pe(d) G Diff$e)/h for every c) G Dtff{
R%

as follows:
(1) If 3 G Diff$* then pe(d)(g) = pe(a(p-e(s))), Vc? € pe(R), and zero in

L.
(2) If d = J2a cad

{a) with ca £ R, then pe(d) = E « c/pe(d^) in terms of
{cKQ^} of Eq.(6.1) with reference to the chosen x. In particular if 9 = /©<9*
in the sense of Rem.(6.2) then we have

Pe(d) = fp'®P
e(d*).

Remark 6.4. The definition of pe(d) is intrinsic and is independent of the choice of
x.

Definition 6.2. We know that any 9 € Dif'f^l extends uniquely to a differential

operator of any localization of R, in particular to an element of Diff^1! where
5" denotes the field of fractions of R that is the so-called function field of Z. We
will use the same symbol 9 for any such extention. Now let y be any separating
transcendental base of SJ/L. We then define

pe
y(d) € Diff^ for every d G Diff$L,

by letting

pe
y(d)(cyah) = cyape(d)(h), Vc G L,Va G [0,pe - l ] n , V/i G pe(?).

For instance, if d G Diff^l*, pe
y(d) acts identically zero in J2a£l0pe-i]n ^ 'S p Va

for every integer d,p > pe/x. If 9 = / © 9* in the sense of Rein.(6.2) then we have

Pe
y(d) = / p e ® p ; ( c r ) .

Remark 6.5. It is important to note that p%(d) depends upon the choice of x unlike
Pe(d).

Remark 6.6. According to the notation of .Eg.(6.1) with respect to a chosen regular
system x of parameters at £ G Z, we have

pk
x{d{a)) = d(:pka), Vfc>0, V a e Z J .

Remark 6.7. Assume c/iar(L) = p > 0. Following the notation of Eq.(6.1) with
respect to x at £ G Z, we have:

(1) (Commutativity) d{a)d{0) = d^d^ = («+^)3(«+« for e v e r y p a i r of a

and /? in Zg,
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(2) (Distribution) (PHjg) = E«+/3=7 9^(f) d^(g), and
(3) (Generation) For every a = YleP

ea(e) e ô> where a(e) G [0,p— l]n , Ve >
0,

• i = l K '-

Remark 6.8. For any separating transcendental base y of the function field of Z
over L and for any d £ Derz,£, we have

0<ft<pe,0<|(3I<pe

where symbols dT are after Eq.(6.1) and Cy,Xte{8,a) are defined inductively as
follows:

(1) Cy,x,e(d,(0))=0,
(2) for every a with |a| = 1 we have CViX>e(d,ra) = px{6)ya,
(3) for every a € ZJJ we have

Cy,x,e(d,a) = pe
x(d)ya -

Here we may say CytX,e{8, a) = 0 for all a with \a\ > pe and for all a € p e2g. Note
that the py{6), pe

x(d) and indivisually CVtX^(d,a) possess certain pe+1(ii)-linearity
in the following sense: For every {A\,A2) € pe + 1(i?)2 and every {81,62) £ Derz ^,

(1) pj(/li9;i + ^2^2) = Pe{Ai)Py(8i) + pe(A2)pe
y(d2), likewise for pe

x, and
(2) C3/,:E,e(J4iai+J4292,a) = pe{Ai)CylX,e{di,a)+pe(A2)Cy,X!e{d2,a),Va.

Remark 6.9. Following the notation of Rem.(6.8), if x' = fx where / = hp' with
a unit h € R then we have

We also have pe
x>(d) = P%{8)- Moreover if y' = fy with the same / then we have

Example 6.1. Assume p > 0 and pick an integer e > 1. Let xi £ R be a member
of a regular system of parameters x = (x\, • • • ,xn) of R. We will make use of
the symbols such as px defined in Def.(6.1). We will then consider various yda =
xi + XjP ~~a+ under the following conditions:

(1) d is an integer such that e > d > 1, and
(2) a is an integer such that 1 < a < pd and a ^ 0 mod _p.

We will write y(da) for the new regular system of parameters (j/dO)X2, • • • , x n ) .

a a
<9a;i a dyda

where the multiplier C/da = 1 + (pd — a + l)xx
p ~~° = 1 mod (xi) which is obviously

a unit in R. We look at various powers of yc[a and the effect of p|(gf~) to them.
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dLet b be any Integer such that 1 < b < p .

bpc-d

Vda

b\ "

W
b
3

b
4 / 1

where pd — a > 0 and the degrees are strictly increasing. It hence follows that

(1) if pd > b > a, then

^ ) / d Q
f c p " " ) = O mod

(2) if b < a and if 3c £ ZQ such that a —• 6 = c(pd — a), then

(3) as a special case of the above, if b = a, then

(4) if b < a and if jBc as above, then

lda
 p ) = 0 mod (xi)R

On the other hand we always have

/,,,. hp"~d) = o.

Therefore, letting d Ayb > 0, denote the differential operators in R such tha t

9?jo j( every monomial in the Xk with 2 < fc < n,) = 0, and

<9
!/(da)(ydo) = | Q if otherwise
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we obtain the following congruence among differential operators:

6€Zo-pZo:l<&<<J,
3c6Z0 ,a~~b=c(pd -a)

b

c+l

mod (xt)DiffR/L

for every integer d,e > d > 1, and for every integer a such that 1 < a < pd and
a ^ 0 mod p. Note that a can be any and the last summation is for only those
with b < a. For the case of dimension one, i.e., n = 1, it follows from the above
congruence that

DiffftJ* = y R py( — ) for every integer e > 1.
ally:M=yR J

7. DlFFCOMPANIONS AND FlTTCOMPANIONS

Let us go back to the case in which the base field K of Z is algebraically closed
and of characteristic p > 0. Let R = Oz,$ and M = rnax(R) as before. The
objective of this section is roughly speaking as follows. Assume that we are given
an element g G R such that

9 = V\ + h with ordM(h) > q

where j/i is a member of a regular system of parameters y — (yi,- • • , yn) of R and
q = pe with and integer e > 1. We then want to examine the effect of permissible
blow-ups upon h viewed only up to q-power differences which can be absorbed
into the first term t/j9 of g. We thus make use of certain differential operators d
which kills all the f-power terms of g. For instance, we may take dy • y13 with
a € f3 + Zg,a 7̂  j3 € Z". We then investigate the transforms of d(h) under such
blow-ups in terms of suitably chosen d's for the given g.

Recall that we are given an NC of Def.(3.1) in the ambient scheme Z, denoted
by F = (Fi, • • • , r s ) . From now on we will consider only those regular systems of
parameters of R which are T-adapted in the sense of Def.(3.2).

We write |F| for the set-theoretical union of the T{, 1 < i < s. Let if = 111=1 ^
with the ideal Hi of Fj in Oz- It is the ideal of |F| in Z.

We will define and make use of what will be called diffcompanion which will be
a certain type of coherent O^-submodule

2) C DiffzlH-1] = (OzlH-^Diffa ,

They will be sheaves of differential operators in Z possibly having poles that are of
finite orders along |F| and no poles anywhere in Z — |F|.

Definition 7.1. Let e be a non-negative integer. For each closed point rj £ Z, we
define the following O^^-submodule of Diffgg :

M ) C
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where x ranges over all those regular systems of parameters of Oz,r, which are F-
adapted in the sense of Def.(3.2). As for the definition of p%{d), refer to Def.(6.1)
and Def. (6.2).

Theorem 7.1. We have a coherent Oz-module <B(e)z in Z, or €(e) for short,
whose stalk at any closed point 77 g Z is the Oz^-module €(e)z>n which is defined
by Def.(7.1).

A proof of this theorem is done as shown in the following three remarks.

Remark 7.1. For each x = (xi,--- ,xn) of Def.(7.1), there exists an affine open
neighborhood U of 77 g Z in which x — (,, meaning (x% — xi(C), • • • ,xn(()), is a
regular system of parameters of Oz,( which are naturally F-adapted. Moreover for
any 9 € Derz(U), we have 8 G Diffz such that 6^ = p£_^(partial) for every
( 6 U, for we have

E Kxa = E K(x-oa

aG[0,pe-l]nCZ5 ae[0,pe-l]nCZ5

so that p£_(-(partial) coincides with pj*(partial) wherever both continue to as dif-
ferential operators. (Refer to Defs.(6.1)+ (8.2).)

Remark 7.2. The submodule €(e)z,r) defined in Def.(7.1) is finitely generated as
C?zi7?-module. Hence there can be found a neighborhood U of r/ £ Z and a finitely
generated O^-submodule 5" of Diffz

v in U such that <£(e)z,rj equals the stalk ^n

of 5 at 77 and that the quotient Diffz
p / 5 has zero 02-torsion in U.

Remark 7.3. Pick x,U,(,d, of Rems.(7.1)+(7.2). We may assume that each ideal
Hi of Fj is principal in U, say Hi\U = hiOu,Wi. We may assume that hi(Q is

e + l

either 0 or l,Vi. Let / = Ili-/i-(o=i M* > provided /(r/) = 0. If otherwise, pick
any c g Oz(U) such that c(-i]) = 0 and c(() — 1, and replace / by cp° f. Gall
it / again. We next pick g = flr/».-{ )=i ^l > provided g(Q) = 0. If not, replace
g by gap e+1^ with any a in the affine ring of U such that a(r)) = 1 and a(£) = 0.
Now let y be any regular system of parameters of Ozx which is F-adapted in case
of { G |F|. We then let z(m) = fy + gmx with an arbitrary positive integer m,
which is clearly a regular system of parameters admitted as a member to make the
Def.(7.1) both at 77 and at £. In terms of remarks (6.8)+(6.9) with reference to fy
and z(m) (in the places of y and x in there) considered at the point Q, we obtain

Pt(m)(d) = Ptfv)(d) - E Cz{m)tfy,e(d,0)dz\%
1

0<A;<pe,0<|/3|<pe

where C2(m) j?y e(d,a) are defined inductively as follows:
(i) cz(m)'tfy,e(d,(p)) = o,
(2) for every 0 with \0\ = 1, Cz{m)JyJd,0) = p\fy)(d)(fy + gmxf,
(3) for every a € ZJ we let

= ff(M(d)(fy + gmx)a -
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Having chosen g £ Mc = max{OZtC), we see that pe
(fy)(d)(fy + gmxf € M(

rn for
every 7 with pe > |-y| > 0 and 7 £ peZg because p\fy){d){fy)~1 = 0 and Pr(fy){d) is
pe+1(i?c)4inear in elements of Ec = Oz^. It follows that Cz(m)jy<e(d,a) G Mc

m

and hence pe
z{m)(d) - p^i/)(9) G M ( m - S i n c e ^(m)(9) € ^ i m P U e s < ° W a ) e Ĉ

by Rem.(7.2), we must have

for all TO > 1. It follows by noetherian argument that py(d) — p\fy)ip) S de-

Remark 7.4. According to Def.(7.1) and Th.(7.1), €(0) is nothing but the sheaf of

derivations Derz-

Definition 7.2. For an integer d > 0, a r-diffcompanion of level d in Z means
a coherent CVsubmodule S)(d,T), T)(d) for short, of Diff^l-H'1] such that
^>(d)\z-\r\ = £(d)\z-\r\ where €(d) is the one defined in Def.(7.1).

Remark 7.5. If 33(e,r) is a F-diffcompanion of level d, then it is a coherent Oz~
submoduleof 1

Remark 7.6. For any F-permissible blow-up IT : Z' —> Z, the natural pull-back by n
of any F-diffcompanion of level d in Z is a F'-diffcompanion of level d in Z', where
F' is the transform of F by -K which was defined by Def.(3.3).

Let us now go back to the Th.(4.3): Given an idealistic exponent E = (J, b) on
Z arid a closed point £ £ Sing(E), we let E* = (J,m) with m = ord^(J) and find
systems

9i = pe<, ei > • • • > er > 0, and (t/i, • • • ,yr)

which is extendable to a regular system of parameters of Oz,( and

9i = y't + hi G Jmax(Qi)z with hi € max(O'g\ ) cli

such that, within a neighborhood of £ € Z,

n ^) n ̂
where i?j = (giOz,(li)A < i < r , and F = (/,a) with ord^(I) > a. We also have
the uniqueness of the following system of numbers

= (n,n-r,qi,--- ,qr)

by Prop.(4.4).

With e = ei of Th.(4.3), we are going to apply T-diffcompanions of various levels
< e — 1 to the following system:

and study the effect of their applications. Rewrite if = (Hi, • • • ,Hr) for simplicity.

To begin with, we choose our T-diff companions to be 5)(d) = €(d)z,v, 0 < d < e,
themselves.



SINGULARITIES 23

Take the Idealistic exponent
r

F(0) = E{0) n F where E(Q) = ( ^ © ( d ) ^ , pe )

to which we apply the processes of the theorems of the Strategies (l)-(3) to this
F(0). Pay sepcial attention to the theorems (5,5) and (5.6) vls-avis the invariants q
along the way. In the non-trivial case, we will end up with the ideal of the transform
of E(Q) is locally generated by "monomials" with respect to the; transform V of T.

Thus, after the previous process, we now assume to have T-diffcompanions
S3(d)"s (which are the pullbacks fo the earlier ones) together with the new sys-
tem H' = (Hi, • • • ,H'r) (which is the transform of the H we started with), such
that

•i=i

is locally generated by F'-monomials. (In the process, make use of the fact that
differential operators of order < jf commute with multiplications by pe-powers of
functions.)

For the next stage, we introduce another kind of companions called Fitting com-
p a n i o n s o r Fittcompanions o f l e b e l d, 0 < d < e — 1 .

Given a system of elements H' = (H[, • • • ,H'r) with H[ G O'Z(U'), we pick any
point £' € U' corresponding to £ and let

H'(d)v ='£ip
e+1(Rt.)H'i,

i=l

where 0 < d < e - 1 and %- = OZ\z>.
Then, for each h € H'(d) and for each regular system of parameters x of R^,

F'-adapted, we denote by I(h,z,d)^ to be the (n — 1) x (n — 1) Fitting ideal for
the submodule

{d € pi(Derzlii.) | d(h) - 0} C pd
x(Derz>#)

and let

Remark 7.7. There exists a coherent ideal sheaf 3(d) in O'z\u> such that the above
is indeed the stalk of 3(d) at the point £'.

The strict transforms of 3(d) by any sequence of blow-ups are called the Fittcom-
panion of level d.

Theorem 7.2. Assume that we are given a positive integer e and a system H =
(Hi, • - • , Hr) of elements in M$ where R = Oz,{)- Assume also that we are given
a T-diff companion of level d for each d, 0 < d < —1, say 'S(d). Pick a closed point
£ € Z. If Y2j=j rS(d)Hj is generated by a T-monomial at £ for every d and if
Fittcompanions 3(d) are locally principal at £ for every d, then H must have the
following properties:

There exists a regular system of parameters x of R, V-adapted at £, and, a mono-
mial xa such that

Hi = vpCeix
a-[-8i with 8{€pe+1(R)
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where
(1) c is the largest integer under the conditions that 0 < c < e and Hi €

pc(i?),Vt,
(2) Cj G pc(R),Vi, and at least one of the e$ is a unit in pc(R),
(3) a G f/Zg - p c + 1Zg, and
(4) v is either a unit of R or it defines a hypersurface smooth outside |F| within

a neighborhood, of £ € Z.

Still to continue !
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