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BASIC ALGEBRAIC GEOMETRY

STEVEN DALE CUTKOSKY

1. Affine Varieties

These notes are a crash course in algebraic geometry. They are intended to quickly
introduce the language of algebraic varieties and schemes.

Our basic reference for the first part of these notes is the book “Algebraic Ge-
ometry” by Robin Hartshorne (Springer-Verlag). Another book which is helpful for
intuition is “Basic Algebraic Geometry” by Igor Shafarevich (Springer-Verlag). A ref-
erence for later parts of these notes is my book “Resolution of singularities” (American
Mathematical Society).

Carefully working through the exercises in books such as these is highly recom-
mended as a means of obtaining a command of the basics of algebraic geometry.

We will assume throughout these lectures that k is an algebraically closed field.
Define the affine n-space An

k over k to be the set of all n-tuples (α1, . . . , αn) such
that α1, . . . , αn ∈ k.

Let R = k[x1, . . . , xn], the ring of polynomials in the indeterminates x1, . . . , xn

with coefficients in k. The maximal ideals of R are precisely the ideals

(x1 − α1, x2 − α2, . . . , xn − αn)

with α1, . . . , αn ∈ k. We can thus identify An
k with the set of maximal ideals of R.

Define the prime spectrum Spec(T ) of any commutative ring T to be the set of
prime ideals of T . There is a topology on Spec(T ) (the Zariski topology) defined by
taking the closed sets to be

V (Λ) = {P ∈ Spec(T ) | Λ ⊂ P}.
for Λ ⊂ T . If I is the ideal in T generated by Λ, then V (I) = V (Λ).

A subset X ⊂ Spec(T ) is irreducible if whenever X = Y ∪ Z where Y and Z are
closed irreducible subsets of Spec(T ), we have X = Y or X = Z. It follows that X is
irreducible if and only if X = V (P ) for a prime ideal P ⊂ T .

We saw that we can “identify” A1 with Spec(R) (where R is the polynomial ring
in n variables). We see that the irreducible subsets of A1 are A1 and the maximal
ideals (x1 − α1) with α1 ∈ k (which can be thought of as the point α1).

The irreducible closed subsets of A2 are a little more complicated. They are A2,
the maximal ideals (x1−α1, x2−α2) with α1, α2 ∈ k (which can be thought of as the
point (α1, α2), and the sets V (f(x1, x2)) where f(x1, x2) is an irreducible polynomial
in R. The maximal ideals of R contained in V (f(x1, x2)) are precisely the ideals

{(x1 − α1, x2 − α2) | f(α1, α2) = 0},
which can be thought of as the set of points (α1, α2) which lie on the curve f(x, y) = 0.

The irreducible subsets of A3 are A3, a point in A3, a surface in A3 (which can be
described as the set of points which satisfy an irreducible equation f(x1, x2, x3) = 0),
and the curves in A3. There is no simple way to describe most curves in A3. Some of
them are defined by exactly two equations, but there are examples where the prime
ideal of the curve requires arbitrarily many generators.
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2 STEVEN DALE CUTKOSKY

Let us return to An = Spec(R). An irreducible closed subset X ⊂ An is called
an affine variety. We know that a variety X has the expression X = V (P ) for some
prime ideal P ⊂ R. Notice that we have an identification

X = V (P )
= prime ideals of R containing P
= prime ideals of R/P

= Spec(R/P ).

A polynomial f(x1, . . . , xn) ∈ R defines a continuous mapping (in the Zariski
topology) f : An → A1 by

(α1, . . . , αn) 7→ f(α1, . . . , αn).

We define the the regular functions on An to be R.
Now given an affine variety X = V (P ) ⊂ An, and f ∈ R, we can restrict f to X,

and get a continuous function on X. We define the regular functions on X to be the
restrictions of the functions of R to X. This gives us a surjective ring homomorphism
from R onto the regular functions of X. The kernel of this homomorphism is P .
Certainly any function which is contained in P must vanish on X. It is Hilbert’s
nullstellensatz that if a function vanishes on X then it is contained in P .

Suppose that X and Y are two affine varieties. We say that a mapping Ψ : X → Y
is a morphism if Ψ is continuous and for all regular functions f : Y → A1, f ◦ Ψ :
X → A1 is a regular function.

Example 1.1. Let C be the curve C = Spec(k[x, y]/(y2 − x3)). Define a morphism
Ψ : A1 → C by Ψ(t) = (t2, t3).

Let X = V (P ) be an affine variety, and let K be the quotient field of the regular
functions T = R/P of X. We define the sheaf OX of regular functions on X as
follows. To a point q ∈ X, we associate the local ring OX,q = Tmq

, where mq is the
maximal ideal of S associated to q. To an open subset U ⊂ X, we define

OX(U) = ∩q∈UOX,q ⊂ K.

K is the set of rational functions on X, functions which are regular on some open
subset of X. OX,q are the functions which are regular in some neighborhood of q.

Suppose that Ψ : X → Y is a morphism. Then for any open subset U ⊂ Y , Ψ−1(U)
is open in X, and thus composition with Ψ gives us a ring homorphism

Ψ∗ : OY (U) → OX(Ψ−1(U)).

In Example 1.1, we have an inclusion

Ψ∗ : T = OC(C) = k[x, y]/(y2 − x3) → OA1(A1) = k[t].

k[t] and T have the same quotient field, and t is integral over T so k[t] is the normal-
ization of T . Ψ : A1 → C is the resolution of singularities of C.

2. Projective Varieties

The projective space Pn
k is defined to be the set of equivalence classes (α0 :

α1 : · · · : αn) of (α0, α1, . . . , αn) ∈ kn+1 − {0} by the relation (α0, α1, . . . , αn) ∼
(β0, β1, . . . , βn) if there exists 0 6= λ ∈ k such that λ(α0, α1, . . . , αn) = (β0, β1, . . . , βn).

Let S be the polynomial ring k[x0, . . . , xn]. S is a graded ring, where we define
the degree of a monomial xi0

0 · · ·xin
n to be i0 + · · ·+ in. Let S+ = x0S +x1S + · · ·xnS.

F ∈ S is homogeneous of degree d if

F =
∑

i0+···+in=d

ai0···inxi0
0 · · ·xin

n ,
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for some ai0···in ∈ k.
We define

Proj(S) = { homogeneous prime ideals P in S such that P 6= S+}.
The maximal primes P in Proj(S) are of the form

P = {αjxi − αixj | i 6= j}
for some α0, α1, . . . , αn ∈ k, which are not all zero.

P thus corresponds to the point (α0 : . . . : αn) ∈ Pn. We may thus “identify” Pn
k

with Proj(S).
Suppose that F is homogeneous, and (α0, α1, . . . , αn) ∼ (β0, β1, . . . , βn). Then

F (α0, α1, . . . , αn) = 0 if and only if F (β0, β1, . . . , βn) = 0. the notion of a homoge-
neous polynomial vanishing at a point of Pn is thus well defined.

Now suppose that I ⊂ S is a homogeneous ideal (I is generated by homogeneous
polynomials). We define the closed subsets of Pn to be the sets

V (I) = {Q ∈ Proj(S) | I ⊂ Q}.
We will say that X is a projective variety if X = V (P ) for some homogeneous
prime ideal P of S. We can “identify” X with the points (α0 : · · · : αn) such that
F (α0, . . . , αn) = 0 for all homogeneous F ∈ P .

S/P is a graded ring. We have

X = V (P )
= the homogeneous prime ideals in S containing P
= the homogeneous prime ideals in S/P
= Proj(S/P ).

We now define the sheaf of regular functions on a projective variety X.
Suppose that X = Proj(S/I). The rational functions on X are defined to be K =

(S/I)(0), the elements of degree zero in the quotient field of S/I. For q ∈ Proj(S/I),
define OX,q to be the local ring

OX,q = (S/I)(mq) ⊂ K,

the elements of degree zero in the localization of S/I with respect to the homogeneous
prime ideal mq associated to q.

For an open subset U of X, we define

OX(U) = ∩q∈UOX,q ⊂ K.

Example 2.1. Suppose that X = Proj(S/I) ⊂ Pn is a projective variety. Let Ui =
X − V (xi) for 0 ≤ i ≤ n. {U0, . . . , Un} is an open cover of X. We have that

OX(Ui) = (S/I)(xi) = k[
x0

xi
, . . . ,

xn

x0
]/Ii

where
Ii = {F (

x0

xi
, . . . ,

xn

x0
) | F ∈ I is homogeneous}.

We may identify

Ui = Spec(k[
x0

xi
, . . . ,

xn

x0
]/Ii) = V (Ii) ⊂ An.

{U0, . . . , Un} is an example of an affine cover of X.

Suppose that X and Y are projective varieties. A mapping Ψ : X → Y is a
morphism if Ψ is continuous, and for every open subset U ⊂ Y and regular function
f : U → A1, f ◦Ψ : f−1(U) → A1 is regular.
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Example 2.2. (The Veronese mapping) Suppose that d ∈ N. There are r =
(
n+d

n

)
monomials M = xi0

0 · · ·xin
n with i0 + · · · + in = d. For (α0 :, . . . , : αn) ∈ Pn, define

M(α0, . . . , αn) = αi0
0 · · ·αin

n . Let M1, . . . , Mr be the distinct monomials of degree d.
Define a morphism Pn → Pr−1 by

(α0 :, . . . , : αn) 7→ (M1(α0, . . . , αn) :, . . . , : Mr(α0, . . . , αn)).

3. Varieties

We will call X a variety if it is an affine or a projective variety.
Suppose that X and Y are varieties. We define X×Y to be the set of pairs {(p, q)}

such that p ∈ X and q ∈ Y . It can be shown that X × Y has a structure of a variety.
If X and Y are projective then X×Y is projective. If X and Y are affine, then X×Y
is affine.

The projection mappings π1 : X×Y → X defined by π1(p, q) = p and π2 : X×Y →
Y defined by π2(p, q) = q are morphisms.

We now mention a couple of extremely important examples of sheaves on a variety
X.

Suppose that Z ⊂ X is a subvariety. We then define the ideal sheaf IZ ⊂ OX to
be the ideal of functions which vanish on Z.

We say that a sheaf L of OX modules is invertible if there exists an affine cover
U1, . . . , Ur of X such that L | Ui is isomorphic as an OUi

module to OUi
for all i.

Pn has the invertible sheaf OPn(1) defined by

OPn(1) | Ui = xi(OPn | Ui)

for 0 ≤ i ≤ n, where Ui is the open set Pn − V (xi).

Example 3.1. Suppose that X is nonsingular (all of the local rings OX,q of X are
regular local rings) and Z ⊂ X is a codimension one subvariety of X (the dimension
is one less than the dimension of X). Then for all q ∈ X, IZ,q is a principal ideal
in OX,q, since regular local rings are factorial. Thus there exists an affine cover
{U1, . . . , Ur} of X and fi ∈ OX(Ui) such that IZ | Ui = fiOX(Ui). We see that
IZ | Ui

∼= OUi
for all i, so that IZ is invertible.

If IZ is invertible, we will write Ir
Z = OX(−rZ) for all r ≥ 1.

We conclude this section by defining an operation on sheaves. Suppose that f :
X → Y is a morphism and F is a sheaf on X. f∗F is the sheaf on Y defined by
f∗F(U) = F(f−1(U)) for open subsets U ⊂ Y .

We sometimes will write Γ(X,F) = F(X).

4. Projective Morphisms

Suppose that X and Y are varieties. A morphism f : X → Y is projective if
there is a closed embedding i : X → Y × Pn for some n such that f = π1 ◦ i. Here
π1 : Y ×Pn → Y is the first projection.

Any morphism f : X → Y of projective varieties is projective. We construct the
closed embedding i as the composition

X → Y ×X → Y ×Pn.

where the first map is p 7→ (f(p), p), and the second map is obtained from a closed
embedding (possible since X is projective) X ⊂ Pn.

Assume now that Y = Spec(A) is an affine variety, and X ⊂ Y × Pn is closed.
Y × Pn = Proj(A[x0, . . . , xn]). Then there exists a homogeneous prime ideal I ⊂
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A[x0, . . . , xn] such that

X = V (I) = Proj(A[x0, . . . , xn]/I).

Set S =
∑

i≥0 Si = A[x0, . . . , xn]/I, S0 = A/I ∩A.
We see that X → Spec(A) is projective if and only if X = Proj(S) for some graded

ring S where S0 is a quotient of A, and S is finitely generated by S1 as an A algebra.
We will look a little closer at this case.
Let L = OY×Pn(1)⊗OX , a very ample invertible sheaf on X (this is the definition

of being very ample). Define T = ⊕m≥0Γ(X,L). We have a homomorphism

Ψ : A[x0, . . . , xn] = ⊕m≥0Γ(Pn,OPn(m)) → T

defined by σ 7→ σ | X. The image of Ψ is S. T is finite over S, and there exists an r0

such that for m ≥ r0, Tm = Sm. Thus ⊕m≥0Tmr0 = ⊕m≥0Smr0 .
We have the Veronese embedding

X → Pn → P(n+r0
n )−1.

Thus the closed embedding X → Y ×P(n+r0
n )−1 realizes X ∼= Proj(⊕m≥0Tmr0).

Now assume Y is an arbitrary variety and f : X → Y is a projective morphism. We
thus have a closed embedding X ⊂ Y×Pn. Let L = OY×Pn(1)⊗OX . A = ⊕m≥0f∗Lm

is a sheaf of algebras on Y . Cover Y be open affine subsets U1, . . . , Ut. For 1 ≤ i ≤ t,

Γ(Ui,A) = ⊕m≥0Γ(π−1
1 (Ui),Lm).

There exists an r0 such that ⊕m≥0Γ(π−1
1 (Ui),Lr0m) is generated in degree 1 and

π−1
1 (Ui) ∼= Proj(⊕m≥0Γ(π−1

1 (Ui),Lr0m) for all i. Set A(r0) = ⊕d≥0f∗Ldr0 . π−1
1 (Ui) ∼=

Proj(Γ(Ui,A(r0)) for all i.
We have shown that all projective morphisms f : X → Y can be written as

X = Proj(A) with projection Proj(A) → Y where A is a quotient of OY , and A is
locally finitely generated in degree 1 by A as an OY algebra.

We mention without proof a strengthening of this construction.

Theorem 4.1. Suppose that X → Y is projective and birational (an isomorphism
on a dense open set). Then there exists an ideal sheaf I ⊂ OY such that X ∼=
Proj(⊕m≥0Im). We say that X = B(I) is the blow up of I.

We also give a useful application.

Theorem 4.2. (Weak resolution of indeterminacy) Suppose that φ : X → Y is a
rational map of projective varieties (there exists a dense open subset of X on which φ
is a morphism). Then there exists an ideal sheaf I ⊂ OX and a commutative diagram

B(I) f
π ↓ ↘
X

φ→ Y

where f is a morphism.

Proof. Let U be the largest open subset of X on which φ is a morphism. The graph of
φ, Γ ⊂ X ×Y is the Zariski closure of the image of the morphisms U → X ×Y which
is defined by p → (p, f(p)). Γ → X is a birational morphism of projective varieties.
Thus Γ = B(I) for some ideal sheaf I ⊂ OX . �
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5. Monoidal transforms

Suppose that Y is a nonsingular variety, Z ⊂ Y is a nonsingular subvariety. Let
π : X = B(IZ) = B(Z) → Y be the blow up of Z (of IZ). We say that π is the
monoidal transform of Y with center Z.

Let p ∈ Z be a point. There exist regular parameters x1, . . . , xn ∈ OY,p and r ≤ n
such that x1 = · · · = xr = 0 are local equations of Z in an affine neighborhood U of
p in Y . Let

I = (x1, . . . , xr) = Γ(U, IZ) ⊂ A = Γ(U,OY ).
Since X is the blow up of IZ ,

π−1(U) = Proj(⊕n≥0I
n)

= Proj(A[It]) where t is an indeterminate, the grading is by deg t = 1
= ∪r

i=1Spec(A[tI](txi)), take elements of degree 0 in localization by txi

= ∪r
i=1Spec(A[x1

xi
, . . . , xr

xi
]).

Let us look more closely at a particular open set Spec(A[x1
xi

, . . . , xr

xi
]) in this affine

cover of π−1(U). We may as well assume that i = 1.
If q ∈ Spec(A[x2

x1
, . . . , xr

x1
]), and π(q) = p, then mq ∩ A = mp = (x1, . . . , xr). Let

m = A/mp[x2
x1

, . . . , xr

x1
]. We have

A[
x2

x1
, . . . ,

xr

x1
]/mq

∼= (A/mp[
x2

x1
, . . . ,

xr

x1
])/m ∼= k[

x2

x1
, . . . ,

xr

x1
]/m.

k[x2
x1

, . . . , xr

x1
] is a polynomial ring over k (since OY,p is a regular local ring, x1, . . . , xr

is a regular sequence in OY,p). Thus there exist α1, . . . , αr ∈ k such that m =
(x2

x1
− α2, . . . , xr

x1
− αr), so that mq = (x1, . . . , xn, x2

x1
− α2, . . . , xr

x1
− αr). Since

xi = xi

x1
x1 for 1 ≤ i ≤ r, we have that

mq = (x1,
x2

x1
− α2, . . . ,

xr

x1
− αr, xr+1, . . . , xn).

We have
n = dim OX,q = dimkmq/m2

q ≤ n.

Thus dimkmq/m2
q = n, and q is a nonsingular point on Y . We conclude that Y is

nonsingular.
Set

y1 = x1, y2 =
x2

x1
− α2, . . . , yr =

xr

x1
− αr, yr+1 = xr+1, . . . , yn = xn.

For 2 ≤ i ≤ r, we have y1yi = xi−αiy1. Thus xi = y1(yi + αi). The point q can thus
be described by the equations

x1 = y1, x2 = y1(y2 + α2), . . . , xr = y1(yr + αr), xr+1 = yr+1, . . . , xn = yn.

We have since xi = y1(yi + αi) for 1 ≤ i ≤ r, that

IZOX,q = (x1, . . . , xr)OX,q = y1OX,q.

Thus y1 = 0 is a local equation of π−1(Z) at q. We thus have that
(1) IZOX is an invertible ideal sheaf.
(2) π−1(Z) is a nonsingular codimension 1 subvariety of X, the “exceptional

divisor” of π.

Example 5.1. We blow up the origin p in A2. A2 = Spec(k[x, y]). Let the blow
up be π : X = B(p) → A2. We write X = U1 ∪ U2 where U1 = Spec(k[x, y

x ]) ∼=
A2, and U2 = Spec(k[y, y

x ]) ∼= A2. π | U1 is the morphism A2 → A2 defined by
(α, β) 7→ (α, αβ) and π | U2 is the morphism A2 → A2 defined by (γ, δ) 7→ (γδ, γ).
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The exceptional divisor E = π−1(p) is defined by E ∩ U1 = V (α), E ∩ U2 = V (γ),
from which it follows that E ∼= P1.

We now define the strict transform. Suppose that π : X1 = B(Z) → X is the
monoidal transform obtained by blowing up a nonsingular subvariety Z of X. Suppose
that Y ⊂ X is a subvariety. The strict transform Y1 of Y on X1 is the subvariety of
X1 which is the Zariski closure of π−1(Y − Z) in X1.

The strict transform can be calculated by the following formula.

Lemma 5.2. For q ∈ X1,

IY1,q = ∪n≥0(IYOX1,q : In
ZOX1,q)

= {f ∈ OX1,q | fIn
Z ⊂ IYOX1,q}.

Example 5.3. Suppose that C = V (f(x, y)) ⊂ A2 = Spec(k[x, y]) is an irreducible
curve (a one dimensional variety). Let p be the origin in A2. Let π : X = B(p) → A2

be the blow up of p, with exceptional divisor E. As shown in the previous example,
we have a cover X = U1 ∪ U2. We will describe the strict transform C of C on the
open set U1. There is a similar description on U2.

U1
∼= A2, and U1 has coordinates x1, y1 such that U1 → A2 is given by x = x1, y =

x1y1. E ∩ U1 = V (x1). Let

r = ord(f) = min{n | f ∈ mn
p}.

We can write
f =

∑
i+j≥r

aijx
iyj ,

where aij ∈ k for all i, j, and aij 6= 0 for some i, j with i + j = r. Substituting the
equations x = x1, y = x1y1, we obtain

f =
∑

i+j≥r

aijx
i+j
1 yj

1 = xr
1f1,

where f1 =
∑

aijx
i+j−r
1 yj

1 is irreducible in k[x1, y1].

π−1(C) ∩ U1 = V (xr
1f1) = V (x1) ∪ V (f1) = (E ∩ U1) ∪ V (f1).

We see that C ∩U1 = V (f1), so that f1 = 0 is a local equation of the strict transform
of C on U1.

In fact, we have that

ICOX = ICI
r
E = ICOX(−rE).

The computations of this example generalize to arbitary monoidal transforms. Sup-
pose that π : B(Z) → X is the blow up of a nonsingular subvariety Z of X and Y ⊂ X
is a codimension one subvariety of X containing Z.

Suppose that q ∈ B(Z), and p = π(q) ∈ Z. There exist regular parameters
y1, . . . , yn at q, regular parameters x1, . . . , xn at p and r ∈ N such that x1 = · · · =
xr = 0 are local equations of Z at p, and

x1 = y1, x2 = y1y2, . . . , xr = y1yr, xr+1 = yr+1, . . . , xn = yn.

Let f = 0 be a local equation of Y at p. We have a commutative diagram of inclusions

OX,p → ÔX,p = k[[x1, . . . , xn]]
↓ ↓
OB(Z),q → ÔB(Z),q = k[[y1, . . . , yn]].
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Suppose that Y has order s along Z (f ∈ Is
Z,p, f 6∈ Is+1

Z,p ). We can then write, using
the fact that f(x1, . . . , xn) = f(y1, y1y2, . . . , y1yr, yr+1, . . . , yn),

f =
∑

i1+···+ir≥s

ai1,... ,ir
(xr+1, . . . , xn)xi1

1 xi2
2 · · ·xir

r = ys
1f1

where
f1 =

∑
i1+···+ir≥s

ai1,... ,ir
(yi+1, . . . , yn)yi1+···+ir−s

1 yi2
2 · · · yir

r .

f1 is a local equation of the strict transform Y of Y on B(Z) at q, and y1 = 0 is a
local equation of the exceptional divisor E at q. We have

IYOB(Z) = OB(Z)(−rE)IY .

We conclude this section with one more definition.
Suppose that π : X1 = B(Z) → X is a monoidal transform obtained by blowing

up a nonsingular subvariety Z, Y ⊂ X is a subvariety, and suppose that Y has order
r along Z (IY ⊂ Ir

Z and IY 6⊂ Ir+1
Z ). Let E = π−1(Z) be the exceptional divisor.

There exists an ideal sheaf I ⊂ OX1 such that OX1(−rE)I = IYOX1 . The “scheme”
Ỹ1 = V (I ⊂ X1 is the weak transform of Y .

The strict transform Y 1 of Y is always contained in Ỹ1, and they are equal if and
only if Ỹ1 is a variety.

In the important case where Y has codimension one in X, the weak transform and
strict transform of Y are equal, as we computed above.

6. Monomialization and toroidalization

An important problem is to find a factorization of an arbitrary morphism by simple,
well understood morphisms.

We have encountered one simple type of morphism, the monoidal transforms. We
now define another type.

Definition 6.1. Suppose that Φ : X → Y is a dominant morphism of nonsingular
integral finite type k schemes. Φ is monomial if for every p ∈ X there exist regular
parameters (y1, . . . , ym) in OY,Φ(p), and an étale cover U of an affine neighborhood
of p, uniformizing parameters (x1, . . . , xn) on U and a matrix aij such that

y1 = xa11
1 · · ·xa1n

n
...

ym = xam1
1 · · ·xamn

n

Since Φ is dominant (the image of Φ contains a dense open set), the matrix (aij)
must have maximal rank m.

This concept generalizes to the notion of a toroidal morphism.

Definition 6.2. Suppose that Φ : X → Y is a dominant morphism of k-varieties.
A morphism Ψ : X1 → Y1 is a monomialization of Φ if there are sequences of
monoidal transforms α : X1 → X and β : Y1 → Y , and a morphism Ψ : X1 → Y1

such that the diagram
X1

Ψ
→ Y1

↓ ↓
X Φ

→ Y

commutes, and Ψ is a monomial morphism.
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This definition generalizes to the concept of a toroidalization.
Monomialization and toroidalization can be deduced for arbitary morphisms to a

curve (the case when Y has dimension 1) from embedded resolution of hypersurface
singularities. The case when X is a surface is also known, and is not so difficult to
work out.

In our papers “Monomialization of morphisms from 3-folds to surfaces” (SLN 1786,
2002, Springer-Verlag), and “Toroidalization of dominant morphisms of 3-folds” (to
appear in Memoirs of the AMS), we prove the following theorem.

Theorem 6.3. Suppose that Φ : X → Y is a dominant morphism from a 3 fold
X to a nonsingular variety Y (over an algebraically closed field k of characteristic
zero). Then there exist sequences of blow ups of nonsingular subvarieties X1 → X
and Y1 → Y such that the induced map Φ1 : X1 → S1 is a monomial morphism. That
is, morphisms from a 3-fold can be monomialized.

We also prove that it is possible to toroidalize such morphisms.
The general cases of monomialization and toroidalization are still open in higher

dimension.


