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How can we study ::AUii.A<\: I ties?

Let us consider the case of complex plane curves,
i.e. complex algebraic hypersurfaces of C2.

Let F(X,Y) = 0 be a reduced equation of a
plane curve C.

According to Whitney theorem, C has only a
finite number of singularities.

If x e C is non-singular, the implicit function
theorem implies that there is an open neigh-
bourhood of x in C2, such that CnU is a com-
plex analytic submanifold of U. So, locally at x
is like the complex line. This means that there
is an analytic isomorphism of an open disc D
of C onto a neighbourhood F o f x in C:

7T : D - > V,

i.e. we have a local parametrization of C at
the point x e C.



Suppose that 0 e C is a singular point of C.

Puiseux theorem tells that locally at 0, we also

have a local parametrization.

Theorem 6 Suppose that F(0,Y) ^ 0. There

is an integer m and a formal series ^(X1/171) in

such that

= 0.

In fact, the series <P is convergent at 0.

Puiseux theorem gives a local parametrization

7T : D - • C of C at x defined by TT(£) = (tm , <S>(t))

However in general TT does not gives an isomor-

phism of a disc D onto an open neighbourhood

of x in C.

Example: Consider the case

F(X,Y) = X2 -Y2.



In some cases, for instance with

F(X,Y) = Y2 -X3,

we have a local parametrization which is a
homeomorphism of a disc D with an open neigh-
bourhood of 0 in the curve. Here it is Y = t3

and X = t2.

The existence of a local parametrization helps
to study functions on a singular curve.

For instance, the rational function Y/X re-
stricted to the curve Y2 — X3 = 0 defines a
continuous function!

In fact locally at the singular point of a com-
plex curve there are parametrizations for each
local branches.

The definition of branches involves the com-
plex analytic structure of C, this will lead to
algebraic difficulties when one considers arbi-
trary base fields.



Since the ring of complex polynomials C[X, Y]
in two variables is a subring of the ring of con-
vergent complex series in two variables C{X, Y}
a reduced equation Po of C is also an element
of £{X, Y}. This latter ring is factorial. So, PQ
has a decomposition into irreducible factors in
C{X,Y}:

= fl" • fs-

The analytic curves fa = 0 are the branches of
C at 0.

Consider an irreducible element / in C{X, Y}.
We have an analytic version of Puiseux theo-
rem:

Theorem 7 Suppose that /(0,F) ^ 0 and has
valuation n. There is a convergent series O in
C{X} such that

f(X,Y)=u(X,Y)

where u(X,Y) is a unit of C{X,Y}.



We call Puiseux expansion (or Puiseux series)
of the branch / relatively to the coordinates X
and Y the series

Y =

If an algebraic curve C defined by the reduced
equation Po = 0 has several branches fa = 0,
1 < i < s at the singular point 0, and the co-
ordinates X,Y are such that none of the series
fa(0,Y), 1 < i < s vanish identically, we have
simultaneous Puiseux expansions

Y =

Y = 0s(I
1/%)

These Puiseux expansions determine the ana
lytic structure of C at 0, since we have

np0=u(x,

where u(X, Y) is an invertible element of C{X, Y}



They also determine the topological structure
of C at 0.

When C has several branches at 0, it is rather
complicated to show how the Puiseux expan-
sions of the branches determine the local topol-
ogy of the curve.

We shall restrict ourselves to the case when
C has only one branch. Let ^(X1/71) be the
Puiseux expansion of this branch relatively to
X,Y.

First, notice that ty^X1/71) is an element of
the ring extension C j I J I I 1 ^ ] of C{X}. Let
C{{X}} be the field of fractions of C{X}. Then,
the field C^X^X1/71] j S an algebraic exten-
sion of the field C{{X}}. The Galois group of
this field extension is the cyclic group \in of
order n. Let a an element of fin. There is a
unique root of unity £(<r) such that



In the power series ring ClXJlX1/71] we have a
valuation v such that v^X1/71) = 1. Consider
the subgroup Gj of \in defined by

j > j}.

Obviously G± = fin and G J + 1 c Gj, for j > 1.

Since \±n is a finite group for k » 0, G ,̂ = {e}7

where e is the neutral element of fin-

Let Pi < ... < f3g the sequence of integers such

that

fin = G1 = . . . =

The integers /3i,...,/3g are called the Puiseux
exponents relatively to the coordinates X,Y.

There are a unique sequence of pairs of rela-
tively prime integers ( m i , n i ) , . . . , (mg,ng) such
that

/? mi fig _ m9

n n\ n n\ . . .ng



We call these pairs the Puiseux characteristic
pairs of C relatively to the coordinates X,Y.

These Puiseux pairs give a description of the
local topology of C at the singular point 0.

Namely, for 0 < e < l , the real 3-sphere Se(0)
centered at 0 with radius e intersects C transver-
sally. Since C has only one branch at 0, the
intersection C n Se(0) is connected and is dif-
feomorphic to the circle S1. Therefore the em-
bedding of CnSe(O) into the sphere S€(0) is a
knot.

It is an iterated torus knot given by the Puiseux
pairs



These Puiseux pairs determine the local topol-
ogy of C at 0 in the following sense:

Let C\ and C^ be two plane curves having one
branch at 0. Suppose that there exists a home-
omorphism v|/ of a neighbourhood JJ\ of 0 in C2

onto a neighbourhood C/2 of 0 in C2 such that
M/(t7i n Ci) = C72 n C2, then the Puiseux pairs
of C i at 0 relatively to "general" coordinates
of 0 in C2 at 0 are equal to the Puiseux pairs
of C2 at 0 relatively to "general" coordinates
of 0 in C2 at 0



H o w d o v- '= : ; <-.{->\ <)]•.•> \ o (<•:*[ ; . .><• ; I 'CM .••-••••:. n a t i o n o f a

branch?

1. The method of Puiseux consists to apply
Newton approximation method.

2. Another way is to observe that if C, defined
by the reduced polynomial P analytically irre-
ducible at 0, the local integral ring C{X,Y}/(P)
embed in its normalization which is a regular
local ring £{t}.

3. A third way is obtained by blowing-up sin-
gular points.

Let us define the blowing-up of a point. We
first give an analytic definition of the blowing-
up of a point.

Let U be an open neighbourhood of 0 in C2.
We have a natural map

defined by \(x) = {the complex line from 0 to x}



The graph of A is a subset G(\) of U x P^. Re-
member that P^ is a complex analytic manifold
which is the union of two affine spaces UQ and
U\ isomorphic to C with respective coordinates
UQ and u\. Then, C/xPj is the union of U x
and U x UQ. The intersection G(X) n (£/ x
is contained in the set defined by

X
— = Un

Y U

Similarly G(A) n (J7 x C7i) is contained in the set
defined by

Y
— = u-i.
X l

Then, the closure E of G(A) of G(A) in C/xPj, is
defined by X = ^ Q ^ in U XUQ and by y = u\X
in £/ x U\. It is easy to see that E is an com-
plex analytic manifold of complex dimension 2.
The projection onto U induces a map e : E —> U
which is called the blowing-up of 0 in U.
The inverse image e~1(0) is called the excep-
tional divisor of the blowing-up.



In (JJ x UQ) r\E the equation of the exceptional
divisor is Y = 0. In (JJ x Ui) n E it is X = 0.

It is convenient to consider on (JJ x C/o)n£? the
two coordinates Y and u0 and on (JJ x C7i) n E
the coordinates X and u\. The restriction of
the blowing-up e to (JJ x UQ) HE \S given by

Similarly the restriction of e to (JJ x C/i) n£ ; is
given by

Now consider a curve C which a branch / = 0
at 0. Assume that the irreducible element /
of C{X, Y} defines an analytic function on the
open neighbourhood U of 0 in C2.



The intersection of the inverse image of C by
the blowing-up of 0 in U with the subset of
U x UQ is the set defined by f(Yuo,Y).

Consider the expansion of / by homogeneous
forms:

/ = fm + /m+1 "h • • • ?

where m is the multiplicity of / at 0. Then,

f(Yuo,Y)

= Ymfm(u0, 1) + r m + 1 /m + lK>, 1) + . . .
, 1) + Yfm+1(uO, 1) + • • •)

Similarly the set e~1(C) n (U x U{) is defined
by f(X,XUl) = 0 and



Remember that Y = 0 is the equation of the
exceptional divisor in U x UQ and that X = 0
is the equation of the exceptional divisor in
U x

Therefore e~1(C) is the union of the excep-
tional divisor and a set C\ whose intersections
with UXUQ and UxUi are defined respectively
by /o = 0 and A = 0.

The set C\ is also the topological closure of
e~1(C\{0}) in E. It is called the strict trans-
form of C by the blowing-up e. The restric-
tion of the blowing-up e to C\ induces a map
eo • G\ —> C which is called the blowing-up of
the curve C at 0.

Obviously locally C\ is isomorphic to analytic
plane curve, but C\ itself is the patch of two
plane curves.



In fact the definition of blowing-up is applica-
ble to the case U = C2. In which case, we
observe that the restrictions of the blowing-
up of C2 to two open subsets isomorphic to
the affine space C2 are algebraic maps (maps
whose components are polynomials).

Extending the notion of algebraic sets to ob-
jects which are "locally" algebraic sets, we have
the notion of an algebraic variety or of a finitely
generated reduced scheme over the complex
field (see the usual litterature). In this con-
text, a blowing-up is an algebraic map and
the strict transform of an irreducible algebraic
plane curve is a variety of dimension one (i.e.
an algebraic curve). Furthermore, locally this
curve is isomorphic to a plane curve.



Coming back to the notion of parametrization,
one can prove that by a succession of plane
blowing-ups the strict transform becomes non-
singular.

The way to prove it is first to recall that after
a blowing-up locally the blown-up curve is iso-
morphic to a plane curve. Then, we observe
that after a point blowing-up the multiplicities
of the singularities do not increase. In fact, in
the case of a branch / at a point 0, the first
Puiseux exponent /% (defined above) relatively
to coordinates X,Y such that the valuation of
/ (0, Y) equals the multiplicity m of / = 0 at 0,
can be interpreted in the following way:

We saw that the multiplicity is the intersection
number of a general line through 0 with the
curve. So, it is also the intersection number of
a general non-singular curve (whose tangent at
0 is a general line) with the curve at 0. Now,



if the line or the tangent of the non-singular
curve at 0, is not general, this intersection
number is strictly higher than the multiplicity.
It can be shown that the highest value of the
intersection is precisely (3\ (in contrast with the
case the curve is non-singular at 0 when this
number can be as high as one wishes).

Then, by one blowing-up one can prove that
for a curve with one branch at 0, this number
/?i decreases strictly, in fact the new value at
the singular point of the blown-up branch is
Pi — m.

Using these observations one can prove that
after a finite number of point blowing-ups, the
final strict transform of the given curve is non-
singular.



In the case of a branch the composition of the

successive blowing-ups of the singular points

of the successive strict transforms

C <— C\ <— C2 <— . •. <— Ck

gives a map n from a non-singular curve Ck

onto C.

It is easy to check that a blowing-up is an

isomorphism outside the blown-up point, so TT

induces an isomorphism of Ck \ TT~1(O) onto

C \ {0} and TT~1(O) = {xk}. Since xk is a non-

singular point of Ck an open neighbourhood of

xk in Ck is isomorphic to a disc D and TT induces

a parametrization p : D —• C of C at 0.

Therefore, in the case of a plane branch the

process of eliminating a singular point by suc-

cessive point blowing-ups gives the local parametriz;

tion.



What is a desir.-u ;Ww\s.rt-.]c,n?

Historically algebraic geometers were looking
fora "transformation" which could replace the
local parametrization.

As we mentioned above the normalization also
leads to parametrization of plane branches. Un-
fortunaley the normalization of a surface is in
general singular. In fact surfaces with non-
singular normalization are very special. How-
ever, it can be shown that the singularities
of normal surfaces, i.e. algebraic varieties for
which all the local rings are equal to their nor-
malization, are isolated. Then, the natural
idea was then to blow-up singular points of
normal surfaces. In general the blowing-up of
a singular point of a normal surface is not a
normal surface any more, since the singulari-
ties of the blown-up surface might not be iso-
lated. R. Walker stated that a surface could



be desingularized after a finite sequence of nor-

malizations and point blowing-ups. The proof

of this theorem was given by O. Zariski using

valuation theory (see Ann. Math. 40 (1939)).

One can observe that a map ir : W —» V, which

is the composition of normalizations and point

blowing-ups at singularities, is

1. a proper map (the inverse image of a com-

pact subset is compact);

2. an isomorphism of TT~1(V\ SingV) onto V \

SingV where SingV is the subset of singular

points of V.



We are led to the following definition:

A map 7T : W - * V is a desingularization of a

variety V (we also say a resolution of singu-
larities of V) if:

1. W is a non-singular variety;

2. it is a proper map;

3. it is an isomorphism of TT~1(V \ SingV) on

V \ SingV where SingV is the subset of

singular points of V\

4. TT~1(V\ SingV) is dense in W.

As one can see, in order to find resolutions

of singularity, in particular, one will have to



generalize the notion of properness to maps
between varieties defined over arbitrary fields.

Over an algebraically closed field of character-
istic zero the existence of a resolution of sin-
gularities was obtained by H. Hironaka in Ann.
Math. 79 (1964).

One of the aim of this school on the resolution
of singularities is to find a desingularization in
the case of varieties over a non-zero charac-
teristic field.


