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Introduction to Singular Points

Le Dung Trang

In these notes we shall give the definition of a singular point on an algebraic set and introduce the
concept of desingularization after considering in some detail the case of complex plane curves.

1 Algebraic singular points

1.1 Algebraic sets

Let K be a field (commutative). We shall call it the base field (or also the ground field).

An K-algebraic set defined by the set of polynomials (Pj)je/ of K[X|,. . . , Xn], is the subset
of the affine space K" of the points (x\,,.., xn), such that Pi(x\,..., xn) = 0, for i e I.

When the base field is clear, we speak of algebraic set instead of K-algebraic set. The polynomials
Pi, with i «E /, are also called the equations of the algebraic set. We also write these equations
Pi = 05 / e I.

Now notice that the set of polynomials of K[Xi,.. . , Xn] which vanish on an algebraic subset E of
Kn is an ideal I(B) of the ring of polynomials K[Xi,..., Xn). Hilbert finiteness theorem tells us
that

Theorem 1 The ideals of~K[Xi,... ,Xn] are finitely generated.

We express this property by saying that the ring of polynomials K[Xi,..., Xn] is noetherian.

In particular an algebraic subset E of Kn is defined by a finite number of equations, since it is
defined by a set of generators of the ideal I(E).

The first obvious fact is that algebraic subsets of Kn are very particular subsets of K7\ For instance,
when n = 1, the algebraic subsets of K are the finite subsets.

However, the study of algebraic sets may be in general complicated.



In this section we shall observe that the points of algebraic sets are of two types:

• regular points or non-singular points;

• singular points.

1.2 An example: Complex Hypersurfaces

Let assume that the base field is the field of complex numbers C. We shall consider the case of
algebraic sets defined by a non-constant polynomial.

Definition 1 A C-algebraic set defined by one non-constant polynomial is called a complex hy-
persurface.

Let x € X be & point of a complex hypersurface I C C", Let P be an equation of X, The
differential of P at x is a linear form from Cn into C. Suppose that this differential dP(x) of P at
a: is a non-zero linear form of Cn. Then, implicit function theorem implies that there is an open
neighbourhood U of x in C™, such that XdU is a complex analytic submanifold of 17. This implies
that at x, the hypersurface X has a tangent space defined by

dP(x) = 0,

i.e.
n

"~~ P dXj(x)Xj = 0.

In fact the linear form dP{x) is ^ 0 if and only if there is j , 1 < j < n, such that 8P/dXj(x) ^ 0,
Therefore, the points of X where the differential of P vanishes is an algebraic subset of X.

Example: Consider a linear form £ of Cn. It is the equation of a complex hyperplane II of Cn. It
is easy to show that at every point x of H, dl(x) ^ 0.
Now the same set H is defined by the equation <p = £2 = 0, in which case at every point x € H, we
have d(p(x) = 0.
So the fact that the differential of the equation vanishes at a point x of X depends on the equation.

Let us recall Hilbert Nullstellensatz:

Theorem 2 Let K he an algebraically closed field. Let E be a "K-algebraic set defined by the set of
polynomials (Pi)iei of K{Xi,.... Xn], the ideal I(E) of polynomials in K[X\,..,, Xn] which vanish
on E is the radical ideal of the ideal generated by (Pi)iEj.

Recall that the radical ideal of an ideal 21 of a ring A is the ideal H(%L) of elements which have a
power in 21,



Since C is an algebraically closed field, we can apply Hilbert Nullstellensatz. It shows that if a
liypersurface X is defined by an equation P, it is also defined by the reduced polynomial PQ defined
by P, because, if P — Q"1 ... Q'Jr is the decomposition of P into irreducible components, the radical
of the principal ideal (P) is generated by the associated reduced polynomial PQ = Q\,.. Qr.

Let X be a complex hypersurface defined by a reduced polynomial PQ.

Definition 2 /I point x of the hypersurface X is called a non-singular point of X (or a regular
point j of X, if dPo(x) ̂  0. A point of X is called a singular point of X if CIPQ(X) = 0.

As noticed above, singular points of X define an algebraic subset of X defined by the equations

Po = dPo/dXi = .. . = dPo/dXn = 0.

1.3 Definition of complex singular points

More generally, let E be a complex algebraic subset of €". Let 1{E) be the ideal of all polynomials
in C[Xi,... , Xn] which vanish on E,

Hilbert finiteness theorem tells that the ideal I(E) is finitely generated

Let us fix a system of generators of I(E) and consider the Jacobian matrix J(x):

rJP1: OX i ix), ... ,dPi fdXn (x)

OP; OX^x), . . .

Denote p{x) the rank of this matrix at x E E.

Denote PE '= iiiax^g^p^).

In [W], H. Whitney proved:

Theorem 3 The subset E° of points x of E where p(x) = PE is a complex analytic manifold of
dimension n — PE- The subset of E\ :== E \ Eg of E is a proper algebraic subset of E.

Example: Consider the complex algebraic subset V of C3 defined by

XY = XZ =: 0.



One can check that V is the union of the plane X = 0 and of the line Y = Z = 0. The Jacobian
matrix J(x) is

' Y(x) X(x) 0
Z(x) 0 ' X(x)

So, pv = 2. In this case Vi is the plane X = 0.

This example leads us to recall that an algebraic set E is the finite union of irreducible subsets
E(i)j 1 < i < r, such that for i =̂  j , E(i) <f. E(j). These subsets are called the (irreducible)
components of E.

Definition 8 An algebraic set E is irreducible if whenever E is the union of two algebraic subsets
Ei and E2, then one of these is E itself.

One can easily prove the following lemma:

Lemma 4 Let K be a field, A K.-algebraic set is irreducible if and only if the ideal I(E) is prime.

Proof: Suppose that the algebraic subset E of Kn is the union E\ U E\ of two algebraic subsets of
Kn both different from E. Since E\ ^ I?2, we have I{E\) =t= I(J?2). Moreover E\ <£ £2^ so there is
h € I(E2) such that f2 i I(EX). Similarly as E2 qt Eu there is /1 € 1{E}) and fx £ I(E2). The
product / i / 2 vanishes on EtUE2i so / i / 2 € I(E), but / : ^ I(E2) and I{E) C I(E2), so /j ^ I{E),
Similarly f% ^ I{E), so I(E) is not prime.
Conversely, suppose that I(E) is not prime. There is / and g in K[Xi,..., Xn], such that fg € I(J5),
but / i I(E) and g <£ I(E). Let

E1:=En{f(x) = G]

and
E2:=En{g(x) = 0}.

We have E ^ Et and E ^ E2j however E c {/ = 0} U {g = 0} = {/p = 0}, so

EtUE2 = (En{ f{x) = (I}) 11 (i? n £9(:r) = 0}) =ED ({f{x) = 0} U {^(;r) = 0}) = £7.

Therefore, E is not irreducible,

A way to obtain the irreducible components of an algebraic subset of Kn is to look for the prime
ideals of K[X|,. . . , Xn] minimal among those which contain I(E).

A singular point of an irreducible complex algebraic set I? is a point x € E where p(x) ^ PE- So
the set of singular points, defined by the vanishing of the minors of a matrix with algebraic entries,
is an algebraic subset of E. One can prove that non-singular points of an irreducible complex
algebraic set E is connected.

A singular point of a complex algebraic set

E = U\E(i)



is a point x € E where either there is i, such that x € E(i) and p(x) ^ PE(I),
 o r x belongs to two

distinct irreducible components E(i) and E(j) (i ^ j) of E.

A non-singular point (or a regular point) of E is a point which is not singular. One can observe
that a point x € E C Cn is non-singular if it has an open neighbourhood U in E such that IT is
a complex submanifold of Cn. In particular at a non-singular point x, one can define the tangent
space TE,X to E.

Consider the C~ algebra
A[E\'.= C[Xi,...,Xnyi(E)

quotient of the C-algebra of complex polynomials in n variables by the ideal I(E) generated by all
the polynomials of C[Xi,,.,, Xn] which vanish on E.

The local ring OE,X oi E at X is the localization of A[E] at the maximal ideal generated by
-̂ "1 ~ a i ; • • • 5 Xn — an.

Recall that for a ring A and a multiplicative set S C A, i.e. a subset of O such that i € S and, for
f,g € »S, fg € 5, one can define the fraction ring ilf^""1] with a map js : A —> A[S~1)* such that,
for any ring homomorphism h : A —» B, such that for any s € S, h(s) is invertible in B the is a
unique homorphism h : AlS^1} —•» B such that h = h o js- We call itJS'^1] the fraction ring of A
with denominators in S.

Since the complement of a prime ideal P of a ring A is mutliplicative set, one can define A[(A \ P)"1].
This fraction ring is in fact a local ring, i.e. it only has a maximal ideal, and its unique maximal
ideal is generated by the image of P in A[A \ P]. In this case the fraction rings is also denoted
Ap := A[A \ P] and is also called the localization of ̂ 4 at the prime ideal P. The local ring OE,X
considered above is the localization of A[X] at the maximal ideal of the point x in E, i.e. the one
generated by X\ — ci\1,,., Xn — an in ̂ 4[l?]. The maximal ideal SKE,X is the ideal generated by the
image of the maximal ideal of re in E,

Whenever the multiplicative set S contains a zero divisor the corresponding ring of fractions is the
trivial ring {0}. In the case of a domain of integrity, the ring of fractions with denominators in the
multiplicative set S is the subring of the field of fractions of the integral domain of fractions having
effectively their denominators in S.

Since the ring A[E] can be identified with the ring of functions on E which are restrictions to E
of a polynomial function (in this case of complex algebraic sets, this is a consequence of the fact
that the field C has an infinite number of elements), when E is irreducible, the local ring OE,X can
be identified can be identified with the restrictions to E of rational functions the denominators of
which do not vanish at x.

Now, notice that at a non-singular point x € E there is a natural complex linear map d : OE,X ~*
^E,x ™to *^e cotangent space of E at x which is defined by the differential of a function. This
map induces an isomorphism of 9JIE,X/$RE,X

 o n t o ^E,x- ^ ^ s observation will lead to an algebraic
definition of non-singular points.

In the preceding example the only singular point of V is the origin of C3.



2 Algebraic characterizations of a singular point

2.1 The Multiplicity

In the case of a complex hypersurface, by definition one finds the singular points knowing the
reduced equation: Let PQ be a reduced equation of the hypersurface X, the point x € X is singular
if and only if dPo(x) = 0.

A way to check it is to consider the Taylor expansion of P® at the point x := (ct i , . . . . an):

P0(Xi,..., Xn) = P0(x) + EILi dPo/dXifa,..., an)(Xt - at)
+ terms in X\ — o>i,,., Xn — an of degree > 2.

The lowest degree of the non-zero non-constant terms in this Taylor expansion is called the multi-
plicity mx,x of X at x. The point x := (o-i,..., an) is a singular point of the complex hypersurface
X if and only if the multiplicity mx,x > 2.

There is an algebraic way to compute the multiplicity.

Consider the following function on N:

Vi/ € N, F(v) := dime Ox^/M^,

where 9Mx,x "m the maximal ideal of Ox,x- This function F is called the Samuel function of Ox,x-

Exercise: For v >̂ 0, the function F is a polynomial in v of degree n — 1 and the term of highest
degree is

mx,x n-x
( n - 1 ) ! *

The corresponding polynomial is also called the Hilbert-Samuel polynomial of Gx,x-

There is also a geometric way to understand the multiplicity of a complex hypersurface:

Let £ a "general" line through x. The line £ intersects X at a; and the point x is isolated in the
intersection I n J . Consider an open neighbourhood U such that

For "general" lines £t parallel to I, it intersects X transversally and the number of points of If HXHU
is the multiplicity mx,x-

We can specify what we mean by "general" line. Let us consider again the Taylor expansion of the
reduced equation PQ of X at x:

P0 = P0(x) + (P0)m + (Po)m+1

where m is the multiplicity of X at x and (Po)fe is the homogeneous polynomial of degree k in the
Taylor expansion of PQ. Then we choose a line not contained in the cone define by (Po)m = 0.
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Consider the parallel line I through x. It Intersects X only at x locally at x, i.e. there is an open
neighbourhood U of x such that £f)X DU = {x}. For almost all lines if, parallel to I. not through
x but near enough to £, we have that l± intersects X transversally X in U and the number of points
U n X n it "ls mx,x' The choice of it is determined by a local discriminant. Namely, we choose
local coodinates (Z\,..., Zn) at x in such a way £ is defined by Z\ — .,, = Zn-i = 0, then, the
Preparation theorem of Weierstrass tells that in a neighbourhood V of x in C"', X R V is defined
by

1

where ar-i(Zi,..., Zn-\) € C{Zi,. . .» 2"n^i}. 1 < i < n. The discriminant of this degree r polyno-
mial is A ( a i , . . . , an) . Choosing z i , . . . , zn^\ such that

&{a\(zi,...,zn-i),...,an(z\,...,zn-i)) ^ 0

and sufficiently near to 0, one can choose it as Z\ — z\ = ... = Zn_i — ^n-i = 0. In particular it
shows that r = mx,x-

The cone (Po)m = 0 is called the tangent cone of X and x and the homogeneous polynomial
(-Po)m is called the initial form of PQ at x.

Let JS be a complex algebraic subset of Cn . Let -E'(l),..., E(r) he the irreducible components of
E. We define

dimx E := max {n
{iGE(i)j

At a point x E E one consider OE,X the localization at x of the complex algebra

We have the following results

Theorem 5 For v ^> 0, </ie function defined by

Vi/ G N, F(i/) := dim

•is a polynomial of v of degree dinia; E,

For 1/^*0, the coefficient of the term of degree dim^ E is e^dim^ E)\

Definition 4 The multiplicity ITIE,X of E at x is the number e.

We have

Theorem 8 The point x E E is singular if and only if THE,x •> 2.



As above we have the following interpretation of the multiplicity for complex irreducible algebraic
sets (see R. Draper, Math. Ann. 180 (1969)):

Let £ a "general" affine subspace of Cn of dimension ps through x. The affine space £ intersects E
at the isolated point x. Consider an open neighbourhood U such that

inEnu = {x}

For "general" affine spaces it parallel to I, it intersects E transversally and the number of points
of If D E H U is the multiplicity

In this case, the characterisation of a general affine subspace, although similar to the hypersurface
case, is a bit more complex. Let d := dim E — n — PE be the dimension of E and x — (a\,..., an).
The tangent cone of E at x is the subspace of Cn defined by all the initial forms of the elements
P € I(E). The affine subspace £ through x has to intersect the translate at x of tangent cone of E
at x only at the point x.

Now choose such a subspace I. The linear projection of E into C parallel to I is locally finite at
the point x. To prove this, we need to use the viewpoint of analytic geometry. Let us call pi the
projection parallel to £. Since I intersects the translate of the tangent cone of X at x only at x,
one can prove that x is isolated in the intersection I OX. The analytic Hilbert Nullstellensatz (due
to Riickert) tells us that x is isolated in the intersection £ D X if and only if the analytic local ring
OfJt{mcdAx)), quotient of

O%x := CjXi -au...,Xn- an}/I(E)C{X1 - a i , . . . , Xn - an}

by the ideal generated by the analytic functions if op|5 with cp in the maximal ideal f0tCd £/x\ of
the local ring of Crf at £(x)j is an artiiiian ring, i.e. it is a C-vector space of finite dimension.
Now, the geometric version of Weierstrass Preparation theorem (see [Ho]) implies that locally at
x the restriction of pi to X induces a map p of an open neighbourhood U oi x in E onto an open
neighbourhood V of pe(x) in C which is proper with finite fibers. For such a map one can define a
discriminant, namely the image A by p of subspace T of E D U of points which are either singular
in E or where p has not rank d. For y ^ A sufficiently near to pi(x), the fiber pe(y) can be chosen
as general space it.

2.2 Regular Local Rings

There are other algebraic characterizations of non-singular points:

Theorem 7 A point x E E is non-singular if and only if the SME,X-•completion of the local ring
OE,X is isomorphic to the Q-algebra of formal series C[[Xi,.,., X^}], where d = dim^ E.

In fact there is also a version in complex analytic geometry of this theorem. A point x € E is non-
singular if and only if the analytic local ring O^x, defined in the preceding paragraph is isomorphic
to the ring C{Xi,,. . , X^} of convergent series in d variables.



An important notion is the following.

Let O be a local noetherian ring. Call M its maximal ideal. We can define the dimension dim O
of O as the degree of the polynomial defined by

F(v) := lengthy (O/5T+1)

for 1/ > 0. Recall that the length over O of an O-module is defined by the length of a Jordan-
Holder sequence (also called composition series) of O-submodules of the O-module (see [SZ] Tome
1, Chapter III, §11).

The local ring O is regular if there are dim O elements of 0 which generate the maximal ideal 9JI
of O ,

Then:

Theorem 8 4̂ point x € E is non-singular if and only if the local ring QE,X *S regular.

This type of theorem will allow us to define regular or non-singular points for algebraic sets over
any field K by considering the local ring of the algebraic set at the point.

2.3 Singular points over an arb i t rary field

Let E be a K.-algebraic subset of Kn. We have defined the affine algebra of E as the quotient
K-algebra

Since the ring K[Xi,.. . . Xn] is noetherian, i.e. its ideals are finitely generated, A[E] is also noethe-
rian.

As noticed before A[E] can be identified as the K-algebra of polynomial functions on E, i.e. restric-
tion to E of polynomial functions on Kn, when the field K has an infinite number of elements. Most
of the time we shall assume the field K to be algebraically closed, because we shall need Hilbert
Nullstellensatz. In this case, we know that K has an infinite number of elements.

There is a maximal ideal ME,X of A[E] generated in A[E] by the images of X\ — a\,... Xn — an.
The localization OE,X °f A[E] at the maximal ideal M^,x °f A[E] is, as defined before, the local
ring of fractions with denominators in A[E] \ ME,X- The ring OE.X is a local noetherian ring and
its maximal ideal ^HE,X is generated by the image of the ideal ME,X in OE,X-

To a noetherian local ring O with maximal ideal 9Jt, we have associated the Samuel function

F{V) := i (o/mr+1)

for v E N and where I is the length as O-module. We have observed that one can prove that for
v » 0, this function coincides with a polynomial P whose degree is the dimension (Krull dimension)

9



d of O and its term of highest degree is

where, by definition, the positive integer e is the multiplicity of OE,X-

Therefore we can define the dimension of E at x as the Krull dimension of OE,X and the multiplicity
of E at x as the multiplicity of the local ring O.

Theorem ?? gives a definition of non-singular points:

Definition 5 A point x ofa 'K-algebraic set E is non-singular (we also say regular) if Us local ring
is regular.

A singular point is a point which is not non-singular.

A basic theorem in commutative algebra gives the following characterisation of a regular ring (see
[S], Theoreme 9, Chapitre IV):

Theorem 9 Let O he a noetherian local ring and d)l be its maximal ideal. The following assertions
are equivalent:

• The local ring O is regular;

• The maximal ideal 9JI is generated by d = dim O elements;

• The dimension over the residue field k := O/Wl of the k vector space TifWl2 equals d;

The graded ring G^i(O), of the ring O with the filtration (&tn)nEfq, is isomorphic to the
polynomial k-algebra k[Xi,..,, XJ.

In particular, this theorem shows that a point x E E is non-singular if and only if the fe-vector
space dJlE,x/^% x ^ a s ^-dimension equal to dim^ E. We saw above that for complex algebraic sets
the quotient DJIE,X/^E X ^S isomorphic to the cotangent space of E at x.

2,4 Complete local rings

Let O he a local ring and 9Jt be its maximal ideal. The filtration (fDtn)neN defines a topology
on the local ring O, Take the filtration (97ln)n€pj as fundamental system of neighbourhoods of
0 in O and, for any a € 0, the family (a + Wtn)nEfq as fundamental system of neighbourhoods
of a in O, The topology defined by the filtration (Wln)n€jq is the topology generated by these
systems of neighbourhoods. Endowed with this topology, O is a topological ring, i.e. the addition,
the multiplication, the opposite are continuous operations. This topology is called the QJt-adic
topology of O,

10



It is easy to show that this topology is Hausdorff if and only if

nnmmn = {o}.

A sequence (#n)neN is a Cauchy sequence if, for any m € N, there is Nm such that

wi,«2 > Nm =$> xni - xm e Mm.

In general Cauchy sequences do not converge, but, as in the case of metric spaces, one may define
the completion of O for the fBI-adic topology. It is a morphism

of O into a local ring O complete for the 9DT-adic topology generated by the maximal ideal fflt of O,
such that j is a continuous ring homomorphism and for any continuous local ring homomorphism
h : O —> O\ into a complete local ring, there is a unique continuous local ring homomorphisiii h,
such that h = ho j .

Definition i A local ring is a complete local ring if it is complete for Us &t~iopology, i.e. all
Cauchy sequences converge.

The notion of complete local ring is important, because it can be considered as an algebraic analogue
of analytic local rings. Notice that the ring of formal power series k[[Xi,..., Xn]] is complete.

Above we have considered the local rings

t - <*1, • • • , * n - O n } /

for a point a: of a complex algebraic set E. These rings have the same completion

C[[Xi — a\,..., Xn — Or. > .

Now5 we can state the theorem of Cohen:

Theorem 10 Let O a complete noetherian local ring with maximal ideal DJl. If the characteristic
of O and the characteristic of the residue field k := O/3R are equal, the following assertions are
equivalent:

• the local ring O is regular;

• the local ring O is isomorphic to a ring of formal power series k[[X\,,.., Xd]].

11



3 Plane Curves Singularities

As an example of how one studies singularities, let us first consider the case of complex plane
curves, i.e. complex algebraic hypersurfaces of C2.

Let F(X, Y) = 0 be a reduced equation of a plane curve C. Notice that all the irreducible compo-
nents of the curve C have the dimension one.

According to Whitney theorem, the singular subset of C is a proper subset. From the definition of
singular points, it is easy to prove that the singular subset of C has dimension 0, so it has only a
finite number of points. Therefore C has only a finite number of singularities.

If x € C is non-singular, the implicit function theorem implies that there is an open neighbourhood
of x in C2, such that C H U is a complex analytic submanifold of U. So, locally at x is like the
complex line. This means that there is an analytic isomorphism of an open disc D of C onto a
neighbourhood V of x in C:

ir:D-+V,

i.e. we have a local parametrization of C at the point x € C.

Suppose that 0 € C is a singular point of C. Puiseux theorem tells that locally at 0, we also have
a local parametrization.

Theorem 11 Suppose thai F(0, Y) ^ 0. There is an integer m and a formal series #(X1/m) in
^]] such thai

In fad, the series # is convergent at 0.

Puiseux theorem gives a local parametrization w : D —• C of C at 0 defined by w(i) — (tm, #(t)).

However if 0 is a singular point of (7, w does not give an isomorphism of a disc D onto an open
neighbourhood of 0 in C.

Examples: Consider the case
F(X,Y) = X2 -Y2.

In some cases, for instance with
F(X,Y) = F 2 - X 3

5

we have a local parametrization which is a homeomorphism of a disc D with an open neighbourhood
of 0 in the curve. Here it is given by Y = i3 and X = t2.

The existence of a local parametrization helps to study functions on a singular curve. For instance,
the rational function YjX restricted to the curve Y2 — X3 = 0 defines a continuous function!

One can prove that, locally at the singular point of a complex curve, there are parametrizations
for each local branch.

12



The definition of branches involves the complex analytic structure of C, this will lead to algebraic
difficulties when considering arbitrary base fields.

Since the ring of complex polynomials C [X, Y] in two variables is a subring of the ring of convergent
complex series in two variables €{X, Y} a reduced equation PQ of C is also an element of C{A", I '}.
This latter ring is factorial. So, PQ has a decomposition into irreducible factors in €{X, Y}:

"0 — Jl - • • Js-

The analytic curves fi = 0 are the branches of C at 0.

Consider an irreducible element / in C{X5 Y}. We have an analytic version of Puiseux theorem;

Theorem 12 Suppose that /(0, Y) ^ 0 and has valuation n. There is a convergent series # in
C{X} such that

f(X,Y) = u(X,Y) f| (Y-QftX1'")),

where u(X,Y) is a unit o/C{X,F}.

We call Puiseux expansion (or Puiseux series) of the branch / relatively to the coordinates X
and Y the series

Y

If an algebraic curve C defined by the reduced equation PQ — 0 has several branches ff = 0,
1 < i < s at the singular point 0, and the coordinates X, Y are such that none of the series /, (0,1'),
1 < i ^ s vanish identically, we have simultaneous Puiseux expansions

Y =

Y =

These Puiseux expansions determine the analytic structure of C at 0, since we have

Po = u(X.Y)f[

where u(X,Y) is an invertible element of C{A". I*"}, i.e. the constant coefficient ti(0,0) of u(X,Y)

They also determine the topological structure of C at 0,

When C has several branches at 0, it is rather complicated to show how the Puiseux expansions of
the branches determine the local topology of the curve.

We shall restrict ourselves to the case when C has only one branch. Let ^(X1/") be the Puiseux
expansion of this branch relatively to X,Y.

13



First, notice that ^(X^n) is an element of the ring extension CfXHX1/"] of C{X}. Let €{{X}}
be the field of fractions of C{X}. Then, the field C{{X}}[X1//w] is an algebraic extension of the
field C{{.Y}}. The Galois group of this field extension is the cyclic group fin of order n. Let a an
element of fin. There is a unique root of unity £(<J) such that

In the power series ring €{X}jX1/ /n] we have a valuation v such that u(X1//n) = 1. Consider the
subgroup Gj of \xn defined by

Gj := {a € !in, viaQiX1'") - #(X1/")) > j} .

Obviously G\ = (in and Gj+i C Gj, for j > 1. Since jxn is a finite group, for k >* 0,
where e is the neutral element of fin.

Let Pi < ... < (3g the sequence of integers such that

The integers /? i , . . . , /35 are called the Puiseux exponents relatively to the coordinates X, Y.

There is a unique sequence of pairs of relatively prime integers (mi, n i ) , . , . , (rngi ng) such that

n ni n ri\.. ,ng

We call these pairs the Puiseux characterist ic pairs of C relatively to the coordinates X, Y.

These Puiseux pairs give a description of the local topology of G at the singular point 0.

Namely, for 0 < e < 1, the real 3-sphere Se(0) centered at 0 with radius e intersects G transversally.
Since C has only one branch at 0, the intersection C (1 S€(0) is connected and is diffeomorphic to
the circle S1, Therefore the embedding of C R Se(0) into the sphere S€(0) is a knot.

It is an iterated torus knot given by the Puiseux pairs (mi, n\),..., {frig, %)•

These Puiseux pairs determine the local topology of G at 0 in the following sense:
Let G\ and O2 be two plane curves having one branch at 0. Suppose that there exists a home-
oxnorphism f of a neighbourhood U\ of 0 in C2 onto a neighbourhood U2 of 0 in C2 such that
#(Ui n C\) = C/2 D 02; then the Puiseux pairs of Oi at 0 relatively to "general" coordinates of 0 in
C2 at 0 are equal to the Puiseux pairs of €2 at 0 relatively to "general" coordinates of 0 in C2 at 0
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4 Parametrizations and Desingularization of curves

4.1 Newton approximation method

To obtain the Puiseux series relatively to given coordinates, we have mentioned Newton approxi-
mation method.

To indicate how to get the local parametrizations of branches, we shall briefly sketch this method
used by Puiseux.

Let PQ be a reduced equation of the complex plane curve C. Assume that the origin 0 of C2 is on
C, i.e. Po(0) = 0.

We have
P0(X,Y)= ]P ca,0X

aY^

We are looking for a series aXr + , , . where a ̂  0 and the rational r is the lowest degree of non-zero
terms of this series, such that

P0(X,aXr + . . . ) = 0.

By variable substitution, we must have

]T 0a+r(3 ... = 0.

In particular the terms of lowest degree of this series must vanish. To find them, consider the subset
Q of N2 delned by

Q :={(<*, ^ ) G N 2
) C a , ^ 0 } .

In Puiseux theorem we assume that PQ(0,Y) ^ 0. Therefore If n Is the valuation of PQ(0,Y), i.e.
the lowest degree of the non-zero terms of P(0, Y), the point (0, n) belongs to Q. By definition of
the multiplicity, we have

mc,o = inffa + /3, (a,/?) e Q}

and there Is a point (OQ; /3Q) in Q such that cuo + Po

Let Q be the convex hull of Q. The compact part of the boundary of Q facing 0 Is called the
Newton polygon M(PQ) of PQ relatively to the coordinates X and Y. This Newton polygon is a
union of segments having pairwise at most an extremity In common.

For a fix positive rational r the terms of PQIX^ Y) which give the terms of lowest degree in

P0(X,aXr + . . . ) =

necessarily lie on the Newton Polygon J\f(Po). In fact these terms correspond to the points o
where the linear function a + r/3 takes its lowest value. If — 1/r is not a slope of one of segments in
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J\f(Po), the lowest value of a + r(3 on M(PQ) is reached only in one point of J\/*(Po), in which case
the lowest degree term of PQ(X, a^r + • • •) do not vanish. So necessarily — 1/r is the slope of one
of the non-trivial segments of the Newton polygon. Let (ai,f3i),..., (o^. At) be the points of Q on
this segment. So, by definition, ca.^. ^ 0 and «i + r(3\ = aj + rflj, for 1 < j < k. In order to
obtain Po(X, aXr + ...) = 0, we must also have

g(a) = afoca^fa + .. • + apkcak^k = 0.

Since the base field C is algebraically closed, we can find a ̂  0, so that g(a) = 0.

To find the rest of the series, let r = p/q, where p and q are relatively prime positive integers. Put

change of variables we have

P0(X Y) = P0(Xl X{{a

Since Pi(0,Fi) ^ 0, we can repeat the arguments above and by induction one find a formal series
which satisfies Puiseux theorem. It remains to prove that series is also convergent.

Details are left as an exercise.

4.2 Normalization

Another way to obtain the local parametrization is to observe that if the curve C, defined by the
reduced polynomial P is analytically irreducible at 0, the local analytic ring O^Q := C{X, Y}/(P)
of C at 0 is a domain of integrity. It embeds in its field of fractions.

It can be proved that the normalization of the local ring O^"0 is a regular local ring C{t}. Recall
that, for a domain of integrity A, an element of its field of fractions K is integral over A if it is the
root of a unitary polynomial of A[T]1 i.e. there are ao,. • •, am € A such that

The elements of K which are integral over A are a subring A of K which contains A. We call A
the integral closure of A or the normalization of A. We say that A is normal if it is equal to its
integral closure. The preceding result is consequence of the fact that an analytic local ring which
is normal and of dimension one is a regular local ring.

The class x and y of X and Y in O f̂o a r e elements of its normalization, so there are series </> and
t/j, such that

x = 4>{t), y - ip(t).

By changing the variables, one may find an integer n and a series # such that

x = un, y = <I>(u).

In the case of complete local ring of dimension one, one may have a similar argument by using the
following
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Theorem 13 The normalization of a complete local domain of integrity of dimension one is a
complete regular ring.

Therefore in dimension one there is the possibility to define a parametrization over any field.

4,3 Blowing-up points

A last way to obtain a local parametrization is to use blowing-ups of points.

Let us define the blowing-up of a point. We first give a complex analytic definition of the blowing-up
of a point.

Let U be an open neighbourhood of 0 in C2. We have a natural map

defined by X(x) = {the complex line from 0 to :E}.

The graph of A is a subset G(X) of U x P^. Remember that P^ is a complex analytic manifold
which is the union of two affine spaces UQ and U\ isomorphic to C with respective coordinates UQ
and u\. Then, U x P^ is the union of U x UQ and U x UQ. The intersection G(X) H (U x UQ) is
contained in the set defined by

X

Similarly G(X) P) (U x U\) is contained in the set defined by

Y
•—— m 111

X 1 =

Then, the closure E of G(X) of G(X) inUxF^ is defined by X = u0Y in U x Uo and by Y = uxX
in U x U\. It is easy to see that E is a complex analytic manifold of complex dimension 2. The
projection onto U induces a map e : E —> U which is called the blowing-up of 0 In U.
The inverse image e^1(0) is called the exceptional divisor of the blowing-up.

In (U x Uo) H E the equation of the exceptional divisor is Y = 0. In (U x U\) f) E it is X = 0.

It is convenient to consider on (U x UQ) D E the two coordinates Y and UQ and on (U x U\) D E

the coordinates X and u\. The restriction of the blowing-up e to (U x UQ) D £ is given by

e(Y,uo) = (Yuo,Y).

Similarly the restriction of e to (U x U\) C\ E is given by
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Now consider a curve C which a branch / = 0 at 0. Assume that the irreducible element / of
C{X, Y} defines an analytic function on the open neighbourhood U of 0 in C2.

The intersection of the inverse image of C by the blowing-up of 0 in U with the subset of U x UQ
is the set defined by f(YuQ,Y).

Consider the expansion of / by homogeneous forms:

/ = /m + fm+i + . . . ,

where m is the multiplicity of / at 0. Then,

f(YuOjY) = Ymfm(uoA) + *m+1

Similarly the set e^l{C) H (U x Ux) is defined by f(X,Xui) = 0 and

f(X,XUl) = Xmfm(liu1)+Xm+1fm+1(liu1) + ...
= A™(/m( l ,«i) + Xfm+1(liUl) + ...) = Xmf1(Xiu1).

Remember that Y = 0 is the equation of the exceptional divisor in U x UQ and that X = 0 is the
equation of the exceptional divisor in U x C/i.

Therefore e~1(C) is the union of the exceptional divisor and a set C\ whose intersections with
U x UQ and U x U\ are defined respectively by /o = 0 and /i = 0.

The set C\ is also the topological closure of £ -1(C \ {0}) in E. It is called the strict transform
of C by the blowing-up e. The restriction of the blowing-up e to C\ induces a map CQ : G\ —* C
which is called the blowing-up of the curve C at 0,

Obviously locally C\ is isomorphic to analytic plane curve, but C\ itself is the patch of two plane
curves.

In fact the definition of blowing-up is applicable to the case U = C2. In which case, we observe
that the restrictions of the blowing-up of C2 to two open subsets isomorphic to the affine space C2

are algebraic maps (maps whose components are polynomials).

Extending the notion of algebraic sets to objects which are "locally" algebraic sets, we have the
notion of an algebraic variety or of a finitely generated reduced scheme over the complex field (see
the usual litterature), In this context, a blowing-up is an algebraic map and the strict transform
of an irreducible algebraic plane curve is a variety of dimension one (i.e. an algebraic curve).
Furthermore, locally this curve is isomorphic to a plane curve.

Coming back to the notion of parametrization, one can prove that by a succession of plane blowing-
ups the strict transform becomes non-singular.

The way to prove it is first to recall that after a blowing-up locally the blown-up curve is isomorphic
to a plane curve. Then, we observe that after a point blowing-up the multiplicities of the singu-
larities do not increase. In fact, in the case of a branch / at a point 0, the first Puiseux exponent
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Pi (defined above) relatively to coordinates X:Y such that the valuation of /(0,Y*) equals the
multiplicity m of / = 0 at 0. can be interpreted in the following way:

We saw that the multiplicity is the intersection number of a general line through 0 with the curve.
So, it is also the intersection number of a general non-singular curve (whose tangent at 0 is a general
line) with the curve at 0. Now, if the line or the tangent of the non-singular curve at 0, is not
general, this intersection number is strictly higher than the multiplicity. It can be shown that the
highest value of the intersection is precisely (3\ (in contrast with the case the curve is non-singular
at 0 when this number can be as high as one wishes).

Then, by one blowing-up one can prove that for a curve with one branch at 0, this number f3\
decreases strictly, in fact the new value at the singular point of the blown-up branch is (3i — m.

Using these observations one can prove that after a finite number of point blowing-ups, the final
strict transform of the given curve is non-singular.

In the case of a branch the composition of the successive blowing-ups of the singular points of the
successive strict transforms

C •*— C i -*— C 2 •*— - - - •*— Cfc

gives a map w from a non-singular curve Ck onto C.

It is easy to check that a blowing-up is an isomorphism outside the blown-up point, so w induces
an isomorphism of Ck \ TT~1(O) onto C \ {0} and ir~1(0) = {x^}- Since Xk is a non-singular point of
Ck an open neighbourhood of Xk in Ck is isomorphic to a disc D and w induces a parametrization

Therefore, in the case of a plane branch the process of eliminating a singular point by successive
point blowing-ups gives the local parametrization.

5 Desingularizatioe

Historically algebraic geometers were looking for a "transformation" which could replace the local
parametrization in the case of a variety of dimension > 2.

As we have mentioned above, the normalization also leads to parametrization of plane branches.
Unfortunaley the normalization of a surface is in general singular. In fact surfaces with non-singular
normalization are very special. However, it can be shown that the singularities of normal surfaces,
i.e. algebraic varieties for which all the local rings are equal to their normalization, are isolated.
Then, the natural idea was then to blow-up singular points of normal surfaces. In general the
blowing-up of a singular point of a normal surface is not a normal surface any more, since the
singularities of the blown-up surface might not be isolated. R. Walker stated that a surface could
be desingularized after a finite sequence of normalizations and point blowing-ups. The proof of this
theorem was given by O. Zariski using valuation theory (see [Z]).
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One can observe that a map IT : W —> V, which is the composition of normalizations and point
blowing-ups at singularities, is

1. a proper map (the inverse image of a compact subset is compact);

2. -an isomorphism of 7r~1(V \ SingV) onto V \ SingV where SingV is the subset of singular
points of V.

We are led to the following definition:

A topological space W is an K-algebraic variety if there is a finite covering by open subsets Ui,
1 < i < s such that, for each z, there is a bijection U{ : Ui —* Ei onto a K-algebraic set Ei, such that
for any 1 < i, j < s the map from O{j : di(Ui H Uj) —* &j{Ui O Uj) defined by <jij{x) = (aj O err1)(a;)
is an algebraic isomorphism.

A map (ft of an algebraic variety W into an algebraic variety V is algebraic if there are coverings
by open subsets isomorphic to an algebraic set Ui, 1 < i < s and Vj, 1 < j < t, such that for any
i there is j such that <f induces an algebraic map from Ui into Vj, i.e. a map which induces an
algebraic map between the corresponding algebraic sets.

In particular strict transform of an algebraic curve by a point blowing-up is an algebraic variety
and projective varieties are algebraic varieties. The point blowing-up defined above is an algebraic
map.

An algebraic map w : W —> V is a desingularizatlon of a variety V (we also say a resolution of
singularities of V) if:

1. W is a non-singular variety;

2. it is a proper map;

3. it is an isomorphism of TT^1(V* \ SingV) on V \ SingV where SingV is the subset of singular
points of F;

4. K~l{y \ SingV) is dense in W.

In the case of C-algebraic varieties we have a topological definition of the properness of a map,
since complex algebraic varieties are also endowed with the topology induces by the one of the
field of complex numbers. Over an arbitrary field one has to generalized the notion of properness.
This will not be done here, but it will be necessary if we wish to find resolutions of singularity over
arbitrary fields. The generalization of properness will come from the observation that a proper map
is also a closed map. The topology involved with algebraic varieties over an arbitrary field will be a
topology which generalized the Zariski topology of algebraic sets where the closed sets are precisely
the algebraic subsets. In fact, we shall deal with projective varieties, i.e. closed subvarieties of the
projective space. In which case the algebraic maps from a projective variety are proper.
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Over an algebraically closed field of characteristic zero the existence of a resolution of singularities
was obtained by H. Hironaka in [H].

One of the aim of this school on the resolution of singularities is to find a desingularization in the
case of varieties over a non-zero characteristic field.
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