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What is an algebraic singularity?

Let K be a field (commutative). It is often
called the base field.

An K-algebraic set defined by the polyno-
mials Pq,..., P, € K[X1,...,X] is the subset
of the affine space K™ of the points (x1,...,xn),
such that P;(xq1,...,zn) = 0. for 1 <i < k.

When the base field is clear, we speak of al-
gebraic set instead of K-algebraic set. The
polynomials P;, with 1 <1 < k, are also called
the equations of the algebraic set. We also
write these equations P, =0, 1 <1 < k.




The first obvious fact is that algebraic subsets
of K™ are very particular subsets of K". For
instance, when n = 1, the algebraic subsets of
K are the finite subsets.

However, the study of algebraic sets is not easy
in general.

One of the first observations is that points of
algebraic sets are of two types:

e regular points or non-singular points;

e Singular points.

To understand the difference let consider the
case of algebraic sets defined by one equation.




Let assume that the base field is the field of
complex numbers C.

A C-algebraic set defined by one equation is
called a complex hypersurface.

Let x € X be a point of a complex hypersur-
face X ¢ C". Let P be an equation of X.
Suppose that the differential dP(x) of P at
is a linear form # 0. It is known that at z, the
hypersurface X has a tangent space defined by

dP(xz) = 0O,

n



In fact the linear form dP(x) is # O iff there is
7, 1 <j <mn, such that 9P/0X;(z) # 0.

The implicit function theorem implies that there
is an open neighbourhood U of z in C", such
that X NU is a complex analytic submanifold
of U.

Example: Consider a linear form ¢ of C". It
is the equation of a complex hyperplane H of
C™. It is easy to show that at every point = of
H, di(x) #= 0.

Now the same set H is defined by the equation
o = ¢2 = 0, in which case at every point z € H,
we have dp(x) = 0.

So the fact that the differential of the equation
vanishes at a point z of X depends on the
equation.




Since C is an algebraically closed field, Hilbert
Nullstellensatz shows that if a hypersurface X
is defined by an equation P, it is also defined
by the reduced polynomial Py defined by P.

Let X be a complex hypersurface defined by a
reduced polynomial Fp.

A point z of the hypersurface X is called a
non-singular point of X or, also, a regular
point of X, if dPy(x) # 0.

A point of X is called a singular point of X if
dPO(zc) = 0.

Singular points of X make an algebraic subset
of X defined by the equations

Py = 0Py/0X,{=...=0Py/0X, = 0.



More generally, let £ be a complex algebraic
subset of C". Let I(FE) the ideal of all polyno-
mials in C[X1,...,Xn] which vanish on E.

Hilbert finiteness theorem shows that the ideal
I(F) is finitely generated

I(E) = (Py,...,P)

Now consider the Jacobian matrix J(x):

OP;/8X1(x), ... ,OP1/8Xn(z)

8Pk/aX1(5L‘), ,8Pk/8X1(x)
Denote p(x) the rank of this matrix at =z € E.

Let PE ‘= MaX,cE ,O(.CC)




In Ann. Math., 66 (1957), H. Whitney proved:

Theorem 1 The subset EC of points z of E
where p(x) = pg is a complex analytic manifold
of dimension n—pg. The subset of E1 := E\ Eg
of E is a proper algebraic subset of E.

Example: Consider the complex algebraic sub-
set V of C3 defined by
XY =X7Z=0.

One can check that V is the union of the plane
X =0 and of the lineY = Z = 0. The Jaco-
bian matrix J(x) is

(Y(ac) X(x) O )
Z(z) 0 X(z)

So, pyy = 2. In this case V; is the plane X = 0.



This example leads us to notice that an al-
gebraic set E is the finite union of irreducible
subsets F (i), 1 < i < r, such that for i # j,

E@) Z E@).

These subsets are called the (irreducible) com-
ponents of E.

A singular point of an irreducible complex al-
gebraic set F is a point x € E where p(x) # pg.
One can prove that the set of non-singular
points of an irreducible complex algebraic set
FE is connected.

A singular point of a complex algebraic set
E =U]E®)

is a point z € E where either p(z) # PE(i). for
all 1,1 < ¢ < r, or x belongs to two distinct
irreducible components E(i) and E(5) (i % j)
of F.



A non-singular point or a regular point of E is
a point which is not singular.

In the preceding example the only singular point
of V is the origin of C3.



How do we recognize a singular point?

In the case of a complex hypersurface, it is
rather easy from the reduced equation: Let Py
be a reduced equation of the hypersurface X,
the point x € X is singular iff dPy(z) = 0.

Another way to check it is to consider the
Taylor expansion of Py at x and notice that
x .= (a1,...,an) is singular if and only if

Po(X1,...,Xn) = Po(x)

+ terms in X1 —aq,..,Xn — an Of degree > 2.

The lowest degree of the non-zero non-constant
terms in this Taylor expansion is called the
multiplicity myx , of X at z.

Therefore x € X is singular iff the multiplicity
mx r is > 2.



There is an algebraic way to compute the mul-
tiplicity.

Consider the C-algebra

A[X] := C[Xq,..., Xn]/(Po)

quotient of the C-algebra of complex polyno-
mials in n variables by the principal ideal gen-
erated by the reduced equation F.

The local ring Ox , of X at z is the localiza-
tion of A[X] at the maximal ideal generated
by X1 —aj,...,Xn — an.



Consider the following function on N:

weN, F(v):=dimeOx /M,

where My .. is the maximal ideal of Ox ;.

Exercise: For v > 0, the function F'is a poly-
nomial in v of degree n — 1 and the term of
highest degree is

mXa:E V?’l*_l
(n—1)!




There is also a geometric way to understand
the multiplicity of a hypersurface:

Let ¢/ a “general” line through . The line ¢
intersects X at the isolated point . Consider
an open neighbourhood U such that

NXNU = {x}

For ‘“‘general” lines ¢; parallel to ¢, ¢; intersects
X transversally and the number of points of
(N X NU is the multiplicity mx ;.



Let E be a complex algebraic subset of C". Let
FE(1),...,E(r) be the irreducible components
of E. We define

dimy; E = max 1n — Nt
v {z’,azEE(i)}{ PE())
At a point z € E one consider Op , the local-
ization at x of the complex algebra

A[E] := C[Xq, ..., Xn]/I(E).

We have the following results

Theorem 2 For v > 0, the function defined
by

vweN, F(v):=dimgOx /ML
is a polynomial of v of degree dimy F.

For v > 0, the coefficient of the term of degree
dimg E is e/(dimg E)!

By definition the multiplicity mp, Of B at «
equals e.



We have

Theorem 3 The point x € E is singular iff
mE’m Z 2.

As above we have the following interpretation
of the multiplicity for complex irreducible al-
gebraic sets (see R. Draper, Math. Ann. 180
(1969)):

Let ¢ a '‘general” affine subspace of C" of di-
mension pg through x. The affine space £ in-
tersects F at the isolated point x. Consider an
open neighbourhood U such that

tNENU = {z}

For ‘general’” affine spaces ¢; parallel to ¢, ¢
intersects E transversally and the number of
points of £t N ENU is the multiplicity mg ..



There are other algebraic characterizations of
non-singular points:

Theorem 4 A point x € E is non-singular iff
the Mg ,-completion of the local ring OF ;. is
isomorphic to the C-algebra of formal series
Cl[X1,...,X4l], where d =dimg E.

An important notion is the following.

Let O be a local noetherian ring. Call 9 its
maximal ideal. We can define the dimension
dimO of O as the degree of the polynomial
defined by

F(v) := lengthO /o1
for v > 0.

The local ring O is regular if there dim O ele-
ments of O which generate the maximal ideal
oM of O .



Then:

Theorem 5 A point x € E is non-singular iff
the local ring OE’QZ is regular.

This type of theorem will allow us to define

regular or non-singular points for any algebraic
sets over any field K.






