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Let IK be a field (commutative). It is often
called the base field.

An K-algebraic set defined by the polyno-
mials Pi,...,Pfc G K[Xi,...,Xn] is the subset
of the affine space Kn of the points ( x i , . . . ,xn),
such that Pi(xi,... ,xn) = 0. for 1 < % < k.

When the base field is clear, we speak of al-
gebraic set instead of K-algebraic set. The
polynomials Pit with 1 < % < k, are also called
the equations of the algebraic set. We also
write these equations P̂  = 0f 1 < i < k.



The first obvious fact is that algebraic subsets
of Kn are very particular subsets of Kn. For
instance, when n = 1, the algebraic subsets of

are the finite subsets.

However, the study of algebraic sets is not easy
in npnpnlin general.

One of the first observations is that points of
algebraic sets are of two types:

regular points or non-singular points;

singular points.

To understand the difference let consider the
case of algebraic sets defined by one equation.



Let assume that the base field is the field of
complex numbers C.

A Oaigebraic set defined by one equation is
called a complex hypersurface.

Let x G X be a point of a complex hypersur-
face X c Cn. Let P be an equation of X.
Suppose that the differential dP(x) of P at x
is a linear form ^ 0. It is known that at x, the
hypersurface X has a tangent space defined by

dP(x) = 0,

i.e.

n



In fact the linear form dP(x) is ^ 0 iff there is

3, 1 < j < n, such that dP/dXj(x) ^ 0.

The . >'»/' >'. ,".•(' ' M : ' < < > : ^ implies that there
is an open neighbourhood U of x in Cn

f such
that X n U is a complex analytic submanifold
of U.

Example: Consider a linear form £ of Cn . I t
is the equation of a complex hyperplane H of
Cn. It is easy to show that at every point x of
H, d£(x) ̂  0.

Now the same set H is defined by the equation
(p = £2 = o, in which case at every point x e H,
we have dcp(x) = 0.

So the fact that the differential of the equation
vanishes at a point x of X depends on the
equation.



Since C is an algebraically closed field, * f> A n

-\" \, t '", ' . / shows that if a hypersurface X

is defined by an equation P, it is also defined

by the reduced polynomial Po defined by P.

Let X be a complex hypersurface defined by a

reduced polynomial PQ.

A point x of the hypersurface X is called a

non-singular point of X orf also, a regular

point of Xf if dP0(x) ^ 0.

A point of X is called a singular point of X if

dP0(x) = 0.

Singular points of X make an algebraic subset

of X defined by the equations

p0 = dP0/dXt = . . . = dPofdXn = o.



More generally, let E be a complex algebraic
subset of Cn. Let I(E) the ideal of all polyno-
mials in C [ X i , . . . , X n ] which vanish on E.

hi!b"/ J i i i i ' i - . l> ?> '\\ shows that the ideal
I(E) is finitely generated

Now consider the Jacobian matrix J(x):

/ dPi/dX^x), . . . , dPx/dXn(x) \

Denote p(x) the rank of this matrix at x e E,

Let pE := maxxeEp(x),



In Ann. Math., 66 (1957), H. Whitney proved:

Theorem 1 The subset E° of points x of E
where p(x) = pE is a complex analytic manifold
of dimension n-pE- The subset ofEi := E\EQ
of E is a proper algebraic subset of E.

Example: Consider the complex algebraic sub-
set V of C3 defined by

XY = XZ = 0.

One can check that V is the union of the plane
X = 0 and of the line Y = Z = 0. The Jaco-
bian matrix J(x) is

Y(x) X(x) 0
Z(x) 0 X(x)

So, pv = 2. In this case V\ is the plane X = 0.



This example leads us to notice that an al-
gebraic set E is the finite union of irreducible
subsets E(i), 1 < i < r, such that for i ^ j,

These subsets are called the (irreducible) com-
ponents of E.

A singular point of an irreducible complex al-
gebraic set E is a point x e E where p(x) yt pE.
One can prove that the set of non^singular
points of an irreducible complex algebraic set
E is connected.

A singular point of a complex algebraic set

E = Ur
tE(i)

is a point x e E where either p(x)
3" M < i < r, or x belongs to two distinct
irreducible components E(i) and E(j) (i ^ j)
of E.



A non-singular point or a regular point of E is
a point which is not singular.

In the preceding example the only singular point
of V is the origin of C3.



\A/

In the case of a complex hypersurface, it is

rather easy from the reduced equation: Let PQ

be a reduced equation of the hypersurface X,

the point x e X is singular iff cLPo(x) = 0.

Another way to check it is to consider the

Taylor expansion of PQ at x and notice that

x := (a i , . . . , an) is singular if and only if

+ terms in X\ — ai,.., Xn — an of degree > 2.

The lowest degree of the non-zero non-constant

terms in this Taylor expansion is called the

multiplicity mXjX
 of x a t x-

Therefore x G X is singular iff the multiplicity

x is > 2.



There is an algebraic way to compute the mul
tiplicity.

Consider the Oalgebra

quotient of the Oaigebra of complex polyno-
mials in n variables by the principal ideal gen-
erated by the reduced equation

The local ring OxjX of X at ^ is the localiza-
t ion of A[X] at the maximal ideal generated
by X L — a i , . . . , X n - an.



Consider the following function on N:

G N, F(u) : = d im c
 /n-- '^u+1

where MYT is the maximal ideal of 0 Y T .

Exercise: For v > 0, the function F is a poly-
nomial in u of degree n — 1 and the term of
highest degree is

__ :——if



There is also a geometric way to understand
the multiplicity of a hypersurface:

Let £ a "general" line through x. The line £
intersects X at the isolated point x. Consider
an open neighbourhood U such that

£nxnu = {x}

For "general" lines £t parallel to £, £t intersects
X transversally and the number of points of
£t n X n U is the multiplicity mXjX'



Let E be a complex algebraic subset of Cn. Let
E(l),...,E(r) be the irreducible components
of E. We define

:= max

At a point x e E one consider OEJX the local-
ization at x of the complex algebra

A[E] :=C[Xi,...,Xn]//(S).

We have the following results

Theorem 2 For v > 0, the function defined
by

Vi/ € N,

/s a polynomial of v of degree di

For v > 0, the coefficient of the term of degree
is

By definition the multiplicity m^ x of E at
x

equals e.



We have

Theorem 3 The point x e E is singular iff

As above we have the following interpretation

of the multiplicity for complex irreducible al-

gebraic sets (see R. Draper, Math. Ann. 180

(1969)):

Let £ a "general" affine subspace of Cn of di-

mension PE through x. The affine space £ in-

tersects E at the isolated point x. Consider an

open neighbourhood U such that

£nEnU = {x}

For "general" affine spaces £t parallel to £, £t

intersects E transversally and the number of

points of it n E n U is the multiplicity mEjX.



There are other algebraic characterizations of
non-singular points:

Theorem 4 A point x e E is non-singular iff
the WlEx-completion of the local ring OEJX

 !S

isomorphic to the C-algebra of formal series
C[[X1,...,Xd]], where d = 6imxE,

An important notion is the following.

Let O be a local noetherian ring. Call 971 its
maximal ideal. We can define the dimension
dim CD of O as the degree of the polynomial
defined by

for u > 0.

The local ring O is regular if there dim CD ele-
ments of O which generate the maximal ideal
m of o .



Then:

Theorem 5 A point x e E is non-singular iff
the local ring OEIX >S regular.

This type of theorem will allow us to define
regular or non-singular points for any algebraic
sets over any field




