

TIESCO

International Atomic Energy Agency

SMR1757/9

Summer School on Resolution of Singularities

(12 - 30 June 2006)

Introduction to Singularity Theory

Lê Dung Tráng ICTP Mathematics Group Trieste, Italy

Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

Introduction to Singularity Theory

by Lê Dũng Tráng

Trieste, June, 2006

What is an algebraic singularity?

Let \mathbb{K} be a field (commutative). It is often called the base field.

An \mathbb{K} -algebraic set defined by the polynomials $P_1, \ldots, P_k \in \mathbb{K}[X_1, \ldots, X_n]$ is the subset of the affine space \mathbb{K}^n of the points (x_1, \ldots, x_n) , such that $P_i(x_1, \ldots, x_n) = 0$. for $1 \le i \le k$.

When the base field is clear, we speak of algebraic set instead of \mathbb{K} -algebraic set. The polynomials P_i , with $1 \leq i \leq k$, are also called the **equations** of the algebraic set. We also write these equations $P_i = 0, 1 \leq i \leq k$. The first obvious fact is that algebraic subsets of \mathbb{K}^n are very particular subsets of \mathbb{K}^n . For instance, when n = 1, the algebraic subsets of \mathbb{K} are the finite subsets.

However, the study of algebraic sets is not easy in general.

One of the first observations is that points of algebraic sets are of two types:

- regular points or non-singular points;
- singular points.

To understand the difference let consider the case of algebraic sets defined by one equation.

Let assume that the base field is the field of complex numbers \mathbb{C} .

A \mathbb{C} -algebraic set defined by one equation is called a **complex hypersurface**.

Let $x \in X$ be a point of a complex hypersurface $X \subset \mathbb{C}^n$. Let P be an equation of X. Suppose that the differential dP(x) of P at xis a linear form $\neq 0$. It is known that at x, the hypersurface X has a tangent space defined by

$$dP(x) = 0,$$

i.e.

$$\sum_{1}^{n} \partial P / \partial X_j(x) X_j = 0.$$

In fact the linear form dP(x) is $\neq 0$ iff there is j, $1 \leq j \leq n$, such that $\partial P/\partial X_j(x) \neq 0$.

The implicit function theorem implies that there is an open neighbourhood U of x in \mathbb{C}^n , such that $X \cap U$ is a complex analytic submanifold of U.

Example: Consider a linear form ℓ of \mathbb{C}^n . It is the equation of a complex hyperplane H of \mathbb{C}^n . It is easy to show that at every point x of H, $d\ell(x) \neq 0$.

Now the same set H is defined by the equation $\varphi = \ell^2 = 0$, in which case at every point $x \in H$, we have $d\varphi(x) = 0$.

So the fact that the differential of the equation vanishes at a point x of X depends on the equation.

Since \mathbb{C} is an algebraically closed field, Hilbert Nullstellensatz shows that if a hypersurface Xis defined by an equation P, it is also defined by the reduced polynomial P_0 defined by P.

Let X be a complex hypersurface defined by a reduced polynomial P_0 .

A point x of the hypersurface X is called a non-singular point of X or, also, a regular point of X, if $dP_0(x) \neq 0$.

A point of X is called a **singular point** of X if $dP_0(x) = 0$.

Singular points of X make an algebraic subset of X defined by the equations

 $P_0 = \partial P_0 / \partial X_1 = \ldots = \partial P_0 / \partial X_n = 0.$

More generally, let E be a complex algebraic subset of \mathbb{C}^n . Let I(E) the ideal of all polynomials in $\mathbb{C}[X_1, \ldots, X_n]$ which vanish on E.

Hilbert finiteness theorem shows that the ideal I(E) is finitely generated

$$I(E) = (P_1, \ldots, P_k)$$

Now consider the Jacobian matrix J(x):

$$\begin{pmatrix} \partial P_1 / \partial X_1(x), & \dots & , \partial P_1 / \partial X_n(x) \\ & \ddots & \\ \partial P_k / \partial X_1(x), & \dots & , \partial P_k / \partial X_1(x) \end{pmatrix}$$

Denote $\rho(x)$ the rank of this matrix at $x \in E$.

Let $\rho_E := \max_{x \in E} \rho(x)$.

In Ann. Math., 66 (1957), H. Whitney proved:

Theorem 1 The subset E^0 of points x of Ewhere $\rho(x) = \rho_E$ is a complex analytic manifold of dimension $n - \rho_E$. The subset of $E_1 := E \setminus E_0$ of E is a proper algebraic subset of E.

Example: Consider the complex algebraic subset V of \mathbb{C}^3 defined by

$$XY = XZ = 0.$$

One can check that V is the union of the plane X = 0 and of the line Y = Z = 0. The Jacobian matrix J(x) is

$$\left(\begin{array}{ccc} Y(x) & X(x) & 0\\ Z(x) & 0 & X(x) \end{array}\right)$$

So, $\rho_V = 2$. In this case V_1 is the plane X = 0.

This example leads us to notice that an algebraic set E is the finite union of irreducible subsets E(i), $1 \le i \le r$, such that for $i \ne j$, $E(i) \not\subset E(j)$.

These subsets are called the (irreducible) **components** of E.

A singular point of an irreducible complex algebraic set E is a point $x \in E$ where $\rho(x) \neq \rho_E$. One can prove that the set of non-singular points of an irreducible complex algebraic set E is connected.

A singular point of a complex algebraic set

$$E = \cup_1^r E(i)$$

is a point $x \in E$ where either $\rho(x) \neq \rho_{E(i)}$, for all $i, 1 \leq i \leq r$, or x belongs to two distinct irreducible components E(i) and E(j) $(i \neq j)$ of E. A non-singular point or a regular point of E is a point which is not singular.

In the preceding example the only singular point of V is the origin of \mathbb{C}^3 .

How do we recognize a singular point?

In the case of a complex hypersurface, it is rather easy from the reduced equation: Let P_0 be a reduced equation of the hypersurface X, the point $x \in X$ is singular iff $dP_0(x) = 0$.

Another way to check it is to consider the Taylor expansion of P_0 at x and notice that $x := (a_1, \ldots, a_n)$ is singular if and only if

$$P_0(X_1,\ldots,X_n)=P_0(x)$$

+ terms in $X_1 - a_1, ..., X_n - a_n$ of degree ≥ 2 . The lowest degree of the non-zero non-constant terms in this Taylor expansion is called the **multiplicity** $m_{X,x}$ of X at x.

Therefore $x \in X$ is singular iff the multiplicity $m_{X,x}$ is ≥ 2 .

There is an algebraic way to compute the multiplicity.

Consider the \mathbb{C} -algebra

$$A[X] := \mathbb{C}[X_1, \dots, X_n]/(P_0)$$

quotient of the \mathbb{C} -algebra of complex polynomials in n variables by the principal ideal generated by the reduced equation P_0 .

The local ring $\mathcal{O}_{X,x}$ of X at x is the **localiza**tion of A[X] at the maximal ideal generated by $X_1 - a_1, \ldots, X_n - a_n$. Consider the following function on \mathbb{N} :

$$\forall \nu \in \mathbb{N}, \quad F(\nu) := \dim_{\mathbb{C}} \mathcal{O}_{X,x} / \mathfrak{M}_{X,x}^{\nu+1},$$

where $\mathfrak{M}_{X,x}$ is the maximal ideal of $\mathcal{O}_{X,x}$.

Exercise: For $\nu \gg 0$, the function F is a polynomial in ν of degree n-1 and the term of highest degree is

$$\frac{m_{X,x}}{(n-1)!}\nu^{n-1}.$$

There is also a geometric way to understand the multiplicity of a hypersurface:

Let ℓ a "general" line through x. The line ℓ intersects X at the isolated point x. Consider an open neighbourhood U such that

$$\ell \cap X \cap U = \{x\}$$

For "general" lines ℓ_t parallel to ℓ , ℓ_t intersects X transversally and the number of points of $\ell_t \cap X \cap U$ is the multiplicity $m_{X,x}$.

Let E be a complex algebraic subset of \mathbb{C}^n . Let $E(1), \ldots, E(r)$ be the irreducible components of E. We define

$$\dim_x E := \max_{\{i, x \in E(i)\}} \{n - \rho_{E(i)}\}.$$

At a point $x \in E$ one consider $\mathcal{O}_{E,x}$ the localization at x of the complex algebra

$$A[E] := \mathbb{C}[X_1, \dots, X_n]/I(E).$$

We have the following results

Theorem 2 For $\nu \gg 0$, the function defined by

 $\forall \nu \in \mathbb{N}, \quad F(\nu) := \dim_{\mathbb{C}} \mathcal{O}_{X,x} / \mathfrak{M}_{X,x}^{\nu+1},$ is a polynomial of ν of degree dim_x E.

For $\nu \gg 0$, the coefficient of the term of degree $\dim_x E$ is $e/(\dim_x E)!$

By definition the multiplicity $m_{E,x}$ of E at x equals e.

We have

Theorem 3 The point $x \in E$ is singular iff $m_{E,x} \ge 2$.

As above we have the following interpretation of the multiplicity for complex irreducible algebraic sets (see R. Draper, Math. Ann. 180 (1969)):

Let ℓ a "general" affine subspace of \mathbb{C}^n of dimension ρ_E through x. The affine space ℓ intersects E at the isolated point x. Consider an open neighbourhood U such that

 $\ell \cap E \cap U = \{x\}$

For "general" affine spaces ℓ_t parallel to ℓ , ℓ_t intersects E transversally and the number of points of $\ell_t \cap E \cap U$ is the multiplicity $m_{E,x}$. There are other algebraic characterizations of non-singular points:

Theorem 4 A point $x \in E$ is non-singular iff the $\mathfrak{M}_{E,x}$ -completion of the local ring $\mathcal{O}_{E,x}$ is isomorphic to the \mathbb{C} -algebra of formal series $\mathbb{C}[[X_1, \ldots, X_d]]$, where $d = \dim_x E$.

An important notion is the following.

Let \mathcal{O} be a local noetherian ring. Call \mathfrak{M} its maximal ideal. We can define the dimension dim \mathcal{O} of \mathcal{O} as the degree of the polynomial defined by

$$F(\nu) := \text{length}\mathcal{O}/\mathfrak{M}^{\nu+1}$$

for $\nu \gg 0$.

The local ring ${\mathcal O}$ is regular if there $\dim {\mathcal O}$ elements of ${\mathcal O}$ which generate the maximal ideal ${\mathfrak M}$ of ${\mathcal O}$.

Then:

Theorem 5 A point $x \in E$ is non-singular iff the local ring $\mathcal{O}_{E,x}$ is regular.

This type of theorem will allow us to define regular or non-singular points for any algebraic sets over any field \mathbb{K} .