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CHAPTER 1

Introduction

Alessio Corti

1.1. Minimal models of surfaces

In this book, we generalise the following theorem to 3-folds and 4-folds:

Theorem 1.1.1 (Minimal model theorem for surfaces). Let X be a nonsingular
projective surface. There is a birational morphism f : X → X ′ to a nonsingular
projective surface X ′ satisfying one of the following conditions:

X ′ is a minimal model: KX′ is nef, that is KX′ · C ≥ 0 for every curve
C ⊂ X ′; or

X ′ is a Mori fibre space: X ′ ∼= P2 or X ′ is a P1-bundle over a nonsingu-
lar curve T .

This result is well known; the classical proof runs more or less as follows. If X
does not satisfy the conclusion, then X contains a −1-curve, that is, a nonsingular
rational curve E ⊂ X such that KX · E = E2 = −1. By the Castelnuovo con-
tractibility theorem, a −1-curve can always be contracted: there exists a morphism
f : E ⊂ X → P ∈ X1 which maps E ⊂ X to a nonsingular point P ∈ X1 and
restricts to an isomorphism X r E → X1 r {P}. Viewed from P ∈ X1, this is
just the blow up of P ∈ X1. Either X1 satisfies the conclusion, or we can continue
contracting a −1-curve in X1. Every time we contract a −1-curve, we decrease the
rank of the Néron-Severi group; hence the process must terminate (stop).

1.2. Higher dimensions and flips

The conceptual framework generalising this result to higher dimensions is the
well known Mori program or Minimal Model Program. The higher dimensional
analog f : X → X1 of the contraction of a −1-curve is an extremal divisorial con-
traction. Even if we start with X nonsingular, X1 can be singular. This is not a
problem: we now know how to handle the relevant classes of singularities, for exam-
ple the class of terminal singularities. The problem is that, in higher dimensions,
we meet a new type of contraction:

Definition 1.2.1. A small contraction is a birational morphism f : X → Z
with connected fibres such the exceptional set C ⊂ X is of codimension codimX C ≥
2.

When we meet a small contraction f : X → Z, the singularities on Z are so
bad that the canonical class of Z does not even have a Chern class in H2(Z,Q): it
does not make sense to form the intersection number KZ ·C with algebraic curves
C ⊂ Z. We need a new type of operation, called a flip:

1



2 1. INTRODUCTION

Definition 1.2.2. A small contraction f : X → Z is a flipping contraction if
KX is anti-ample along the fibres of f . The flip of f is a new small contraction
f ′ : X ′ → Z such that KX′ is ample along the fibres of f ′

It is conjectured that flips exist and that every sequence of flips terminates
(that is, there exists no infinite sequence of flips).

1.3. The work of Shokurov

Mori [Mor88] first proved that flips exist if X is 3-dimensional. It was known
(and, in any case, it is easy to prove) that 3-fold flips terminate, thus Mori’s theorem
implied the minimal model theorem in dimension 3.

Recently, Shokurov [Sho03] completed in dimension ≤ 4 a program to con-
struct flips started in [Sho92, FA92]. In fact, Shokurov shows that a more general
type of flip exists. We consider perturbations of the canonical class KX of the
form KX +

∑
biBi, where Bi ⊂ X are prime divisors and 0 ≤ bi < 1. For the

program to work, the pair
(
X,

∑
biBi

)
needs to have klt singularities. The precise

definition is given elsewhere in this book and it is not important for the present dis-
cussion; the condition is satisfied, for example, if X is nonsingular and the support
of B =

∑
biBi is a simple normal crossing divisor.

Definition 1.3.1. A small contraction f : X → Z is a klt flipping contraction
if the pair (X,B) has klt singularities and KX +B is anti-ample on the fibres of f .
The flip of f is a new small contraction f ′ : X ′ → Z such that KX′ + B is ample
on the fibres of f ′

Shokurov [Sho03] proves the following:

Theorem 1.3.2. The flips of klt flipping contractions f : (X,B) → Z exist if
dimX ≤ 4.

It is known from work of Kawamata [Kaw92, FA92] that 3-fold klt flips ter-
minate. It is not known that klt flips terminate in dimension ≥ 4; the work of
Shokurov leaves the following open.

Problem 1.3.3. Show that klt flips terminate in dimension ≥ 4.

1.4. Minimal models of 3-folds and 4-folds

It is known from [KMM87] that ordinary (that is, terminal) 4-fold flips ter-
minate. It follows from Theorem 1.3.2 that ordinary 4-fold flips exist, thus we have
the following consequence:

Theorem 1.4.1 (Minimal model theorem for 3-folds and 4-folds). Let X be
a nonsingular projective variety of dimension ≤ 4. There exists a birational map
X 99K X ′ to a projective variety X ′ (with terminal singularities) satisfying one of
the following conditions:

X ′ is a minimal model: KX′ is nef, that is KX′ · C ≥ 0 for every curve
C ⊂ X ′; or

X ′ is a Mori fibre space: There exists a morphism ϕ : X ′ → T to a vari-
ety T of smaller dimension, such that KX′ is anti-ample on the fibres of
ϕ. A morphism with these properties is called a Mori fibre space.

Because 3-fold klt flips terminate [Kaw92, FA92], we have the following:
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Theorem 1.4.2 (Minimal model theorem for klt 3-folds). Let X be a nonsin-
gular projective 3-fold and B =

∑
biBi a Q -divisor on X where 0 < bi < 1 and

the support of B is a simple normal crossing divisor. There exists a birational map
f : X 99K X ′ to a projective 3-fold X ′ such that the pair (X ′, B′ = f∗B) has klt
singularities and satisfies one of the following conditions:

(X ′, B′) is a klt minimal model: KX′+B′ is nef, that is (KX′+B′)·C ≥
0 for every curve C ⊂ X ′; or

(X ′, B′) is a klt Mori fibre space: There exists a morphism ϕ : X ′ → T
to a variety T of smaller dimension, such that KX′ +B′ is anti-ample on
the fibres of ϕ. A morphism with these properties is called a klt Mori fibre
space.

If we knew that 4-fold klt flips terminated, then we could immediately generalise
Theorem 1.4.2 to 4-folds.

1.5. The aim of this book

A large part of this book is a digest of the great work of Shokurov [Sho03]; in
particular, we give a complete and essentially self-contained construction of 3-fold
and 4-fold klt flips.

Shokurov has introduced many new ideas in the field and has made huge
progress on the construction of higher dimensional flips. However, [Sho03] is very
difficult to understand; in this book, we rewrite the entire subject from scratch.

Shokurov’s construction of 3-fold flips is conceptual. Chapter 2 on 3-fold flips
aims to give a concise, complete, and pedagogical proof of the existence of 3-fold
flips. I have written up the material in great detail, with the goal to make it accessi-
ble to graduate students and algebraic geometers not working in higher dimensions.
I assume little prior knowledge of Mori theory; the reader who is willing to take
on trust a few general results can get away with almost no knowledge of higher
dimensional methods.

The construction of 4-fold flips in [Sho03] is much harder than that of 3-fold
flips. It uses everything from the 3-fold case and much more. We tried our best to
understand this proof and, after years of work, there are still a few details that we
couldn’t figure out. Fortunately, Hacon and McKernan [HM] have found a much
better approach which proves a much stronger theorem valid in all dimensions.
Their ideas are a natural development of Shokurov’s 3-dimensional proof. In Chap-
ter 5, Hacon and McKernan give an account of their work, showing in particular
the existence of 4-fold flips.

In the rest of the Introduction, I explain the main ideas of the construction of
3-fold and 4-fold flips, and briefly discuss the contents of the individual chapters.

1.6. Pl flips

The main result of [Sho92], reworked and generalised to higher dimension in
[FA92, Chapter 18], is a reduction of klt flips to pl flips. We review the proof in
Chapter 4. I briefly recall the basic definitions.

In what follows, I consider a normal variety X and a Q -divisor S+B on X. In
this notation, S is a prime Weil divisor and B =

∑
biBi is a Q -divisor having no

component in common with S. The pair (X,S+B) needs to have dlt singularities.
This notion is similar to klt singularities, but it is more general: the main difference
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is that components with coefficient 1 are allowed in the boundary. The precise
definition is discussed later in the book and it is not crucial for understanding the
outline of the proof; for example, the condition holds if X is nonsingular and the
support of S +B is a simple normal crossing divisor.

Definition 1.6.1. A pl flipping contraction is a flipping contraction f : X → Z
for the divisor K + S + B, such that S is f -negative. The flip of a pl flipping
contraction is called a pl flip.

Theorem 1.6.2. (See [Sho92, FA92] and Chapter 4.) If n-dimensional pl
flips exist and terminate, then n-dimensional klt flips exist.

Termination of n-dimensional pl flips is essentially a n−1-dimensional problem;
this matter is treated in detail in Chapter 4.

The idea of pl flips is this. Because S is negative on the fibres of f , S contains
all the positive dimensional fibres of f and hence the whole exceptional set. We
may hope to reduce the existence of the flip to a problem which we can state in
terms of S alone. Then we can hope to use the birational geometry of S to solve
this problem. With luck we can hope eventually to construct flips by induction
on dimX. We are still far from realising all these hopes, but the finite generation
conjecture of Shokurov [Sho03], which is stated purely in terms of S, implies the
existence of pl flips. We state this conjecture below, after some preliminaries on
b-divisors.

1.7. b-divisors

I give a short introduction to Shokurov’s notion of b-divisors. The language of
b-divisors is not required for the construction of 3-fold flips in Chapter 2, and it
is not used in the work of Hacon and McKernan on higher dimensional flips. This
material is included in the book for several reasons. First, Shokurov himself, and
several others, use b-divisors extensively in their work; in particular, Shokurov’s
important finite generation conjecture is stated in terms of b-divisors. Second, I
am convinced that b-divisors are useful and that they are here to stay. More detail
can be found in Chapter 2. We always work with normal varieties. A model of a
variety X is a proper birational morphism f : Y → X from a (normal) variety Y .

Definition 1.7.1. A b-divisor on X is an element:

D ∈ DivX = lim
Y→X

Div Y

where the (projective) limit is taken over all models f : Y → X under the push
forward homomorphism f∗ : Div Y → DivX. A b-divisor D on X has an obvious
trace DY ∈ Div Y on every model Y → X.

Natural constructions of divisors in algebraic geometry often give rise to b-
divisors. For example, the divisor divX ϕ of a rational function, and the divisor
divX ω of a rational differential, are b-divisors. Indeed, if f : Y → X is a model,
and E ⊂ Y is a prime divisor, both multE ϕ and multE ω are defined.

A b-divisor on X gives rise to a sheaf OX(D) of OX -modules in a familiar way;
if U ⊂ X is a Zariski open subset, then

OX(D)(U) = {ϕ ∈ k(X) | D|U + divU ϕ ≥ 0}
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In general, this sheaf is not quasicoherent; however, it is a coherent sheaf in all cases
of interest to us. We write H0(X,D) for the group of global sections of OX(D)
and denote by |D| = PH0(X,D) the associated “complete” linear system. It is
crucial to understand that H0(X,D) ( H0(X,DX); the language of b-divisors is a
convenient device to discuss linear systems with base conditions.

Example 1.7.2. The Q-Cartier closure of a Q -Cartier (Q -)divisor D on X is
the b-divisor D with trace

DY = f∗(D)

on models f : Y → X.
If f : Y → X is a model and D is a Q -Cartier (Q -)divisor on Y , we abuse

notation slightly and think of D as a b-divisor on X. Indeed, f∗ identifies b-divisors
on Y with b-divisors on X.

Definition 1.7.3. A b-divisor D on X is b-(Q)-Cartier if it is the Cartier
closure of a (Q)-Cartier divisor D on a model Y → X.

1.8. Restriction and mobile b-divisors.

Definition 1.8.1. Let D be a b-Q -Cartier b-divisor on X and S ⊂ X an
irreducible normal subvariety of codimension 1 not contained in the support of
DX . I define the restriction D0 = resS D of D to S as follows. Pick a model
f : Y → X such that D = DY ; let S′ ⊂ Y be the proper transform. I define

resS D = DY |S′

where DY |S′ is the ordinary restriction of divisors. (Strictly speaking, DY |S′ is a
b-divisor on S′; as already noted, b-divisors on S′ are canonically identified with
b-divisors on S via push forward.) It is easy to see that the restriction does not
depend on the choice of the model Y → X.

Definition 1.8.2. An integral b-divisor M is mobile if there is a model f : Y →
X, such that

(1) M = MY is the Cartier closure of MY , and
(2) the linear system (of ordinary divisors) |MY | is free on Y .

Remark 1.8.3. The restriction of a mobile b-divisor is a mobile b-divisor.

1.9. Pbd-algebras

Definition 1.9.1. A sequence M• = {Mi | i > 0 integer} of mobile b-divisors
on X is positive sub-additive if M1 > 0 and

Mi+j ≥Mi + Mj .

for all positive integers i, j. The associated characteristic sequence is the sequence
Di = (1/i)Mi of b-Q -Cartier b-divisors. We say that the characteristic sequence
is bounded if there is a (ordinary) Q -Cartier divisor D on X such that all Di ≤ D.

Remark 1.9.2. The characteristic sequence of a positive sub-additive sequence
is positive convex ; that is, D1 > 0 and

Di+j ≥
i

i+ j
Di +

j

i+ j
Dj for all positive integers i, j.
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Definition 1.9.3. A pbd-algebra is a graded algebra

R = R(X,D•) = ⊕i≥0H
0(X, iDi)

where Di = (1/i)Mi is a bounded characteristic sequence of a positive sub-additive
sequence M• of b-divisors.

1.10. Restricted systems and 3-fold pl flips

Consider a pl flipping contraction f : X → Z for the divisor K + S + B. Let
r > 0 be a positive integer and D ∼ r(K +S+B) a Cartier divisor on X; it is well
known that the flip of f exists if and only if the algebra

R = R(X,D) = ⊕i≥0H
0(X, iD)

is finitely generated (in fact, in that case, the flip is the Proj of this algebra). The
first step is to interpret R as a suitable pbd-algebra.

Definition 1.10.1. Let D be a Cartier divisor on X. The mobile b-part of D
is the divisor MobD with trace

(MobD)Y = Mob f∗D

on models f : Y → X, where Mob f∗D is the mobile part of the divisor f∗D (the
part of D which moves in the linear system |f∗D|).

Choose, as above, a Cartier divisorD ∼ r(K+S+B). Denote by Mi = Mob iD
the mobile part and let Di = (1/i)Mi; then, tautologically,

R = R(X,D) = R(X,D•)

is a pbd-algebra. Now I come to the punchline. As I explained above, provided
that S is not contained in the support of D (which is easily arranged), it makes
sense to form the restriction D0

i = resS Di; we consider the associated pbd-algebra
on S:

R(S,D0
•).

It is easy to see, though not trivial, that R(X,D•) is finitely generated if and only
if R(S,D0

•) is finitely generated.

1.11. Shokurov’s finite generation conjecture

In this section, I state the finite generation conjecture of Shokurov. The state-
ment is technical; the reader may wish to just skim over it.

The key issue is to state a condition on the system D0
• that, under suitable con-

ditions, ensures that the pbd-algebra R(S,D0
•) is finitely generated. The condition

is the following:

Definition 1.11.1. Let (X,B) be a pair of a variety X and divisor B ⊂ X. A
system D• of b-divisors on X is canonically asymptotically saturated (canonically
a-saturated, for short) if for all i, j, there is a model Y (i, j)→ X such that

Mobd(jDi + A)Y e ≤ jDj Y

on all models Y → Y (i, j).

In a sense, the saturation condition is a reformulation of the Kawamata tech-
nique; see the discussion in §2.3.5.
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Proposition 1.11.2 (see Lemma 2.3.43 and Lemma 2.4.3). Let (X,S+B)→ Z
be a pl flip; the restricted system

D0
• = resS D•

of Section 1.10 is canonically a-saturated.

Finite generation Conjecture 1.11.3. Let (X,B) be a klt pair, f : X → Z
a birational contraction to an affine variety Z. Assume that K + S + B is anti-
ample on the fibres of f . If D• is a canonically a-saturated positive convex bounded
characteristic system of b-divisors on X, then the pbd-algebra R(X,D•) is finitely
generated.

A good way to get a feeling for this conjecture and the concept of canonical
asymptotic saturation, is to work out the one-dimensional case; this is done in
§2.3.10 and I encourage the reader to read that section now. The prove this con-
jecture in the case dimX = 2 in a major theme in this book, see Theorem 2.4.10
and Corollary 7.5.2; in Chapter 9, we even prove a generalisation to non-klt surface
pairs. In §2.4, the conjecture is proved assuming that f : X → Z is birational; this
is sufficient for the construction of 3-fold pl flips.

It is important to realise that, in the light of the work of Hacon and McKernan
on adjoint algebras and higher dimensional flips, see §1.14 below, the finitie gen-
eration conjecture is no longer crucial for the construction of flips. Nevertheless, I
feel that the conjecture says something deep about the structure of Fano varieties,
and that it will be important in future work on finite generation.

1.12. What is log terminal?

Fujino’s Chapter 3 is an essay on the definition of log terminal singularities of
pairs. The category of pairs (X,B) of a variety X and a divisor B ⊂ X was first
introduced by Iitaka and his school. In the early days, B =

∑
Bi was a reduced

integral divisor and one was really interested in the noncompact variety U = XrB.
It is an easy consequence of Hironaka’s resolution theorem that, if X is nonsingular
and B is a simple normal crossing divisor, then the log plurigenera h0

(
X,n(K+B)

)
depend only on U and not on the choice of the compactification X and boundary
divisor B. This suggests that it should be possible to generalise birational geometry,
minimal models, etc. to noncompact varieties, or rather pairs (X,B) of a variety
X and boundary divisor B ⊂ X. As in the absolute case, it is necessary to allow
some singularities. There should be a notion of log terminal singularities of pairs,
corresponding to terminal singularities of varieties. To define such a notion turned
out to be a very subtle technical problem. Many slightly different inequivalent def-
initions were proposed; for example [FA92] alone contains a dozen variants. Over
the years, we believe, one particular notion, called divisorially log terminal pairs in
[KM98], has proved itself to be the most useful. In this book, we work exclusively
with divisorially log terminal (abbreviated dlt) pairs. The book [KM98] contains a
clear and technically precise exposition of divisorially log terminal singularities and
we adopt it as our main reference; however, the professional in higher dimensional
geometry must be able to read the literature; in particular, a good knowledge of
at least the fundamental texts [KMM87, Sho92, FA92] is essential. There is
no agreement on the basic definitions among these texts. This state of affairs cre-
ates very serious difficulties for the beginner and the expert alike. The chapter by
Fujino is a guide to the different definitions existing in the literature; it discusses
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their properties and respective merits as well as the state of the art on the various
implications existing among them; it also provides illustrative examples.

1.13. Special termination and reduction to pl flips.

The goal of Chapter 4, written by Fujino, is to provide a self-contained proof
of the statement, already alluded to in this Introduction, that, if the log MMP
holds in dimension n − 1, and pl flips exist in dimension n, then klt flips exist in
dimension n.

1.14. The work of Hacon and McKernan: adjoint algebras

Chapter 5 is an exposition of the brilliant work of Hacon and McKernan on
higher dimensional flips. Let f : (X,S+B)→ Z be a pl flipping contraction; Hacon
and McKernan realised that the restricted algebra R(S,D0

•) has one additional
crucial property, namely it is an adjoint algebra. This realisation is based on their
lifting lemma, which they first discovered in their study of pluricanonical maps of
varieties of general type, see [HM06, Tak06].

The starting point is the following elementary observation. If f : (X,S+B)→ Z
is a pl flipping contraction, fix an integer I such that I(K + S + B) is a Cartier
divisor, and consider the restriction

ρ : R(X,KX + S +B)(I) = ⊕∞n=0H
0
(
X,nI(KX + S +B)

)
→

⊕∞n=0 H
0
(
S, nI(KS +BS)

)
= R(S,KS +BS)(I)

(If R = ⊕Rn is a graded algebra, R(I) = ⊕nRIn denotes the I-th truncation of
R.) It is easy to show that the kernel of ρ is a principal ideal, see the proof of
Lemma 2.3.6. The observation is this: If the restriction homomorphisms

ρn : H0
(
X,nI(KX + S +B)

)
→ H0

(
S, nI(KS +BS)

)
were surjective (perhaps for n sufficiently divisible), then finite generation of the log
canonical algebra R(X,KX +S+B) would be a consequence of finite generation of
the log canonical algebra R(S,KS + BS); the latter algebra can be assumed to be
finitely generated by induction on dimension. In general, when the pair (X,S+B)
has dlt singularities, the restriction maps ρn are not surjective (explicit examples,
however, are not easy to find). Hacon and McKernan, building on previous work
by Siu, Kawamata, Tsuji, and others, discovered that, if the pair (X,S + B) has
canonical singularities, and some additional technical conditions are satisfied, then
the ρn are surjective; see Theorem 5.4.21 for a precise statement of their lifting
lemma. Using the lifting lemma, Hacon and McKernan show that the restricted
algebra is an adjoint algebra:

Definition 1.14.1 (see Definition 5.3.10). Let T be a smooth variety, W an
affine variety and π : T → W be a projective morphism. An adjoint algebra is an
algebra of the form

R =
⊕
m∈N

H0(Y,OY (Nm))

where N• is an additive sequence such that
(1) there exists an integer k > 0 such that Nm = mk(KY +Bm) where Bm is

an effective, bounded and eventually convex sequence of Q-divisors on T
with limit B ∈ DivR(T ) such that (T,B) is klt,
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(2) let Mm = Mob(Nm) be the mobile sequence and Dm = Mm/m the char-
acteristic sequence. Then Dm is saturated, that is there exists a Q-divisor
F on Y with dF e ≥ 0 such that

Mob(djDi + F e) ≤ jDj

for all i ≥ j � 0,
(3) D = limDm is semiample.

These results lead to a proof that the minimal model program in dimension n
implies existence of flips in dimension n+ 1.

1.15. Mobile b-divisors on weak klt del Pezzo surfaces

Chapter 6 is a detailed study of mobile b-divisors on weak del Pezzo klt surfaces.
On the one hand, the discussion illustrates a key example of some of the notions and
ideas introduced in the construction of 3-fold and 4-fold pl flips; on the other hand,
the main result is a prototype of the very interesting conjecture on the canonical
confinement of singularities—the CCS conjecture—which constitutes the starting
point for a possible attack on Shokurov’s finite generation conjecture. The main
result is the following:

Theorem 1.15.1. Let (X,B)→ Z be a relative weak klt del Pezzo surface pair.
Denote by (X ′, B′)→ (X,B) the terminal model. There are

(1) finitely many normal varieties Ti/Z and Z-morphisms ϕi : X ′ → Ti,
(2) when Z = {pt}, finitely many normal surfaces Yj together with projective

birational morphisms hj : Yj → X and elliptic fibrations χj : Yj → P1, and
(3) a bounded algebraic family F of mobile A(X,B)-saturated b-divisors on

X,
such that the following holds: If M is any mobile A(X,B)-saturated b-divisor on
X, then either

(a) M descends to the terminal model (X ′, B′)→ (X,B) and there is an index
i such that MX′ = ϕ∗i (ample divisor on Ti), or

(b) for some j, M descends to Yj and MYj = ϕ∗j (ample divisor on P1), or
(c) M belongs to the bounded family F .

1.16. The CCS Conjecture

In Chapter 1.16, we state Shokurov’s CCS conjecture (“CCS” stands for “canon-
ical confinement of singularities”) and show that it implies the finite generation
conjecture. The CCS conjecture is a higher dimensional generalisation of the clas-
sification of canonically saturated mobile b-divisors on weak del Pezzo klt surfaces
stated in §1.15 and treated in Chapter 6. The statement is technically very subtle
and still tentative: Shokurov himself has several slightly different a priori inequiva-
lent formulations. To make matters worse, as far as I know, not a single truly higher
dimensional example has been worked out. McKernan’s Chapter 7 is an introduc-
tion to the simplest form of the CCS conjecture. Using the results of Chapter 6, he
proves the conjecture in dimension 2 and obtains as a corollary the general form of
the finite generation conjecture in dimension 2. It remains to be seen if the CCS
conjecture is capable of playing a role in the proof of the finite generation conjecture
in general, or in the study of the geometry of Fano varieties.
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1.17. Kodaira’s canonical bundle formula and subadjunction

If X is a normal variety and S ⊂ X a reduced Cartier divisor, the adjunction
formula states that KS = KX + S|S . If S is reduced of codimension 1, but not
necessarily a Cartier divisor, under mild assumptions, there is a canonically defined
effective Q-divisor Diff > 0 on S such that the subadjunction formula

KS + Diff = (KX + S)|S

holds. For example, consider the case of a quadric cone X ⊂ P3 and a line S ⊂ X;
the line must pass through the vertex P ∈ S of the cone, and Diff = (1/2)P . The
central theme of Kollár’s Chapter 8 is a vast generalisation of the subadjunction
formula. Consider a pair (X,B) with log canonical singularities. The non-klt locus
nklt(X,B) is the subset of points ofX where the pair does not have klt singularities.
A Zariski closed subset W ⊂ X is called a log canonical centre, or LC centre, of
the pair (X,B), if W = cXE is the closure of the centre of a geometric valuation
E with discrepancy a(E,B) = −1. The main results, Theorem 8.6.1, states that a
form of the subadjunction formula holds on W .

1.18. Finite generation on non-klt surfaces

The main purpose of Chapter 9 is a generalisation of the finite generation
conjecture to the case of a surface pair with worse than log canonical singularities.
The main statement is as follows.

Theorem 1.18.1. Let (X,B) be a pair of a normal variety X of dimension
≤ 2 and an effective Q -divisor B =

∑
biBi on X. We do not assume that the pair

(X,B) is klt or even log canonical. Denote by nklt(X,B) ⊂ X the Zariski closed
subset where the pair (X,B) is not klt.

Let Di = (1/i)Mi be a bounded positive convex A(X,B)-saturated sequence of
b-divisors on X where all Mi are mobile b-divisors.

Assume given a morphism f : X → Z to an affine normal variety Z such that
−(KX +B) is f-nef and big.

Assume there is a Zariski open subset U ⊂ X such that nklt(X,B) ⊂ U and
all restrictions Di|U descend to U and D•|U is constant.

Then D• is eventually constant on X.

1.19. The glossary

The last chapter in the book is a minimal glossary of technical terms. I tried
to collect in one place common terminology for which a precise definition may exist
somewhere in the book but which is elsewhere in the book used freely and taken
for granted.

1.20. The book as a whole

The chapters of this book have been written as stand-alone papers by their au-
thors. Nevertheless, the collection of chapters has a clear theme and a unified topic.
The reader should expect differences in emphasis, repetitions and even occasional
discrepancies in terminology between the chapters.
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1.21. Prerequisites

Different chapters have different sets of prerequisites. For instance, prereq-
uisites are minimal for Chapter 2. On the whole, I hope that at least the first
half of the book can be read by someone with knowledge of basic algebraic geom-
etry, e.g. [Har77], but little experience of higher dimensional methods. To have
a fighting chance with some of the harder bits, the reader will need some knowl-
edge of higher dimensional techniques as can be obtained from one of the books
[CKM88, KM98, Deb01, Mat02]. Our main reference is [KM98]; we try con-
sistently to follow the terminology in use there. The paper [KMM87] is still the
best concise technical reference on the minimal model program, though some of its
terminology is out of date and, in any case, it is different from terminology adopted
in this book.
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CHAPTER 2

3-fold flips after Shokurov

Alessio Corti

2.1. Introduction

2.1.1. Statement and brief history of the problem. The flipping conjec-
ture asserts that, under rather restrictive conditions, certain codimension 2 surgery
operations, called flips, exist in the projective category. More precisely, let X be
a normal variety with canonical divisor K and B =

∑
biBi ⊂ X a Q-divisor such

that the pair (X,B) has klt singularities. This is a technical assumption which I
discuss below in detail. In particular, K + B is Q-Cartier, and it therefore makes
sense to intersect it with 1-dimensional cycles in X and ask, for example, whether
it is ample. Let f : X → Z be a small contraction with K +B anti-ample along f .
Recall that small means that the exceptional set of f has codimension at least 2. A
morphism with these properties is called a flipping contraction. The fact that flip-
ping contractions exist is itself a nontrivial discovery and a central feature of Mori
theory. By definition, the flip of f is a small birational contraction f ′ : X ′ → Z
such that K ′+B′ is Q-Cartier and ample along f ′. The precise form of the flipping
conjecture asserts that the flip of f exists. Together with the conjecture on termi-
nation of flips (stating that there can be no infinite sequence of flips) and the cone
and contraction theorems, which are standard results in higher dimensional alge-
braic geometry, the conjecture implies the existence of minimal models of projective
algebraic varieties.

Kulikov was the first to use codimension 2 surgery systematically with the aim
of constructing minimal models [Kul77a, Kul77b].

In the mid eighties, four people were working on flips: Kawamata, Mori,
Shokurov and Tsunoda. They all independently showed existence of semistable
flips [Kaw88, Mor02, Sho93a, Tsu87]. Kawamata thought his initial approach
could construct 3-fold flips in general. In the end he did not succeed, and showed
existence of semistable 3-fold flips by another method. He later revived his initial
approach in his construction of semistable 3-fold flips in positive and mixed charac-
teristic [Kaw94]. Mori constructed semistable 3-fold flips, but never published the
details of his proof, some of which is now part of the more recent work [Mor02];
instead, he went on to construct 3-fold flips in general [Mor88]. Shokurov con-
structed semistable 3-fold flips around the same time; he published his proof much
later [Sho93a]. Tsunoda’s paper [Tsu87] also works out semistable 3-fold flips.
Two general principles emerge from the work of these pioneers. First, semistable
3-fold flipping contractions can be understood in fairly explicit terms. With hind-
sight, it is not difficult to collect enough information to construct the flip. Second,
3-fold flipping contractions can also be classified to the extent that one has enough

13
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information to construct the flip, but the general case is much harder than the case
of semistable flips. The classification of 3-fold flips was taken a step further in the
monumental paper [KM92].

In the early nineties, Shokurov discovered a new approach to 3-fold flips which
was eventually worked out, revised, and corrected in several papers [Sho92, FA92,
Sho93b, Takb]. This proof of Shokurov works in two stages. The first stage is
a very conceptual reduction of flips to a special case called pl flips. The general
features of this reduction work in all dimensions; in particular, they work uncon-
ditionally in dimension 4. In the second stage, 3-fold pl flips are constructed by a
lengthy explicit analysis similar in spirit to the construction of semistable flips. In
the end, we still lack a conceptual approach to the construction of pl flips.

In the intervening years, a few people started looking into 4-fold flips and proved
existence in special cases [Kaw89, Kac98, Kac97, Taka].

Shokurov’s new work [Sho03] constructs 4-fold flips in full generality by con-
structing 4-fold pl flips. Shokurov’s proof in the 4-fold case is very convoluted and
complicated; however, it rests on a rather appealing construction of 3-fold pl flips.
The purpose of this chapter is to explain this construction.

2.1.2. Summary of the chapter. This chapter is divided into three large
sections.

Section 2 is a brief introduction to log terminal singularities, the flipping prob-
lem, and the reduction of 3-fold klt flips to 3-fold pl flips. This material is included
here primarily for pedagogical reasons. The section ends with a rather sketchy
outline of the construction of 3-fold pl flips. I have written this section so it can be
used as an introduction to the subject for beginners. The expert will find nothing
new here.

Section 3 introduces the language of b-divisors and the algebras naturally as-
sociated to them. Most of this material is very elementary and it could have been
written by Zariski; see for example [Zar62] and [Hir73]. I have written up this
subject in painful detail because it does not exist in this form anywhere else in the
literature. I also discuss the key property of a-saturation introduced by Shokurov
and state the finite generation conjecture. It is easy to see that the finite generation
conjecture in dimension n− 1 implies the existence of pl flips in dimension n. The
section ends with a proof of the finite generation conjecture in dimension 1. While
this has no relevance to flips, it shows in a completely elementary case that the
conjecture is plausible. Section 3 can be used as a second, more full, introduction
to the construction of 3-fold pl flips The expert can probably skim through most
of this section quickly and come back to it when needed.

The final Section 4 contains complete details of the construction of 3-fold pl
flips. It opens with the proof that the finite generation conjecture implies the
existence of pl flips, and ends with a proof of the finite generation conjecture in
dimension 2, using the techniques developed in the previous section.

2.1.3. Other surveys. Shokurov’s ideas on flips are published in [Sho03], see
also the other papers in the same volume; in particular, the 3-fold case is surveyed
in [Isk03].

2.2. Background
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2.2.1. Summary. The first goal of this section is to give the definition of two
flavours of log terminal singularities: klt and plt. To the beginner, the definition
of log terminal singularities is one of the most confusing places in the theory. The
psychological difficulty is that the characterisation of classes of singularities by
means of discrepancies is indirect and nonintuitive. The classes of klt (Kawamata
log terminal) and plt (purely log terminal) singularities are defined in terms of
discrepancies. Their great advantage is that they are uncontroversial. Fortunately,
we will not need in this chapter any of the more sophisticated flavours of log terminal
singularities (see Chapter 3 for a discussion of these).

The second goal of this section is to state the flipping conjecture and briefly
explain the reduction to pl flips and sketch the strategy of Shokurov’s construction
of 3-fold pl flips.

See [Kol91] for a very accessible introduction to codimension-2 surgery and
flips. There are now several books on the minimal model program and higher dimen-
sional complex geometry, see for instance [CKM88, KM98, Deb01, Mat02]; the
paper [KMM87] is still the best concise technical reference on the minimal model
program. My policy is to use [KM98] as my main reference; in particular, I try
consistently to use their terminology.

Convention 2.2.1. In this chapter, we always work over an algebraically closed
field of characteristic zero.

2.2.2. Discrepancy. Let X be a normal variety with function field k(X). I
denote by KX , or, when there is no danger of confusion, just K, the canonical
divisor class of X. The best introduction to the canonical class is in [Rei80,
Appendix to §1, pg. 281–285]. If X is a normal variety, the dualising sheaf ω0

X

of [Har77, III.7 Definition on pg. 241] (sometimes called predualising sheaf in
the literature) is a rank 1 reflexive sheaf or divisorial sheaf. This means that
ω0
X
∼= OX(KX) for some divisor KX which is well defined up to linear equivalence.

By definition, the linear equivalence class of KX is the canonical divisor class. In
the literature and in what follows it is common to abuse language and say things
like “let K be the canonical class of X” or “let K be the canonical divisor of X”.

Definition 2.2.2. A rank 1 valuation ν : k(X)→ Z is geometric if there exists
a normal variety Y , a birational map f : Y 99K X and a prime Weil divisor E ⊂ Y
such that ν(−) = νE(−) = multE(−) is the valuation given by the order of vanishing
along E. It is customary to abuse language, and notation, identifying ν with E.

I say that ν has centre on X if f is regular at (the generic point of) E or,
equivalently, by restricting the domain of f , if f can be taken to be a morphism.
The centre cX(ν) of ν on X is the scheme-theoretic point cX(ν) = f(E) ∈ X. I
denote by cX(ν) the Zariski closure of the centre.

I say that the valuation is exceptional over X, or that it has small centre on
X, if cX(ν) is not a divisor or, equivalently, E is an exceptional divisor.

Notation and Conventions 2.2.3. I work with Weil divisors B =
∑
biBi ⊂

X with rational coefficients bi ∈ Q. I denote by

dBe =
∑
dbieBi, bBc =

∑
bbicBi and {B} = B − bBc

the round up, the round down and the fractional part of B.
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Definition 2.2.4. I say that the divisor B ⊂ X is a boundary if all 0 ≤ bi ≤ 1;
a boundary is strict if all bi < 1; B is a subboundary if all bi ≤ 1 (that is, the bi
can be negative).

In this chapter, I never use subboundaries. Subboundaries are used in Shokurov
[Sho03] and occasionally in this book.

I now introduce the key notion of discrepancy of a geometric valuation. Various
classes of singularities are defined in terms of discrepancies. In order for discrepan-
cies even to be defined, it is necessary to assume that the divisor K+B is Q-Cartier.
This is a subtle condition on the singularities of the pair (X,B); in most cases of
interest to us, it is a topological condition:

Remark 2.2.5. Let X be a normal variety with rational singularities (this
holds, for example, when the pair (X,B) has klt or plt singularities); denote by
U = X r SingX the nonsingular locus of X. Then, K +B is Q-Cartier if and only
if the first Chern class

c1
(
O(KU +B|U )

)
∈ H2(U,Z) ⊂ H2(U,Q)

is in the image of the (injective) restriction map H2(X,Q) → H2(U,Q). For a
proof, see [Kol91, Proposition 2.1.7]. Equivalently, if X has rational singularities
and dimX = n, KX + B is Q-Cartier if and only if the cycle class cl(KX + B) ∈
H2n−n(X,Q) is in the image of the Poincaré map

P : H2(X,Q)→ H2n−2(X,Q)

(An algebraic variety X is always a pseudomanifold, in other words it has a fun-
damental homology class clX ∈ H2n(X,Q). The Poincaré map is given by cap
product with clX.)

Definition 2.2.6. Let X be a normal variety, and B ⊂ X a rational Weil
divisor. Assume that K +B is Q-Cartier.

Let ν be a geometric valuation with centre on X. Let f : Z → X be a birational
morphism with divisor E ⊂ Z such that ν = νE . By restricting Z, we may assume
that E is the only f -exceptional divisor, and then we may write

KZ = f∗(K +B) + aE

where a is a rational number. It is easy to see that a only depends on the valuation
ν. I call a = a(ν,B) the discrepancy of the valuation ν. When identifying ν with
the divisor E, I denote it a(E,B).

Usually one only uses discrepancies in a context where it is known that B is a
boundary. However, inductive formulae for several blow ups use the general case
where one only assumes that K +B is Q-Cartier.

2.2.3. Klt and plt.

Definition 2.2.7. The pair (X,B) has klt (Kawamata log terminal) singular-
ities if a(ν,B) > −1 for all geometric valuations ν with centre on X.

The pair (X,B) has plt (purely log terminal) singularities if a(ν,B) > −1 for
all geometric valuations ν with small centre on X.

Sometimes, following established usage, I abuse language and say that the
divisor K +B is klt (plt) meaning that the pair (X,B) has klt (plt) singularities.
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Remark 2.2.8. If (X,B) has klt singularities, then all bi < 1. It is known that,
if (X,B) has plt singularities, then dBe is normal, that is, it is the disjoint union
of normal irreducible components. If X is nonsingular, B =

∑
biBi ⊂ X is a strict

boundary and SuppB = ∪Bi ⊂ X is a simple normal crossing divisor, then (X,B)
has klt singularities (this is, of course, the basic example of klt singularities).

Definition 2.2.9. The pair (X,B) has terminal singularities if a(ν,B) > 0 for
all geometric valuations ν with small centre on X.

Remark 2.2.10. In Shokurov’s terminology, and elsewhere in the literature,
terminal singularities are called “terminal singularities in codimension 2”.

If X is a surface, then (X,B) has terminal singularities if and only if X is
nonsingular and multxB =

∑
bi multxBi < 1 for all points x ∈ X.

2.2.4. Inversion of adjunction.

Notation and Conventions 2.2.11. In what follows, I consider a normal
variety X and a Q-divisor S+B on X. In this chapter, the notation always means
that S is a prime Weil divisor and B =

∑
biBi is a Q-divisor having no component

in common with S. I always assume that K + S + B is Q-Cartier. I also often
assume that B is a strict boundary, that is, 0 < bi < 1, and that K + S +B is plt.

As explained in [FA92, Section 16], under mild assumptions, one can define
the different Diff = DiffS B ≥ 0 of B along S, and make sense of the formula(

KX + S +B
)
|S = KS + DiffS B.

When K + S and B are each Q-Cartier, it is true that

DiffS B = B|S + DiffS 0 where DiffS 0 ≥ 0,

but, unless K + S is Cartier, DiffS 0 is usually nonzero. (See [FA92, Section 16]
for details.) The example to keep in mind is S a ruling inside a surface quadric
cone X. In this case DiffS 0 = (1/2)P where P is the vertex of the cone.

Theorem 2.2.12. [FA92, Theorem 17.6] Let X be a normal variety, S +B =
S +

∑
biBi ⊂ X a Q-divisor on X where S is a prime divisor and B is a strict

boundary. If KX +S +B is Q-Cartier, then KX +S +B is plt in a neighbourhood
of S if and only if KS + DiffS(B) is klt.

Remark 2.2.13. It is easy to show that K+S+B plt implies KS+DiffS B klt.
The converse is a case of “inversion of adjunction”. The book [FA92, Chapter 17]
contains several statements of this type.

2.2.5. The flipping conjecture.

Definition 2.2.14. Let (X,B) be a pair with klt (plt) singularities. A flipping
contraction is a projective birational morphism f : X → Z such that the following
properties hold.

(1) K +B is anti-ample relative to f .
(2) The morphism f is small, that is, the exceptional set Exc f has codimen-

sion at least 2 in X.
(3) The relative Picard group Pic(X/Z) has rank ρ(X/Z) = 1.

I sometimes say that f : X → Z is a flipping contraction for K +B to mean all the
above.
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Definition 2.2.15. Let f : X → Z be a flipping contraction. The flip of f is
a small projective birational morphism f ′ : X ′ → Z such that K ′ +B′ is Q-Cartier
and f ′-ample.

Remark 2.2.16. The flip is unique if it exists. Ideed:

X ′ = Proj⊕i≥0f∗OX
(
i(K +B)

)
where, by definition, f∗OX

(
i(K + B)

)
= f∗OX

(
iK + biBc

)
, provided that the

algebra is finitely generated. The formula makes it clear that the construction of
the flip is local on Z in the Zariski topology. For this reason, in this chapter, I
almost always assume that Z is affine.

Theorem 2.2.17. [KM98, Corollary 3.42] If the pair (X,B) has klt (plt) sin-
gularities, then so does the pair (X ′, B′). �

Conjecture 2.2.18 (Flip conjecture I). The flip of a flipping contraction al-
ways exists.

Conjecture 2.2.19 (Flip conjecture II). There is no infinite sequence of flips.

2.2.6. Reduction to pl flips.

Definition 2.2.20. Let (X,S+B) be a plt pair. The notation means that S is
a prime Weil divisor and B =

∑
biBi a Q-divisor having no component in common

with S. I also assume that B is a strict boundary, that is 0 < bi < 1. A pl (pre
limiting) contraction is a flipping contraction f : X → Z such that the following
additional properties hold.

(1) The variety X is Q-factorial.
(2) The divisor S is irreducible and f -negative.

The flip of a pre limiting contraction is called a pl (pre limiting) flip.

Remark 2.2.21. My definition of pl flip is slightly more restrictive than [FA92,
Definition 18.6], which allows K + S + B to be divisorially log terminal: the key
difference is that there S is allowed to have several components, one of which is
required to be f -negative. If f : X → Z is a pl flip in the sense of [FA92] and
S =

∑
Si with S0 f -negative, then K + S0 + (1 − ε)

∑
i>0 Si + B is plt and f -

negative if 0 < ε� 1. Thus, the construction (but not the termination) of pl flips
in the sense of [FA92] is reduced to the construction of pl flips in the slightly more
restricted sense used here.

Remark 2.2.22. If f : X → Z is a pl flipping contraction for K+S+B, then S
contains all of the f -exceptional set. This is because if a curve C ⊂ X is contracted
by f , then S · C < 0, hence C ⊂ S.

Theorem 2.2.23. (See [FA92, 18.11] and Chapter 4.) Assume that pl flips
exist, and that any sequence of them terminates (to be more precise, we need to
assume special termination of pl flips in the slightly more general sense of [FA92,
Definition 18.6], see [FA92] and Chapter 4 for a detailed treatment). If (X,B) is
a klt pair and f : X → Z is a flipping contraction, then the flip of f exists. �

This result in the 3-fold case is the key contribution of Shokurov’s chapter
[Sho92]. The proof is conceptual; the general framework is generalised to higher
dimensions in [FA92] and discussed in Chapter 4 of this book.
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Remark 2.2.24. [FA92, Theorem 7.1] implies that there is no infinite sequence
of 3-fold pl flips. The corresponding statement for 4-folds is proved in Fujino’s
Chapter 4.

2.2.7. Plan of the proof. This chapter is devoted to the construction of
3-fold pl flips.

Theorem 2.2.25. Flips of 3-fold pl contractions exist.

Here I give an overview of the key steps of the proof. The starting point is a pl
flipping contraction f : X → Z for K + S +B.

Restricted algebra. As we know, the flip exists if the algebra

R = R(X,K + S +B) = ⊕i≥0H
0
(
X,OX(i(K + S +B))

)
is finitely generated. The first step is to define a restricted algebra R0 = resS R(X,D).
Roughly speaking, R0 = ⊕iR0

i where

R0
i = Im

(
H0

(
X,OX(i(K + S +B))

)
→ H0

(
S,OS(i(KS + DiffS B))

))
.

It is easy to see, and it is shown in Lemma 2.3.6 below, that R is finitely generated
if R0 is.

Pbd-algebras. The restriction of |i(K+S+B)| to S is not (a priori) a complete
linear system; instead, it is a linear system with base conditions. To keep track of
the base conditions, Shokurov develops the language of b-divisors. In the language
of b-divisors, the restricted algebra R0 (or rather, more precisely, an algebra integral
over it) is a pbd-algebra (pseudo b-divisorial algebra).

Shokurov algebras. We still don’t have a good reason to believe that R0 is
finitely generated. Shokurov introduces two key properties, boundedness and canon-
ical a-saturation. Boundedness has a natural meaning and it is easy to verify. On
the other hand, canonical a-saturation is a very subtle property whose meaning is
poorly understood. It is not difficult to show that a suitable integral extension of
the restricted algebra is bounded and canonically a-saturated. We call an algebra
satisfying these properties a Shokurov algebra (Fano graded algebra, or FGA alge-
bra in Shokurov’s own terminology). Shokurov conjectures that a Shokurov algebra
on a variety admitting a weak Fano contraction is finitely generated.

The surface case. To construct 3-fold pl flips, we show that a Shokurov algebra
on a surface admitting a weak Fano contraction is finitely generated. The proof
uses some features of birational geometry and linear systems which are specific to
surfaces. The key point is Theorem 2.4.6 below, which states that a saturated
mobile b-divisor M on a nonsingular surface admitting a weak Fano contraction, is
base point free.

2.2.8. Log resolution. Recall that D ⊂ Y or, more precisely, the pair (Y,D)
is simple normal crossing if Y is nonsingular and the components of D are nonsin-
gular and cross normally. In this chapter we work with the following definition of
log resolution.

Definition 2.2.26. A log resolution of the pair (X,B) is a proper birational
morphism f : Y → X satisfying the following conditions.

(1) The exceptional set of f is a divisor E =
∑
Ei ⊂ Y , where we denote by

Ei the irreducible components.
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(2) The space Y is nonsingular and the support of f−1B ∪ E is a simple
normal crossing divisor.

Sometimes it is also required that there exists an f -ample divisor A = −
∑
εiEi

supported on the exceptional divisor (necessarily all εi > 0). This can always be
achieved by a further blow up and it is never at issue in this chapter. For a more
general discussion, see Chapter 3.

2.3. The language of function algebras and b-divisors

2.3.1. Function algebras. In what follows, we consider a normal variety X
and a birational contraction f : X → Z to an affine variety Z. We denote by
A = H0(Z,OZ) the affine coordinate ring of Z.

Definition 2.3.1. A function algebra on X is a graded A-subalgebra

V = ⊕i≥0Vi

of the polynomial algebra k(X)[T ] where V0 = A and each Vi is a coherent A-
module. In other words, each Vi is a coherent A-module with a given inclusion Vi ⊂
k(X) and multiplication in V is induced by multiplication in k(X); in particular,
ViVj ⊂ Vi+j .

A function algebra is bounded if there is an (integral) Weil divisor D ⊂ X such
that Vj ⊂ H0(X,O(jD)) for all j. In this case, we also say that V is bounded by
D. We are only interested in bounded algebras.

A truncation of a graded algebra V = ⊕Vi is an algebra of the form V (d) =
⊕jVjd

Convention 2.3.2. Occasionally, we abuse language and say that a property
holds for V when it actually holds, or even makes sense, only for a truncation of V .

Lemma 2.3.3. A function algebra is finitely generated if and only if any of its
truncations is finitely generated.

Proof. V (d) is the subalgebra of invariants under an obvious action of µd on
V . If V is finitely generated, then so is V (d) by E. Noether’s Theorem on the
finite generation of rings of invariants under finite group actions. In the opposite
direction, every homogeneous element f ∈ V satisfies a monic equation

Xd − fd = 0

where fd ∈ V (d); this implies that V is integral over V (d). If V (d) is finitely
generated, then so is V by E. Noether’s theorem on the finiteness of the integral
closure. �

Definition 2.3.4. Let X be a normal variety and S ⊂ X an irreducible normal
subvariety of codimension 1. Denote by OX,S the local ring of X at S, that is, the
rank 1 valuation subring of k(X) corresponding to S, and by

mX,S = {f ∈ k(X) | multS f > 0} ⊂ OX,S
the maximal ideal. Note that k(S) = OX,S/mX,S .

A function algebra V = ⊕iVi is regular along S if it satisfies the following
conditions.
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(1) All Vi ⊂ OX,S ⊂ k(X), that is to say, the homogeneous elements of the
algebra V are rational functions which are defined (regular) at the generic
point of S.

(2) V1 6⊂ mX,S .

If V is regular along S, the restricted algebra V 0 = resS V is the function algebra:

V 0 = ⊕V 0
i where V 0

i = Im(Vi → k(S)).

By construction, this is a function algebra on S.

Remark 2.3.5. If V is bounded by D and S 6⊂ SuppD, then the restricted
algebra V 0 = resS V is also bounded.

Let (X,S + B) be a plt pair and f : X → Z a pl flipping contraction. As we
know, the flip exists if and only if the canonical algebra

R = R
(
X,K + S +B

)
= ⊕iH0

(
X,OX(i(K + S +B))

)
is finitely generated. More generally, the flip exists if R(X,D) is finitely generated
for some f -negative Q-divisor D. Indeed, since ρ(X/Z) = 1, D ∼ r(K +S+B) for
a positive rational r ∈ Q+, hence R(X,K + S + B) and R(X,D) have a common
truncation.

Lemma 2.3.6. Let f : X → Z be a pl flipping contraction for K + S + B. Let
D be an effective f-negative Q-Cartier integral Weil divisor on X; assume that
S 6⊂ SuppD. The flip exists if the restricted algebra R0 = resS R(X,D) is finitely
generated.

Proof. Denote R = R(X,D); by what we said, we may assume that D ∼ S
is linearly equivalent to S. In particular, there is a rational function t ∈ k(X) with
div t+D = S; by definition, t ∈ R1. The statement clearly follows from the:

Claim. The kernel of the restriction map R→ R0 is the principal ideal gener-
ated by t.

Indeed, let ϕ ∈ Rn ⊂ k(X) restrict to 0 ∈ R0. This means that divϕ+nD ≥ 0
has a zero along S, that is:

divϕ+ nD − S ≥ 0.

In view of this, we can write ϕ = tϕ′ where divϕ′ + (n − 1)D = divϕ +D − S +
(n− 1)D ≥ 0; in other words, ϕ′ ∈ Rn−1 and ϕ ∈ (t). �

2.3.2. b-divisors.

Terminology 2.3.7. Let X be a normal variety, not necessarily proper. We
often work in the category of normal varieties Y , together with a proper birational
morphism f : Y → X. We say that f : Y → X, or simply Y , is a model proper over
X, or simply a model of X. A morphism in this category is a morphism Y → Y ′

defined over X, that is, a commutative diagram:

Y

  @
@@

@@
@@

@
// Y ′

~~}}
}}

}}
}}

X



22 2. 3-FOLD FLIPS AFTER SHOKUROV

Definition 2.3.8. Let X be a normal variety. An (integral) b-divisor on X is
an element:

D ∈ DivX = lim
Y→X

Div Y

where the (projective) limit is taken over all models f : Y → X proper over X,
under the push forward homomorphism f∗ : Div Y → DivX.

Divisors with coefficients in Q are defined similarly.
If f : Y → X is a model proper over X, the natural push-forward homomor-

phism f∗ : Div Y → DivX is an isomorphism. Because of this, we can safely abuse
notation and identify b-divisors on Y with b-divisors on X.

Remark 2.3.9. The “b” in b-divisor stands for “birational”.

Notation and Conventions 2.3.10. If D =
∑
dΓΓ is a b-divisor on X, and

Y → X is a model of X, the trace of D on Y is the divisor

DY = trY D =
∑

Γ is a divisor on Y

dΓΓ.

Definition 2.3.11. We define the b-divisor of a rational function f ∈ k(X)×

by the formula
divX f =

∑
νE(f)E

where we sum over all geometric valuations E with centre on X.
Two b-divisors D1, D2 on X are linearly equivalent if their difference

D1 −D2 = divX f

is the b-divisor of a rational function f ∈ k(X)×.

Example 2.3.12. Many familiar constructions lead naturally to b-divisors.
(1) The Q-Cartier closure of a Q-Cartier (Q-)divisor D on X is the b-divisor

D with trace
DY = f∗(D)

on models f : Y → X of X. We call a b-divisor of this form a Q-Cartier
b-divisor. If ϕ ∈ k(X)× is a rational function, then

divX ϕ = divX ϕ.

(2) The canonical divisor of a normal variety X is a b-divisor. Indeed, the
divisor K = divX ω of a meromorphic differential ω ∈ Ωk(X) naturally
makes sense as a b-divisor, for Zariski teaches how to take the order of
vanishing of ω along a geometric valuation of X. I follow established
usage and say that K is the canonical divisor of X when, more precisely,
I can only make sense of the canonical divisor class; K is a divisor in the
canonical class.

(3) If X is a normal variety, and B =
∑
biBi ⊂ X is a Q-divisor, the dis-

crepancy of the pair (X,B) is the b-divisor A = A(X,B) with trace AY

defined by the formula:

KY = f∗(KX +B) + AY

on models f : Y → X of X. In order for A to be defined, we need to
assume that KX +B is Q-Cartier.
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(4) For an ordinary divisor D on X, we denote by D̂ the proper transform
b-divisor; its trace on models f : Y → X is

D̂Y = f−1
∗ D.

I usually abuse notation and simply write D instead of D̂.

Remark 2.3.13. (1) If D =
∑
mEE is a b-divisor on a variety X (for

instance affine) we can define a sheaf on X:

OX(D) = {f ∈ k(X) | vE(f) +mE ≥ 0 ∀E with centre on X}.

Note that this definition makes sense when D is a Q-b-divisor, and it
means OX(D) = OX(bDc). From the definition, OX(D) is a subsheaf of
the constant sheaf k(X). Note that PH0

(
X,OX(D)

)
⊂ PH0

(
X,OX(DX)

)
is a linear system with base conditions on X. The key point about b-
divisors is that they are a convenient language to keep track of linear
systems with base conditions. For instance, consider X = P2, and let
f : E ⊂ Y → P ∈ X be the blow up of a point P ∈ X. Let L ⊂ X be
a line through P and L′ ⊂ Y the proper transform. Then the Q-Cartier
closure D = L′ is a b-divisor on X and PH0

(
(X,OX(D)

)
is the linear

system of lines passing through P .
(2) In general, the sheaf OX(D) is not coherent; in fact, it is often not even

quasi-coherent. However, if f : Y → X is a model andD ≥ 0 is an effective
Q-Cartier divisor on Y , then OX(D) = f∗OY (D) is a coherent sheaf (D
denotes the Q-Cartier closure of D). More generally if 0 ≤ D ≤ D, then
OX(D) is also coherent.

We only use OX(D) when it is coherent. Lemma 2.3.15 below is a
simple criterion that, under natural conditions, guarantees that OX(D)
is coherent.

(3) The sheaf OX(D) can be coherent even if D has infinitely many nonzero
coefficients. When this happens, of course, it is possible to choose a finite
D′ for which OX(D′) = OX(D). However, this may not be a natural
thing to do, e. g. when D = K is the canonical b-divisor.

(4) At the heart of the construction of 3-fold pl flips we find ourselves in the
following situation. We have a sequence of b-divisors Di on X and we
want to find a fixed model f : Y → X such that OX(Di) = f∗OY (Di Y )
for all i.

Lemma 2.3.14. Let X be a normal variety, D =
∑
diDi ⊂ X a Q-divisor,

and A = A(X,D) the discrepancy b-divisor. Let Y be a nonsingular variety and
f : Y → X a proper birational morphism. Assume that SuppAY is a simple normal
crossing divisor. If Y ′ is a normal variety and g : Y ′ → Y is a proper birational
morphism, then

dAY ′e = g∗dAY e+
∑

δiEi

where the Eis are the g-exceptional divisors and all δi ≥ 0.

Proof. By definition, KY = f∗(KX +D) + AY ; therefore, we may write:

KY ′ = g∗f∗(KX +D) + AY ′ = g∗(KY −AY ) + AY ′ =

= g∗
(
KY + {−AY }+ b−AY c

)
+ AY ′ = g∗

(
KY + {−AY }

)
− g∗dAY e+ AY ′ .
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Now, Remark 2.2.8 states that
(
X, {−AX}

)
is a klt pair; we get that −g∗dAY e+

AY ′ > −
∑
Ei, and the statement follows. �

Lemma 2.3.15. If X is a normal variety, D =
∑
diDi ⊂ X a Q-divisor and

A = A(X,D) the discrepancy b-divisor, then OX(dAe) is a coherent sheaf.

Remark 2.3.16. It is useful to note that, in this lemma, the divisor D is an
arbitrary Q-divisor (provided that A is defined, that is, K + D is Q-Cartier). In
other words, we are making no assumptions on the singularities of the pair (X,D).
This is just as well, since A(X,D) = OX if and only if the pair (X,D) has klt
singularities.

Remark 2.3.17. When D ≥ 0, the sheaf OX(dA(X,D)e) is the same as the
multiplier ideal sheaf J (D) = J (X,D) in the sense of [Laz04, Definition 9.2.1],
see also Chapter 5.

Proof. We may assume that X is affine. Choose a log resolution f : Y → X,
and write

KY = f∗(KX +D) +
∑

aiAi

where the support A = ∪Ai is a simple normal crossing divisor. Note that, by
definition, AY =

∑
aiAi. By the previous Lemma 2.3.14, if g : Y ′ → Y is another

model of X, then

dAY ′e = g∗dAY e+ (effective & exceptional).

This shows that f∗OY
(
dAY e

)
= f ′∗OY ′

(
dAY ′e

)
(where f ′ = fg), from which it

follows that OX
(
dAe

)
= f∗OY

(∑
daieAi

)
is a coherent sheaf. �

2.3.3. Saturated divisors and b-divisors. Saturation is an important and
natural property of b-divisors discovered by Shokurov.

Definition 2.3.18. Let D be a Q-divisor on a variety X and

(0) 6= V ⊂ H0(X,D) = {f | div f +D ≥ 0} ⊂ k(X)

a vector subspace; the mobile part of D with respect to V is the divisor

MobV D =
∑

mEE where mE = − inf
f∈V

multE f

and we sum over all divisors of X. When V = H0(X,D), we simply speak of the
mobile part MobD of D.

Remark 2.3.19. In the applications in this chapter, D is always integral and
effective, but neither is assumed in the definition. If D is not integral, then the
definition says that MobV D = MobV bDc. If D is integral, then MobD = D − F
where F = Fix |D| is the fixed part of the complete linear system |D|. In particular,
when D is effective, MobD is also effective. If D ∼ D′, then, upon choosing a
rational function ϕ such that divϕ = D −D′, we can identify V ⊂ H0(X,O(D))
with V ′ = ϕV ⊂ H0(X,O(D′)), and then

MobV ′ D′ = −divϕ+ MobV D.

Remark 2.3.20. If V1 ⊂ H0(X,D1) and V2 ⊂ H0(X,D2), then

MobV1⊗V2(D1 +D2) = MobV1 D1 + MobV2 D2.
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However, in general,

Mob(D1 +D2) ≥ MobD1 + MobD2.

(H0(X,D1 +D2) is not, in general, generated by H0(X,D1)⊗H0(X,D2).)

Definition 2.3.21. Let D and C be Q-divisors on X. We say that D is C-
saturated if MobdD + Ce ≤ D.

Remark 2.3.22. In this chapter, we only use saturation with D effective and
dD + Ce effective.

Terminology 2.3.23. Let X be a normal variety. We say that a property P
holds on high models if P holds on a particular model f : Y → X and on every
“higher” model, that is, every model Y ′ → Y → X.

Definition 2.3.24. A b-divisor D on X is C-saturated if DY is CY -saturated
on high models Y → X of X.

If Y → X is a model of X and DY is CY -saturated, we say that saturation
holds on Y .

When C = A(X,B) is the discrepancy b-divisor of a klt pair (X,B), we say
that D is canonically saturated.

Remark 2.3.25. By definition, (X,B) is klt if and only if dA(X,B)Y e ≥ 0 on
all models Y → X. Therefore, if D is effective, dDY + A(X,B)Y e is effective on
every model.

When (X,S + B) is plt, we work with A′(X,S + B) = A(X,S + B) + S. By
definition, (X,S + B) is plt if and only if dA′(X,S + B)Y e ≥ 0 on all models
Y → X. Therefore, if D is effective, dD + A′(X,S + B)Y e is effective on every
model.

The following definition names the most common example:

Definition 2.3.26. A b-divisor D on X is exceptionally saturated over X if it
is E-saturated for all E effective and exceptional over X.

Proposition 2.3.27. The Q-Cartier closure D of a Q-Cartier integral Weil
divisor D is exceptionally saturated.

Proof. The statement is equivalent to the well known elementary fact that,
for all models f : Y → X over X,

f∗OY
(
df∗(D) +

∑
aiEie

)
= OX(D)

if all Ei are exceptional and all ai ≥ 0. This is really easy to show: First of all, for
all ai, it is clear that f∗OY

(
df∗(D) +

∑
aiEie

)
⊂ OX(D); the other inclusion is

also obvious, since, when the ai are positive, the proper transform D′ ≤ df∗(D) +∑
aiEie. �

In practise, when we want to verify that a given divisor is saturated, we first
check that saturation holds on a particular model Y of X. As a second step, we use
the next lemma to show that saturation holds on all higher models Y ′ → Y . The
assertion is technical, but, as we shall see, the conditions are often easily satisfied.
The “moral” is that to verify saturation it is often sufficient to verify saturation on
a particular model.
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Lemma 2.3.28. Let (X,B) be a pair of a normal variety X and a Q-divisor
B ⊂ X where, as usual, we assume that K +B is Q-Cartier. Let D be a b-divisor
on X.

Let now Y → X be a model of X, and assume that the following conditions are
satisfied:

(1) Y is nonsingular and the support of DY +AY is a simple normal crossing
divisor,

(2) D = DY .
With these assumptions, saturation holds on Y if and only if saturation holds on
any higher model f : Y ′ → Y . That is,

MobdDY + AY e ≤ DY if and only if MobdDY ′ + AY ′e ≤ DY ′ .

In particular, if saturation holds on Y , then D is saturated. More precisely,
saturation holds on all models g : Y ′ → Y higher than Y .

Proof. The proof is very similar to the proof of Lemma 2.3.14; indeed, by
condition 2, we may write:

KY ′ = g∗
(
KY −AY −DY

)
+ AY ′ + DY ′ =

= g∗
(
KY + {−AY −DY }

)
− g∗dAY + DY e+ AY ′ + DY ′ .

By condition 1, the pair
(
Y, {−AY −DY }

)
is klt; it follows that

dDY ′ + AY ′e = f∗dDY + AY e+ E

where E is f -exceptional and effective. As we already noted, under these circum-
stances:

f∗OY ′
(
dDY ′ + AY ′e

)
= OY

(
dDY + AY e

)
.

This formula easily implies that saturation holds on Y if and only if it holds on
Y ′. �

Lemma 2.3.29. Let (X,S + B) be a plt pair with discrepancy divisor A =
A(X,S + B). If a b-divisor D is exceptionally saturated, then it is A′ = A + S-
saturated.

Proof. If a divisor appears in A+S with positive coefficient, it is exceptional.
�

2.3.4. Mobile b-divisors.

Definition 2.3.30. An integral b-divisor D is mobile if there is a model f : Y →
X such that

(1) the linear system |DY | is free on Y , and
(2) D = DY is the Q-Cartier closure of DY .

Remark 2.3.31. A mobile b-divisor is not necessarily effective. In this chapter
all mobile b-divisors are effective, but it is useful, sometimes, to have the extra
flexibility.

Remark 2.3.32. If D is mobile and Y → X is a model over X, the following
are equivalent:

(1) the linear system |H0(Y,D)| is free on Y , and
(2) D = DY .
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Definition 2.3.33. A b-divisor D is b-semiample (b-nef ) if there is a model
f : Y → X of X such that D = DY where DY is a semiample (nef) Q-Cartier
divisor.

Definition 2.3.34. Let D be a Q-divisor on a variety X and

(0) 6= V ⊂ H0(X,D) = {f | div f +D ≥ 0} ⊂ k(X)

a vector subspace; the mobile b-part of D with respect to V is the divisor

MobV D =
∑

mEE where mE = − inf
f∈V

multE f

and we sum over all geometric valuations with centre on X. When V = H0(X,D)
we simply speak of the mobile b-part MobD of D. The mobile b-part with respect
to V is a mobile b-divisor.

Remark 2.3.35. If D is integral Q-Cartier and f : Y → X is a model, then

(MobV D)Y = f∗D − Fix f∗|V |.

If, in addition, V = H0(X,D), then (MobD)Y = Mob f∗D = Mobdf∗De.

Remark 2.3.36. If V1 ⊂ H0(X,D1) and V2 ⊂ H0(X,D2), then

MobV1⊗V2(D1 +D2) = MobV1 D1 + MobV2 D2.

However, in general,

Mob(D1 +D2) ≥MobD1 + MobD2.

(H0(X,D1 +D2) is not, in general, generated by H0(X,D1)⊗H0(X,D2).)

Lemma 2.3.37. The mobile b-part MobD of an integral Weil divisor D is
exceptionally saturated.

Proof. This is a simple exercise in unravelling the definition. I show, more
generally, that if f : Y → X is any model, then for all f -exceptional divisors E ≥ 0:

Mobd(MobD)Y + Ee ≤ (MobD)Y .

This follows from the definitions and the fact that, denoting by D′ ⊂ Y the proper
transform, H0(Y,D′ + E) = H0(X,D). �

Remark 2.3.38. A mobile b-divisor M on X is not necessarily exceptionally
saturated over X (it always is over a suitable model Y → X). For instance, consider
X = P2, and let f : E ⊂ Y → P ∈ X be the blow up of a point P ∈ X. Let L ⊂ X
be a line through P and L′ ⊂ Y the proper transform. Then M = L′ is a mobile
b-divisor which is not exceptionally saturated over X; indeed MY + E = f∗L and

Mob(MY + E) = MY + E 6≤MY .

(Of course M 6= MobL.)
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2.3.5. Restriction and saturation. I state a fundamental result on satura-
tion: under natural conditions, exceptional saturation on X implies canonical sat-
uration on a divisor S ⊂ X. The proof is a simple application of the “X-method”1.

Definition 2.3.39. Let D be a b-Q -Cartier b-divisor on X and S ⊂ X an
irreducible normal subvariety of codimension 1 not contained in the support of
DX . I define the restriction D0 = resS D of D to S as follows. Pick a model
f : Y → X such that D = DY ; let S′ ⊂ Y be the proper transform. I define

resS D = DY |S′

where DY |S′ is the ordinary restriction of divisors. (Strictly speaking, DY |S′ is a
b-divisor on S′; as already noted, b-divisors on S′ are canonically identified with
b-divisors on S via push forward.) It is easy to see that the restriction does not
depend on the choice of the model Y → X.

Remark 2.3.40. Restriction is additive and monotone, in the sense that
(1) (D1 + D2)0 = D0

1 + D0
2, and

(2) if D1 ≥ D2, then D0
1 ≥ D0

2.

Remark 2.3.41. The restriction of a mobile b-divisor is a mobile b-divisor.

Remark 2.3.42. Restriction of mobile b-divisors is compatible with restriction
of rational functions in the following sense. Let M be a mobile b-divisor on X and
V = H0(X,M) ⊂ k(X). We can recover M from the formula:

multE M = − inf
f∈V

multE f

for all geometric valuations E with centre on X. If S ⊂ X is a normal irreducible
subvariety of codimension 1 not contained in the support of M, then V ⊂ OX,S
consists of rational functions which are regular at the generic point of S; therefore,
it makes sense to restrict these rational functions to S. If V 0 = Im

(
res : V → k(S)

)
,

then
multF resS M = − inf

f∈V 0
multF f

for all geometric valuations F of k(S) with centre on S. The proof is a simple
exercise.

Lemma 2.3.43. Let (X,S+B) be a relative weak Fano pair, that is, −(K+S+B)
is nef and big relative to some contraction X → Z to an affine variety Z. Let M
be a mobile b-divisor on X, and assume that S is not contained in the support of
MX .

Let, as usual, A = A(X,S+B) denote the discrepancy b-divisor. Assume that
M is A′ = A + S-saturated. (By Lemma 2.3.29, this holds if the pair (X,S + B)
is plt and the b-divisor M is exceptionally saturated.)

Then the mobile restriction M0 = resS M is canonically saturated; in other
words, it is A0 = A(S,Diff B)-saturated.

Remark 2.3.44. In applications in this chapter, the pair (X,S +B) is always
plt, but we are not assuming this in the statement.

1This is how graduate students at Tokyo Daigaku call the “Kawamata Technique”, invented
by Kawamata in his proof of the cone, contraction and rationality Theorems.
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Proof. Let f : Y → X be a log resolution, Fi the f -exceptional divisors and
B′
j the strict transforms of the components of B. We assume, as we may, that

Y → X is high enough that:
(1) the union of the support of A′

Y , MY and the f -exceptional divisors is
simple normal crossing,

(2) MY is free and M = MY , and
(3) the defining property of the saturation of M holds, that is,

MobdMY + A′
Y e ≤MY ,

where A′ = A + S.
If we write

KY = f∗(KX + S +B)− S′ −
∑

bjB
′
j +

∑
aiFi

on Y , then, by definition

AY = −S′ −
∑

bjB
′
j +

∑
aiFi.

We want to show that M0 is saturated. For this purpose, we first check that the
saturation property holds on the model at hand S′ → S. For ease of notation, let us
write A0 = A(S,Diff B). This is a b-divisor on S; it should not be confused with the
restriction of A; indeed, A is not b-Q -Cartier, therefore restriction does not make
sense in this context. The adjunction formula states precisely that A0

S′ = A′
Y |S′ .

We are interested in comparing MobdMY |S′ + A0
S′e with MY |S′ . The punchline is

this: by the vanishing theorem of Kawamata and Viehweg,

H1
(
Y, dMY + AY e

)
= H1

(
Y,KY + d−f∗(KX + S +B) + MY e

)
= (0)

(note that here we are using our assumption that the pair (X,S+B) is weak Fano);
therefore, the natural restriction map

H0
(
Y, dMY + A′

Y e
)
→ H0

(
S′, dMY |S′ + A0

S′e
)

is surjective. In other words, |dMY |S′ + A0
S′e| contains no new sections, and the

statement follows.
It is a consequence of Lemma 2.3.28 that saturation holds on models S′′ → S′

higher than S′. �

2.3.6. Pbd-algebras: terminology and first properties. Fix a normal
variety X. In what follows I always assume that X admits a proper birational
contraction f : X → Z to an affine variety Z.

Convention 2.3.45. In this subsection, and from now on in this chapter,
whenever working with a b-divisor D, I always tacitly assume that the sheaf OX(D)
is coherent.

Definition 2.3.46. (1) A sequence D• = {Di} of b-divisors is convex if
D1 > 0 and

Di+j ≥
i

i+ j
Di +

j

i+ j
Dj for all positive integers i, j.

(2) We say that D• is bounded if there is a (ordinary) divisor D on X such
that all Di ≤ D.
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Remark 2.3.47. Note that D• is “increasing” in the sense that Di ≤ Dk when
i divides k. If D• is bounded, convexity implies that the limit

D = lim
i→∞

Di = supDi ∈ DivX ⊗ R

exists as a b-divisor with real coefficients.

Remark 2.3.48. We are interested in situations where Di = (1/i)Mi arises
from a sequence M• of integral mobile b-divisors Mi on X. Then, D• is convex if
and only if M• is sub-additive, that is, M1 > 0 and Mi+j ≥Mi+Mj (for all i, j).
It is a matter of preference whether we work with the convex sequence D• or the
sub-additive sequence M•. From the point of view of taking the limit as i → ∞,
as we do below, it is natural to give prominence to D•.

Definition 2.3.49. A pbd-algebra is the function algebra R = R(X,D•) natu-
rally associated to a convex sequence D• of b-divisors. By definition, the ith graded
piece of R is

Ri = H0
(
X,OX(iDi)

)
.

Note that, by definition of the sheaf OX(iDi), Ri is equipped with a natural inclu-
sion Ri ⊂ k(X), and the convexity of D• ensures that RiRj ⊂ Ri+j ; the product
in the algebra is inherited from the product in k(X). Thus, a pbd-algebra is a
function algebra. The sequence D• is called the characteristic sequence of the
pbd-algebra. We say that the algebra is bounded if it is bounded as a function
algebra. This is equivalent to saying that the characteristic sequence is bounded.
When Di = (1/i)Mi where M• is a sub-additive sequence of mobile divisors, we
say that M• is the mobile sequence of the pbd-algebra.

Remark 2.3.50. In the definition, “pbd” stands for pseudo b-divisorial, as
opposed to “genuine” b-divisorial algebras of the form ⊕iH0

(
X,OX(iD)

)
for a

fixed b-divisor D.

Remark 2.3.51. When X is affine we omit “H0(X,−)” from the notation. In
the general case, there is a proper birational morphism f : X → Z to an affine
variety Z and R(X,D•) = R(Z,D•). For some purposes, we can work with Z,D•
instead of X,D•, and thus in practise we can assume that X is affine.

Lemma 2.3.52. Assume X admits a proper birational contraction f : X → Z
to an affine variety Z. If R = R(X,D•) is a pbd-algebra on X, then there is a
sub-additive sequence M• of mobile b-divisors on X, as in Remark 2.3.48, such
that Di = (1/i)Mi. In other words, every pbd-algebra on X arises from a mobile
sequence.

Proof. Working with Z,D• in place of X,D•, we may assume that X is affine.
Consider the subspace Vi = H0(X, iDi) ⊂ H0(X, iDiX). Then let

Mi = MobVi iDiX

be the mobile part, with respect to Vi, of the trace iDiX . It is a tautology that
H0(X,Mi) = H0(X, iDi). �

2.3.7. The limiting criterion. We state the basic criterion for finite gener-
ation of a pbd-algebra.
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Lemma 2.3.53 (Limiting criterion). Assume that X admits a proper birational
contraction f : X → Z to an affine variety Z. A pbd-algebra R = R(X,D•) is
finitely generated if and only if there is an integer i0 such that Di0i = Di0 for all i.

Proof. By the preceding lemma, under our assumptions onX, we may assume
that Mi = iDi is mobile. Assuming Di0i = Di0 for all i, we show that R is finitely
generated and leave the opposite, easier, implication to the reader. Passing to a
truncation, we may assume that i0 = 1. Then R = ⊕iH0(X, iM1) is the b-divisorial
algebra associated to the mobile b-divisor M1. Let Y → X be a model such that
M1Y is free and M1 = M1Y . Then R = R(Y,M1Y ) is a divisorial algebra on Y
associated to a base point free divisor, hence it is finitely generated. �

2.3.8. Function algebras and pbd-algebras.

Remark 2.3.54. IfX → Z is a pl flipping contraction andR = R(X,K+S+B),
the restricted algebra resS R is a function algebra. It is not a pbd-algebra.

Lemma 2.3.55. Let V = ⊕Vi be a function algebra on X. There is a pbd-algebra
V ⊂ RV = R(X,D•), which is integral over V . In particular

(1) V is bounded if and only if RV is bounded, and
(2) V is finitely generated if and only if RV is finitely generated.

Proof. The construction of RV is very natural; the verification that it has
the required properties is easy. Working with Z, f∗D• in place of X,D•, we may
assume that X is affine.

By definition of a function algebra, Vi ⊂ k(X) is a finitely generated (coherent)
OX -submodule (fractional ideal) for all i. Clearly, Vi ⊂ H0(X,Mi) where Mi is
the mobile b-divisor defined by:

multE Mi = − min
ϕ∈Vi

multE ϕ.

Because ViVj ⊂ Vi+j , it follows that Mi+Mj ≤Mi+j for all i, j. Multiplying by a
suitable rational function we may assume that OX ⊂ V1 or, in other words, that the
mobile b-divisor M1 ≥ 0 is effective. We take Di = (1/i)Mi and RV = R(X,D•).

It is easy to see that V is bounded if and only if RV is bounded; we outline the
proof that V is finitely generated if and only if RV is finitely generated.

First, I claim that the extension of algebras

V = ⊕Vi ⊂ ⊕H0(X,Mi) = RV

is integral. More precisely, I show that for all i:

⊕j≥0V
j
i ⊂ ⊕j≥0H

0(X, jMi)

is an integral extension of algebras. This in turn is an easy consequence of the yoga
of b-divisors and basic facts on coherent sheaves. Indeed, let f : Y → X be a model
such that Mi Y is free and Mi = Mi Y . Then H0(X, jMi) = H0(Y, jMi Y ) and the
claim follows from [Har77, Chapter II, Theorem 5.19 and Exercise 5.14].

By construction, V and RV are function algebras with the same field of frac-
tions. By E. Noether’s theorem on the finiteness of the integral closure, if V is
finitely generated, then RV is finitely generated.

Assume now that RV is finitely generated. Passing to a truncation, we may
assume that RV is generated by RV1 . By what we said, RV is integral over the
finitely generated algebra V ′ = ⊕j≥0V

j
1 . It follows that RV is a finite module over
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V ′. Because V ′ ⊂ V ⊂ RV , V also is a finite module over V ′, hence V is a finitely
generated algebra. �

Remark 2.3.56. The algebra RV constructed in Lemma 2.3.55 is not neces-
sarily integrally closed.

2.3.9. The finite generation conjecture. Let R be a pbd-algebra. We
want natural conditions on R that ensure that R is finitely generated. An obvious
condition, which is easily satisfied in all cases of interest to us, is the boundedness
of R. I now introduce a much more subtle condition.

Definition 2.3.57. A positive convex sequence D• of b-divisors is C-asymptotically
saturated (C-a-saturated for short) if for all i, j:

MobdjDi Y + CY e ≤ jDj Y

on high models Y → X. To spell this out, there are models Y (i, j)→ X, depending
on i, j, such that the inequality holds on all models Y → Y (i, j)→ X.

In the case when C = A = A(X,B) is the discrepancy of a klt pair (X,B), I
say that the sequence is canonically asymptotically saturated, or simply canonically
a-saturated . A pbd-algebra is canonically a-saturated if the characteristic sequence
is canonically a-saturated.

In practise, in order to make use of canonical a-saturation, it is necessary to
construct a model Y , independent of i, j, where a-saturation holds “uniformly”.
The existence of this model is highly nontrivial and our construction only works in
the case of surfaces.

Definition 2.3.58. A positive convex sequence D• of b-divisors is uniformly
C-a-saturated if there is a model X ′ of X such that for all i, j:

MobdjDi Y + CY e ≤ jDj Y

on models Y → X ′ higher than X ′. In this case, I say that saturation holds
uniformly on X ′.

When C = A = A(X,B) is the discrepancy of a klt pair (X,B), I say that
the sequence is uniformly canonically a-saturated . A pbd-algebra is uniformly
canonically a-saturated if the characteristic sequence is uniformly canonically a-
saturated.

Remark 2.3.59. The requirement gets stronger as i → ∞. In practise, I only
use the following consequence of uniform asymptotic saturation. If D• is bounded,
D = limDi = supDi, and saturation holds uniformly on Y , then

MobdjDY + CY e ≤ jDj Y ≤ jDY

for all j.

Definition 2.3.60. A Shokurov algebra (Fano graded algebra, or FGA algebra
in Shokurov’s own terminology) is a bounded canonically a-saturated pbd-algebra.

Finite generation Conjecture 2.3.61. Let (X,B) be a klt pair, and f : X →
Z a birational weak Fano contraction to an affine variety Z. Recall what this means:
f∗OX = OZ and −(K +B) is nef and big over Z. All Shokurov algebras on X are
finitely generated.



2.3. THE LANGUAGE OF FUNCTION ALGEBRAS AND B-DIVISORS 33

Remark 2.3.62. (1) Below, we prove the conjecture when dimX ≤ 2.
The conjecture is not known to be true if dimX = 3.

(2) The assertion can be generalised in various ways. To identify the most
general circumstances under which the conjecture can be hoped to hold
is a fundamental open problem with applications to existence of flips.
It is natural to wish for a more general statement containing the finite
generation of the canonical algebra of a klt pair as a special case. We
prove in Subsection 2.4.1 that our version of the conjecture implies the
existence of pl flips.

2.3.10. A Shokurov algebra on a curve is finitely generated. We prove
the 1-dimensional case of Conjecture 2.3.61; this gives good evidence that we are
on the right track.

Here X is an affine algebraic curve and B =
∑
bmPm is a klt divisor, that is,

0 ≤ bm < 1. On a curve all b-divisors are usual divisors. The discrepancy divisor
is A =

∑
amPm, where

−1 < am = −bm ≤ 0.

Let D• be the characteristic sequence; it is a positive convex bounded canonically
a-saturated sequence of divisors on X. We can write

Di =
∑

dm,iPm.

Let us take the limit

D = lim
i→∞

Di =
∑

( lim
i→∞

dm,i)Pm =
∑

dmPm ∈ DivX ⊗ R

as a divisor with a priori real coefficients; the proof concentrates on showing that,
actually, D has rational coefficients. Note that the boundedness assumption implies
that only finitely many dm can be nonzero. On a curve, we need not worry about
high models; a-saturation means:

djdm,i + ame ≤ jdm,j .

Passing to the limit as i→∞, we get

djdm + ame ≤ jdm,j ≤ jdm.

By Lemma 2.3.63, dm is rational. Note that the lemma crucially needs that KX+B
is klt, that is, −1 < am, rather than just −1 ≤ am. Now, taking j divisible enough
to make jdm integral, we obtain

jdm = djdm + ame ≤ jdm,j ≤ jdm,

i. e., dm,j = dm. After a truncation, we have dm,j = dm for all j,m. Finite
generation follows from the limiting criterion (Lemma 2.3.53). �

Lemma 2.3.63. If −1 < a ≤ 0 and djd+ ae ≤ jd for all j, then d is rational.

Proof. Assume by contradiction that d is irrational. The cyclic subsemigroup
A ⊂ R/Z generated by d is infinite, therefore it is dense. In other words, the
fractional parts {jd}, as j is a positive integer, are dense in the open interval (0, 1).
For some j, {jd}+ a > 0, and then djd+ ae > jd, a contradiction. �
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2.4. Finite generation on surfaces and existence of 3-fold flips

2.4.1. The finite generation conjecture implies existence of pl flips. In
this subsection, we show that the finite generation conjecture implies the existence
of pl flips. The rest of the chapter is devoted to proving the finite generation
conjecture in the case dimX = 2.

Notation and Conventions 2.4.1. In this subsection, (X,S+B) is a plt pair
and f : X → Z is a pl flipping contraction. Fix a mobile anti-ample Cartier divisor
M on X with support not containing S; write Mi = Mob iM and Di = (1/i)Mi.
By Remark 2.3.36, M• is subadditive and D• is positive convex. Denote by

R = R(X,M) = ⊕iH0(X, iM) = R(X,D•)

the associated pbd-algebra. Denote by R0 = ⊕R0
i = resS R the restricted algebra.

Recall that, by definition,

R0
i = Im

(
res : H0(X, iM)→ k(S)

)
.

Also, write M0
i = resS Mi = resS Mob iM , set D0

i = (1/i)M0
i and denote

RS = R(S,D•)

(by Remark 2.3.40 M0
• is subadditive and D0

• is positive convex).

Lemma 2.4.2. RS = RV is the algebra constructed in Lemma 2.3.55 starting
with V = R0. In particular, R0 ⊂ RS is an integral extension and R0 is finitely
generated if and only if RS is finitely generated.

Proof. The statement follows from Remark 2.3.42 and Lemma 2.3.55. �

Lemma 2.4.3. RS is a Shokurov algebra.

Proposition 2.4.4. The finite generation conjecture in dimension n−1 implies
existence of pl flips in dimension n.

Proof. We know from Lemma 2.3.6 that the flip exists if the restricted algebra
R0 is finitely generated. By Lemma 2.4.2, R0 is finitely generated if and only if
RS is finitely generated. Since RS is a Shokurov algebra and S → f(S) is a
weak Fano contraction, finite generation of RS follows from the finite generation
conjecture. �

Proof of Lemma 2.4.3. It is clear from the construction thatRS is a bounded
pbd-algebra; we need to show that RS is canonically a-saturated. By Lemma 2.3.37,
Mob iM is exceptionally saturated, hence Lemma 2.3.43 applies, and it states that
all M0

i are canonically saturated. This almost says that the algebra is canonically a-
saturated. To show the statement, we need to go back to the proof of Lemma 2.3.43
and make the necessary modifications. This is straightforward, apart from having
to deal with a more complicated notation.

For ease of notation, write Mi = Mob iM ; by construction, and because M is
chosen to be Cartier,

Mi Y = Mob f∗iM
on models f : Y → X.

To check asymptotic saturation, fix a pair of integers i, j and let f : Y → X be
a log resolution, Fk the f -exceptional divisors and B′

m the strict transforms of the
components of B. We assume, as we may, that Y → X is high enough that
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(1) Mi Y is free and Mi = Mi Y ,
(2) ditto for Mj .

The model Y may depend on i, j. If we write

KY = f∗(KX + S +B)− S′ −
∑

bjB
′
j +

∑
aiFi

on Y , then, by definition:

AY = −S′ −
∑

bjB
′
j +

∑
aiFi.

We want to show that RS = R(S,M0
•) is canonically a-saturated. Because asymp-

totic saturation is a property of the characteristic sequence, it is convenient at this
point to introduce the b-divisors Di = (1/i)Mi. We first check that the saturation
property relating jD0

i and jD0
j holds on the model S′ → S. For ease of notation,

let us write A0 = A(S,Diff B); the adjunction formula says that A0
S′ = A′

Y |S′ . We
are interested in comparing MobdjDi Y |S′ + A0

S′e with jDj Y |S′ . By the vanishing
theorem of Kawamata and Viehweg,

H1
(
Y, d(jDi + A)Y e

)
= (0);

therefore, the natural restriction map

H0
(
Y, d(jDi + A′)Y e

)
→ H0

(
S′, d(jD0

i + A0)S′e
)

is surjective. To prove the statement, it is enough to show that

Mobd(jDi + A′)Y e ≤ jDj Y .

(This is a kind of “exceptional asymptotic saturation” property on X.) By con-
struction, Mi Y = Mob f∗iM , hence what we want is equivalent to

Mobd(j/i) Mob(f∗iM) + A′
Y e ≤ Mob(f∗jM).

This is easy: if a divisor appears in A′
Y with positive coefficient, it is exceptional;

therefore, the claim follows from the (ordinary) exceptional saturation property of
Proposition 2.3.27.

It follows from Lemma 2.3.28 that the asymptotic saturation property for i, j
holds on all models S′′ → S′ higher than S′. This finishes the proof. �

2.4.2. Linear systems on surfaces. Let (X,B) be a 2-dimensional terminal
pair. This means that X is a nonsingular surface and B =

∑
biBi is a divisor on

X such that multxB =
∑
bi multxBi < 1 at every point x ∈ X. Let f : X → Z be

a birational weak Fano contraction to an affine surface Z, that is, −(KX + B) is
f -nef. The main result of this subsection, Theorem 2.4.6 below, states that, if M
is a saturated mobile divisor on X, then |H0(X,M)| is a free linear system on X.

The proof is a simple application of the X-method. It is important to under-
stand that the result, and its proof, only holds in dimension 2. The key point is
that a mobile divisor on a surface is nef. This is not true in higher dimensions and
a näıve generalisation of the statement does not hold. To find a useful analog in
higher dimensions is a fundamental open problem.

If M is a mobile b-divisor on a variety X, it is natural to ask under what
reasonable conditions M = MX , that is, in Shokurov’s terminology, M “descends”
to X. Our Theorem 2.4.6 is a kind of answer to this question in the case of surfaces.

I now explain the relevance of all this to the finite generation conjecture. Let
(X,B) be a 2-dimensional klt pair, f : X → Z a birational weak Fano contraction to
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an affine surface Z, and R = R(X,D•) a Shokurov algebra with characteristic sys-
tem D•. To show that R is finitely generated, we try to adapt the one-dimensional
argument. The first very serious difficulty is to find a model Y where all the as-
ymptotic saturations

MobdjDi Y + AY e ≤ jDj Y

hold independent of i, j. In the last part of this subsection we recall the (well
known) construction of the terminal model ϕ : (X ′, B′)→ (X,B); this is a terminal
pair (X ′, B′) which is crepant over (X,B), that is, KX′ + B′ = ϕ∗(KX + B).
Corollary 2.4.9 states that asymptotic saturation holds uniformly on models higher
than a log resolution Y → X ′.

Definition 2.4.5. Given a b-divisor D on X, we say that D descends to X, if
D = DX .

Surfaces are very special because mobile divisors on a surface are nef. This is
the basis of the following theorem, which is the main result of this subsection.

Theorem 2.4.6. Let (X,B) be a 2-dimensional terminal pair. (This means
that X is nonsingular, and 0 ≤ B =

∑
biBi is an effective Q-divisor on X such

that multxB < 1 at all points x ∈ X.) Let f : X → Z be a birational weak Fano
contraction to an affine variety Z, in other words, −(K + B) is nef relative to f .
If M is a mobile canonically saturated b-divisor on X, then M descends to X.

Proof. Let f : Y → X be a high enough log resolution of (X,B) such that
(1) canonical saturation holds on Y , and
(2) M = MY and, therefore, |MY | = |H0(Y,M)| is free.

Claim. The divisor E = dAY e is integral, f -exceptional, and:
(1) every f -exceptional divisor appears in E with > 0 coefficient, that is, the

support of E is all of the exceptional set,
(2) H1(Y,E) = (0).

To prove the claim, write

KY = f∗(KX +B)−B′ +
∑

aiEi

where the discrepancy
AY = −B′ +

∑
aiEi

has every exceptional ai > 0. In particular, E = dAY e satisfies conclusion 1. Note
that

−f∗(KX +B) = −KY + AY

is nef and big, hence, by the vanishing theorem of Kawamata and Viehweg,H1(Y, dAY e) =
H1(Y,E) = (0), that is, conclusion 2 also holds. This shows the claim.

We are assuming that M is saturated; this means that

E = Bs |MY + E|.
If MY ∈ |MY | is a general member, vanishing ensures that the restriction map

H0(Y,MY + E)→ H0(MY , (MY + E)|MY
)

is surjective, therefore E ∩MY = Bs |H0(MY , (MY +E)|MY
)|. But MY is an affine

curve, hence every complete linear system on MY is base point free; therefore,
E ∩MY = ∅. Because the support of E is all of the exceptional set, this says that
MY avoids the exceptional set altogether; consequently, MY = f∗MX . �
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We conclude this subsection with an application to the asymptotic saturation
property on surfaces. Before we do that, we need to recall the following result.

Theorem 2.4.7. Let (X,B) be a klt pair. Assume that the klt minimal model
program holds in dimension dimX. Then there is a pair (X ′, B′) and a projective
birational morphism ϕ : X ′ → X where:

(1) the pair (X ′, B′) has terminal singularities, and
(2) KX′ +B′ = ϕ∗(KX +B), that is (X ′, B′) is crepant over (X,B).

We say that (X ′, B′) is a terminal model of (X,B).

Remark 2.4.8. In the case of surfaces, the terminal model is unique.

Proof. This is a standard result going back to Kawamata [Kaw92]; I give a
sketch of the proof. Let f : Y → X be a log resolution; write

KY +B+ −B− = f∗(KX +B)

where B+, B− are effective and B− is exceptional. By blowing up further, I can
assume that B+ contains all the divisors with negative discrepancy for the pair
(X,B). The sought-for pair (X ′, B′) is the end product of the minimal model
program for KY + B+ over X. The assertion is a consequence of the following
remarks:

(1) KY + B+ ∼f B−, therefore no divisorial component of B+ is contracted
by the minimal model program.

(2) The program terminates at ϕ : (X ′, B′)→ (X,B) where

KX′ +B′ = ϕ∗(KX +B) + (effective & exceptional)

is nef. By the negativity of contractions, KX′ +B′ = ϕ∗(KX +B).
(3) We have just seen that (X ′, B′) is crepant over (X,B). The pair (X ′, B′)

has terminal singularities, because, by 1, X ′ contains all the divisors with
nonpositive discrepancy for the pair (X,B).

�

Corollary 2.4.9. Let (X,B) be a klt surface, Z and an affine surface, f : X →
Z a birational weak Fano contraction and R = R(X,M•) a Shokurov algebra with
mobile system M•. If ϕ : (X ′, B′) → (X,B) is the terminal model, then all Mi

descend to X ′. If G =
∑
Gj is a divisor on X ′ containing the support of all the

MiX′ , and X ′′ → X ′ is a log resolution of (X ′, B′+G), then canonical a-saturation
holds uniformly on models f : Y → X ′′ higher than X ′′, that is, on all such models:

MobdjDi Y + AY e ≤ jDj Y .

Proof. The main assertion follows from Lemma 2.3.28. �

2.4.3. The finite generation conjecture on surfaces. In this subsection
we prove the finite generation conjecture on surfaces. As we know, this implies
existence of 3-fold flips.

Theorem 2.4.10. Let (X,B) be a klt pair, where X is a surface and f : X → Z
is a birational weak Fano contraction to an affine variety Z. Recall what this means:
f∗OX = OZ and −(K +B) is nef and big over Z. All Shokurov algebras on X are
finitely generated.
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The rest of this subsection is devoted to the proof of the theorem. Most of the
proof works in all dimensions; below I make a note of the two places where I use
the fact that X is a surface.

Set up and notation for the proof. I fix some objects and notation for use in
the proof.

Let R = R(X,D•) be a Shokurov algebra on X with characteristic system D•
and mobile system M•, Mi = iDi. Let f : (X ′, B′) → (X,B) be the terminal
model of (X,B) as in Theorem 2.4.7. Because −(K ′+B′) = −f∗(K+B), X ′ → Z
is still a weak Fano contraction. It is clear that R = R(X ′,D•) is also a Shokurov
algebra on X ′. Hence, by passing to the terminal model, we may assume that
(X,B) is a terminal pair.

As part of the requirements of a Shokurov algebra, R is bounded; in particular,
there is a divisor G =

∑
Gj on X such that SuppDiX ⊂ G for all i and the system

has a limit
D = lim

i→∞
Di ∈ DivX ⊗ R

as a b-divisor with (possibly) real coefficients, and SuppDX ⊂ G.
Our aim is to show that D is a b-divisor with rational coefficients and, finally,

that D = Dm for some (large) m and hence for all m large and divisible.
DX is semiample. For the argument below to work, it is crucial to show that

DX is a semiample divisor. This is the first place where we use that X is a surface.
It is likely that, with some work, this step can be generalised to higher dimensions.

Lemma 2.4.11. The divisor DX is semiample.

Proof. The Mi are mobile; therefore, because X is a surface, they are nef.
Hence, DX = limDiX is also nef. The Mori cone of X is finite rational polyhedral,
because f : X → Z is a weak Fano contraction. The dual cone of nef divisors is
generated by the semiample divisors supporting the contractions of its extremal
faces; hence, all nef divisors on X are semiample. �

Diophantine approximation. We work with the integral lattice N1
Z = ⊕Z[Gj ] ⊂

DivX and the vector spaces N1
Q = N1⊗Q, N1

R = N1⊗R. The reader must realise
that these are spaces of divisors, not divisors up to linear equivalence. Because DX

is semiample, we can choose effective base point free divisors Pk ∈ N1
Z such that

DX is in the cone
P =

∑
R+[Pk] ⊂

∑
R+[Gj ] ⊂ N1

R

generated by the Pk. We state an elementary lemma in the style of Diophantine
approximation.

Lemma 2.4.12. If DX is not rational, then, for all ε > 0, there exist a positive
integer m and a divisor M ∈ N1

Z, such that:
(1) The linear system |M | is free.
(2) ‖mDX −M‖ < ε, where the norm is the sup norm with respect to the

basis {Gj} of N1.
(3) The divisor mDX −M is not effective.

Proof. We work abstractly in the integral lattice LZ generated by the {Pk}
and the vector spaces LQ, LR. By means of the basis {Pk}, we identify these spaces
with Zl, Ql, Rl. Write DX as a row vector:

DX = d = (d1, ..., dl) ∈ LR, all di > 0
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where the di are not all rational. Let A ⊂ LR/LZ be the cyclic subsemigroup
generated by d; our assumption means exactly that A is an infinite semigroup,
hence its closure A is a Lie subgroup of dimension > 0. Note that A is a group
even though A is only a semigroup. Denote by A0 the connected component of
the identity of A. The inverse image V ⊂ LR of A0 under the quotient map
LR → LR/LZ is a vector subspace of strictly positive dimension not contained in
the orthant C = LR ∩

∑
R+[Gj ] of effective divisors (indeed, the orthant contains

no straight lines). This means that, for all ε > 0, we can find a positive integer
multiple md of d, and an integer vector m = (m1, ...,ml) ∈ LZ, such that

(1) ‖md−m‖ < ε, and
(2) md−m 6∈ C.

Now set M = (m1, ...,ml); if ε > 0 is sufficiently small, then all the mi > 0, hence
M ∈ P is free. �

Nonvanishing. Choose a (small) rational number γ > 0 such that the pair
(X,B + γG) has klt singularities. If A = A(X,B) is the discrepancy of the pair
(X,B), this means that multS(A− γG) > −1 for all prime divisors S with centre
on X, or, equivalently, that dA− γGe ≥ 0.

Nonvanishing lemma 2.4.13. Assume that DX is nonrational, and let M be
as in Lemma 2.4.12. If ε < γ, then on every model f : Y → X of X

MobdmDY + AY e ≥ (M)Y = f∗M.

Proof. By Corollary 2.4.9, Di = DiX for all i, hence also D = DX descends
to X. Recall that the proof of Corollary 2.4.9 uses uniform a-saturation and hence
needs dimX = 2 in an essential way. Because D descends to X, DY = f∗DX

and, denoting F = mDX −M , I may write

mDY + AY = f∗(mDX) + AY = f∗M + f∗F + AY > f∗M − εf∗G+ AY ,

where I used f∗F > −εf∗G, which follows from ‖F‖ < ε (Lemma 2.4.12). Round-
ing up and taking mobile parts we obtain

MobdmDY + AY e ≥ Mob
(
f∗M + dAY − γf∗Ge

)
≥ Mob f∗M = f∗M.

�

D is rational. We show that D is a rational b-divisor. The main ingredient of
the proof is the uniform a-saturation of the system D•. This needs dimX = 2 in
an essential way.

Lemma 2.4.14. The b-divisor DX is rational.

Proof. Recall that we are assuming, as we may, that (X,B) is a terminal
pair. Corollary 2.4.9 states that all Di, and therefore also D, descend to X. In
particular, to show that D is rational, it is sufficient to show that DX is rational.
Assume, by contradiction, that DX is not rational. Let Y → X be a log resolution.
Corollary 2.4.9 also states that a-saturation holds uniformly on Y ; in particular

MobdmDY + AY e ≤ mDY .

The nonvanishing lemma states that

(M)Y = f∗M ≤ MobdmDY + AY e.
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Combining this with saturation we get that

(M)Y ≤ mDY

andmDX−M is effective, which contradicts the property ofM stated in Lemma 2.4.12.
�

D• is eventually constant.

Lemma 2.4.15. The characteristic system is eventually constant, that is, D =
Dm for some m.

Finite generation follows immediately from the limiting criterion (Lemma 2.3.53).

Corollary 2.4.16. The finite generation conjecture holds in dimension 2. �

Proof of Lemma 2.4.15. Let m > 0 be an integer such that mDX is in-
tegral, then apply the proof of the nonvanishing lemma with M = mDX , and
0 = F = mDX −M . As before we obtain

(M)Y = f∗M ≤ MobdmDY + AY e.
Use now saturation in the form

MobdmDY + AY e ≤ mDmY .

The argument no longer leads to a contradiction; instead, it shows that Dm = D
and mD = M . �
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CHAPTER 3

What is log terminal?

Osamu Fujino

3.1. What is log terminal?

This chapter is a guide to the world of log terminal singularities. The main
purpose is to attract the reader’s attention to the subtleties of the various kinds
of log terminal singularities. Needless to say, my opinion is not necessarily the
best. We hope that this chapter will help the reader understand the definition
of log terminal. Almost all the results in this chapter are known to experts, and
perhaps only to them. Note that this chapter is not self-contained. For a systematic
treatments of singularities in the log MMP, see, for example, [KM98, Section 2.3].
We assume that the reader is familiar with the basic properties of singularities of
pairs.

In the log MMP, there are too many variants of log terminal. This sometimes
causes trouble when we treat log terminal singularities. We have at least four
standard references on the log MMP: [KMM87, FA92, KM98, Mat02]. It is
unpleasant that each of these standard references adopted different definitions of
log terminal and even of log resolutions. Historically, Shokurov introduced various
kinds of log terminal singularities in his famous paper [Sho92, §1]. However, we
do not mention [Sho92] for simplicity. We only treat the above four standard
references. Before we come to the subject, we note:

Remark 3.1.1. In [Mat02, Chapter 4], Matsuki explains various kinds of sin-
gularities in details. Unfortunately he made the mistake of applying Theorem 3.5.1
to normal crossing divisors, whilst it is only valid with simple normal crossing divi-
sors. Accordingly, when we read [Mat02] we have to replace normal crossings with
simple normal crossings in the definition of dlt and so forth. See Definitions 3.2.10,
3.7.1, Remarks 3.7.6, 3.10.7, and (2′′) of [Mat02, Definition 4-3-2].

We summarize the contents of this chapter: Sections 3.2 and 3.3 contain some
preliminaries. We recall well-known definitions and fix some notation. In Sec-
tion 3.4, we define the notion of divisorially log terminal singularities, which is one
of the most important notions of log terminal singularities. In Section 3.5, we treat
Szabó’s resolution lemma, which is very important in the log MMP. Section 3.6 was
suggested by Mori. Here, we show by example that Szabó’s resolution lemma is not
true for normal crossing divisors by using the Whitney umbrella. Section 3.7 deals
with log resolutions. Here, we explain subtleties of various kinds of log terminal
singularities. In Section 3.8, we collect examples to help the reader understand
singularities of pairs. In Section 3.9, we describe the adjunction formula for dlt
pairs, which plays an important role in the log MMP. Finally, Section 3.10 collects
some miscellaneous comments.

41
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Notation 3.1.2. The set of integers (resp. rational numbers, real numbers) is
denoted by Z (resp. Q, R). We will work over an algebraically closed field k of
characteristic zero; my favorite is k = C.

3.2. Preliminaries on Q-divisors

Before we introduce singularities of pairs, let us recall the basic definitions
about Q-divisors.

Definition 3.2.1 (Q-Cartier divisor). Let D =
∑
diDi be a Q-divisor on a

normal variety X, that is, di ∈ Q and Di is a prime divisor on X for every i. Then
D is Q-Cartier if there exists a positive integer m such that mD is a Cartier divisor.

Definition 3.2.2 (Boundary and subboundary). Let D =
∑
diDi be a Q-

divisor on a normal variety X, where di ∈ Q and Di are distinct prime Weil
divisors. If 0 ≤ di ≤ 1 (resp. di ≤ 1) for every i, then we call D a boundary
(resp. subboundary) .

Q-factoriality often plays a crucial role in the log MMP.

Definition 3.2.3 (Q-factoriality). A normal variety X is said to be Q-factorial
if every prime divisor D on X is Q-Cartier.

We give one example to understand Q-factoriality.

Example 3.2.4 (cf. [Kaw88, p.140]). We consider

X := {(x, y, z, w) ∈ C4 | xy + zw + z3 + w3 = 0}.

Claim 3.2.5. The variety X is Q-factorial. More precisely, X is factorial, that
is,

R = C[x, y, z, w]/(xy + zw + z3 + w3)
is a UFD.

Proof. By Nagata’s lemma (see [Mum99, p.196]), it is sufficient to check
that x ·R is a prime ideal of R and R[1/x] is a UFD. This is an easy exercise. �

Note that Q-factoriality is not a local condition in the analytic topology.

Claim 3.2.6. Let Xan be the underlying analytic space of X. Then Xan is not
analytically Q-factorial at (0, 0, 0, 0).

Proof. We consider a germ of Xan around the origin. Then Xan is local
analytically isomorphic to (xy−uv = 0) ⊂ C4. So, Xan is not Q-factorial since the
two divisors (x = u = 0) and (y = v = 0) intersect at a single point. Note that two
Q-Cartier divisors must intersect each other in codimension one. �

We recall an important property of Q-factorial varieties, which is much more
useful than one might first expect. For the proof, see [Kol96].

Proposition 3.2.7 (cf. [Kol96, VI.1, 1.5 Theorem]). Let f : X → Y be a
birational morphism between normal varieties. Assume that Y is Q-factorial. Then
the exceptional locus Exc(f) is of pure codimension one in X.

We give the next definition for the reader’s convenience. We only use the round
down of Q-divisors in this chapter.
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Definition 3.2.8 (Operations on Q-divisors). Let D =
∑
diDi be a Q-divisor

on a normal variety X, where di are rational numbers and Di are distinct prime
Weil divisors. We define

bDc =
∑
bdicDi, the round down of D,

dDe =
∑
ddieDi = −b−Dc, the round up of D,

{D} =
∑
{di}Di = D − bDc, the fractional part of D,

where for r ∈ R, we define brc = max{t ∈ Z | t ≤ r}.

Remark 3.2.9. In the literature, for example [KMM87], sometimes [D] (resp. 〈D〉)
denotes bDc (resp. {D}). The round down bDc is sometimes called the integral part
of D.

We define (simple) normal crossing divisors, which will play an important role
in the following sections.

Definition 3.2.10 (Normal crossing and simple normal crossing). Let X be a
smooth variety. A reduced effective divisor D is said to be a simple normal crossing
divisor (resp. normal crossing divisor) if for each closed point p of X, a local
defining equation of D at p can be written as f = z1 · · · zjp in OX,p (resp. ÔX,p),
where {z1, · · · , zjp} is a part of a regular system of parameters.

Remark 3.2.11. The notion of normal crossing divisor is local for the étale
topology (cf. [Art69, Section 2]). When k = C, it is also local for the analytic
topology. On the other hand, the notion of simple normal crossing divisor is not
local for the étale topology.

Remark 3.2.12. Let D be a normal crossing divisor. Then D is a simple
normal crossing divisor if and only if each irreducible component of D is smooth.

Remark 3.2.13. Some authorities use the word normal crossing to represent
simple normal crossing. For example, a normal crossing divisor in [BEVU05] is
a simple normal crossing divisor in our sense, see [BEVU05, Definition 2.1]. We
recommend that the reader check the definition of (simple) normal crossing divisors
whenever he reads a paper on the log MMP.

3.3. Singularities of pairs

In this section, we quickly review the definitions of singularities which we use
in the log MMP. For details, see, for example, [KM98, §2.3]. First, we define the
canonical divisor.

Definition 3.3.1 (Canonical divisor). LetX be a normal variety with dimX =
n. The canonical divisor KX is any Weil divisor whose restriction to the smooth
part of X is a divisor of a regular n-form. The reflexive sheaf of rank one ωX =
OX(KX) corresponding to KX is called the canonical sheaf.

Next, let us recall the various definitions of singularities of pairs.

Definition 3.3.2 (Discrepancies and singularities of pairs). Let X be a normal
variety and D =

∑
diDi a Q-divisor on X, where Di are distinct and irreducible
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such that KX +D is Q-Cartier. Let f : Y → X be a proper birational morphism
from a normal variety Y . Then we can write

KY = f∗(KX +D) +
∑

a(E,D)E,

where the sum runs over all the distinct prime divisors E ⊂ Y , and a(E,D) ∈ Q;
a(E,D) is called the discrepancy of E with respect to (X,D). We define

discrep(X,D) := inf
E
{a(E,D) |E is exceptional over X}.

From now on, we assume that D is a boundary. We say that (X,D) is

terminal
canonical
klt
plt
lc

if discrep(X,D)



> 0,
≥ 0,
> −1 and bDc = 0,
> −1,
≥ −1.

Here klt is an abbreviation for Kawamata log terminal, plt for purely log terminal,
and lc for log-canonical.

Remark 3.3.3. In [KM98, Definition 2.34], D is not a boundary but only a
subboundary. In some of the literature and elsewhere in this book, (X,D) is called
sub lc (resp. sub plt, sub klt) if discrep(X,D) ≥ −1 (resp. > −1, etc.) and D is
only a subboundary.

Remark 3.3.4 (Log discrepancies). We put a`(E,X,D) = 1+a(E,D) and call
it the log discrepancy. We define

logdiscrep(X,D) = 1 + discrep(X,D).

In some formulas, log discrepancies behave much better than discrepancies. How-
ever, we do not use log discrepancies in this chapter or elsewhere in this book.

3.4. Divisorially log terminal

Let X be a smooth variety and D a reduced simple normal crossing divisor on
X. Then (X,D) is lc. Furthermore, it is not difficult to see that (X,D) is plt if
and only if every connected component of D is irreducible. We would like to define
some kind of log terminal singularities that contain the above pair (X,D). So, we
need a new notion of log terminal.

Definition 3.4.1 (Divisorially log terminal). Let (X,D) be a pair where X is
a normal variety and D is a boundary. Assume that KX +D is Q-Cartier. We say
that (X,D) is dlt or divisorially log terminal if and only if there is a closed subset
Z ⊂ X such that

(1) X r Z is smooth and D|XrZ is a simple normal crossing divisor.
(2) If f : Y → X is birational and E ⊂ Y is an irreducible divisor with centre

cXE ∈ Z, then a(E,D) > −1.

So, the following example is obvious.

Example 3.4.2. If X is a smooth variety and D is a reduced simple normal
crossing divisor on X, then the pair (X,D) is dlt.
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The above definition of dlt is [KM98, Definition 2.37], which is useful for many
applications. However, it has a quite different flavor from the other definitions of
log terminal singularities. We will explain the relationship between the definition of
dlt and the other definitions of log terminal singularities in the following sections.

3.5. Resolution lemma

In my opinion, the most useful notion of log terminal singularities is divisorially
log terminal (dlt, for short), which was introduced by Shokurov, see [FA92, 2.13.3].
We defined it in Definition 3.4.1 above. By Szabó’s work [Sza94], the notion of
dlt coincides with that of weakly Kawamata log terminal (wklt, for short). For
the definition of wklt, see [FA92, 2.13.4]. This fact is non-trivial and based on
deep results about the desingularization theorem. For the details, see the original
fundamental paper [Sza94]. The key result is Szabó’s resolution lemma [Sza94,
Resolution Lemma]. The following is a weak version of the resolution lemma, but
it contains the essential part of Szabó’s result and is sufficient for applications. For
the precise statement, see [Sza94, Resolution Lemma] or [BEVU05, Section 7].
By combining Theorem 3.5.1 with the usual desingularization arguments, we can
recover the original resolution lemma without any difficulties. Explicitly, first we use
Hironaka’s desingularization theorem suitably, next we apply Theorem 3.5.1 below,
and then we can recover Szabó’s results. The details are left to the reader as an
easy exercise, see the proof of the resolution lemma in [Sza94]. Note Example 3.5.4
below.

Theorem 3.5.1. Let X be a smooth variety and D a reduced divisor. Then
there exists a proper birational morphism f : Y → X with the following properties:

(1) f is a composition of blow ups of smooth subvarieties,
(2) Y is smooth,
(3) f−1

∗ D ∪ Exc(f) is a simple normal crossing divisor, where f−1
∗ D is the

strict transform of D on Y , and
(4) f is an isomorphism over U , where U is the largest open set of X such

that the restriction D|U is a simple normal crossing divisor on U .
Note that f is projective and the exceptional locus Exc(f) is of pure codimension
one in Y since f is a composition of blowing ups.

Remark 3.5.2. Recently, this was reproved by the new canonical desingular-
ization algorithm. See [BEVU05, Theorem 7.11]. Note that in [BEVU05] normal
crossing means simple normal crossing in our sense. See Remark 3.2.13 and Re-
mark 3.7.4 below.

Remark 3.5.3. Szabó’s results depend on Hironaka’s paper [Hir64], which is
very hard to read. We recommend that the reader consult [BEVU05] for proofs.
Now there are many papers on resoluton of singularities; I do not know which is
the best.

The following example shows that Szabó’s resolution lemma, and Theorem 3.5.1,
are not true if we replace simple normal crossing with normal crossing. We will
treat this example in detail in the next section.

Example 3.5.4. Let X := C3 and D the Whitney umbrella, that is, W =
(x2 − zy2 = 0). Then W is a normal crossing divisor outside the origin. In this
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case, we can not make W a normal crossing divisor only by blowing ups of smooth
subvarieties over the origin.

Sketch of the proof. This is an exercise of how to calculate blow ups of
smooth centres. If we blow up W finitely many times along smooth subvarieties
over the origin, then we will find that the strict transform of W always has a
pinch point, where a pinch point means a singular point that is local analytically
isomorphic to 0 ∈ (x2 − zy2 = 0) ⊂ C3. �

Theorem 3.5.1 and Hironaka’s desingularization imply the following corollary.
It is useful for proving relative vanishing theorems and so on; see also Remark 3.6.11
below.

Corollary 3.5.5. Let X be a non-complete smooth variety and D a simple
normal crossing divisor on X. Then, there exists a compactification X of X and a
simple normal crossing divisor D on X such that D|X = D. Furthermore, if X is
quasi-projective, then we can make X projective.

3.6. Whitney umbrella

We will work over k = C throughout this Section. First, we define normal
crossing varieties.

Definition 3.6.1 (Normal crossing variety). Let X be a variety. We say that
X is normal crossing at x if and only if

ÔX,x ' C[[x1, x2, · · · , xl]]/(x1x2 · · ·xk)
for some k ≤ l. If X is normal crossing at every point, we call X a normal crossing
variety.

Remark 3.6.2. It is obvious that a normal crossing divisor (see Definition 3.2.10)
is a normal crossing variety. By [Art69, Corollary 2.6], X is normal crossing at x
if and only if x ∈ X is locally isomorphic to 0 ∈ (x1x2 · · ·xk = 0) ⊂ Cl for the étale
(or classical) topology. So, let U be a small open neighborhood (in the classical
topology) of X around x and U ′ the normalization of U . Then each irreducible
component V of U ′ is smooth and V → U is an embedding.

Next, we introduce the notion of WU singularities.

Definition 3.6.3 (WU singularity). Let X be a variety and x a closed point
of X, and p : X ′ → X the normalization. If there exist a smooth irreducible curve
C ′ ⊂ X ′ and a point

x′ ∈ C ′ ×X C ′ r ∆C′ ∩∆C′ ∩ p−1(x),

where ∆C′ is the diagonal of C ′ ×X C ′, then we say that X has a WU singularity
at x, where WU is an abbreviation of Whitney Umbrella.

Example 3.6.4. Let W = (x2 − zy2 = 0) ⊂ C3 be the Whitney umbrella.
Then the normalization of W is C2 = Spec C[u, v] such that the normalization
map C2 → W is given by (u, v) 7−→ (uv, u, v2). Therefore, the line (u = 0) ⊂ C2

maps onto (x = y = 0) ⊂ W ; thus, the origin is a WU singularity. Note that W is
normal crossing outside the origin.

We give one more example.



3.6. WHITNEY UMBRELLA 47

Example 3.6.5. Let V = (z3 − x2yz − x4 = 0) ⊂ C3. Then V is singular
along the y-axis. By blowing up C3 along the y-axis, we obtain the normalization
p : V ′ → V . Note that V ′ is smooth and that there is a distinguished irreducible
smooth curve C ′ on V ′ which double covers the y-axis. It can be checked easily
that the origin (0, 0, 0) is a WU singularity of V .

Remark 3.6.6. Let x ∈ X be a WU singularity. We shrink X around x (in the
classical topology). Then there exists an isomorphism σ : C ′ → C ′ of finite order
such that σ 6= idC′ , σ(x′) = x′, and p = p ◦ σ on C ′. When X is the Whitney
umbrella, σ corresponds to the graph C ′ ×X C ′ r ∆C′ and the order of σ is two.

Lemma 3.6.7. Let x ∈ X be a WU singularity. Then X is not normal crossing
at x.

Proof. Assume that X is normal crossing at x. Let X ′
1 be the irreducible

component of X ′ containing C ′. Since X ′
1 → X is injective in a neighborhood of

x′, C ′ ×X C ′ = ∆C′ near x′. This is a contradiction. �

The following theorem is the main theorem of this section.

Theorem 3.6.8. Let x ∈ X be a WU singularity and f : Y → X be a proper
birational morphism such that f : f−1(X r {x}) → X r {x} is an isomorphism.
Then Y has a WU singularity.

Proof. Let C ′, x′ be as in Definition 3.6.3, σ as in Remark 3.6.6. Let q : Y ′ →
Y be the normalization. Then there exists a proper birational morphism f ′ : Y ′ →
X ′. By assumption, Y → X is an isomorphism over p(C ′) r {x}. Thus Y ′ → X ′ is
an isomorphism over C ′ r p−1(x). The embedding C ′ ⊂ X ′ induces an embedding
C ′ ⊂ Y ′, and p = p ◦ σ implies q = q ◦ σ. Therefore, Definition 3.6.3 implies that
q(x′) ∈ Y is a WU singularity. �

Proposition 3.6.9. Let x ∈ X be a WU singularity and Z a normal cross-
ing variety. Then there are no proper birational morphisms g : X → Z such that
p(C ′) 6⊂ Exc(g), where p, C ′ are as in Definition 3.6.3.

Proof. Assume that there exists a proper birational morphism as above. We
put C := g(p(C ′)). Then the mapping degree of C ′ → C is greater than one by
the definition of WU singularities. On the other hand, C ′ → C factors through
the normalization Z ′ of Z. Thus, the mapping degree of C ′ → C is one. This is a
contradiction. �

The next corollary follows from Theorem 3.6.8 and Proposition 3.6.9.

Corollary 3.6.10. There are no proper birational maps (that is, birational
maps such that the first and the second projections from the graph are proper)
between the Whitney umbrella W and a normal crossing variety V that induce
W r {0} ' V r E, where E is a closed subset of V .

Therefore, we obtain

Remark 3.6.11. Corollary 3.5.5 does not hold for normal crossing divisors.
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3.7. What is a log resolution?

We often use the words good resolution or log resolution without defining them
precisely. This sometimes causes some serious problems. We will give our definition
of log resolution later, see Definition 3.7.3. Let us recall another definition of dlt,
which is equivalent to Definition 3.4.1. We do not prove the equivalence of Defini-
tion 3.4.1 and Definition 3.7.1 in this chapter. Note that it is an easy consequence
of Theorem 3.5.1. For the details, see [Sza94, Divisorially Log Terminal Theorem].

Definition 3.7.1 (Divisorially log terminal). Let X be a normal variety and
D a boundary on X such that KX +D is Q-Cartier. If there exists a log resolution
f : Y → X such that a(E,D) > −1 for every f -exceptional divisor E. Then we say
that (X,D) is dlt or divisorially log terminal.

3.7.2. There are three questions about the above definition.
• Is f projective?
• Is the exceptional locus Exc(f) of pure codimension one?
• Is Exc(f)∪Supp(f−1

∗ D) a simple normal crossing divisor or only a normal
crossing divisor?

In [KM98, Notation 0.4 (10)], they require that Exc(f) is of pure codimension
one and Exc(f)∪Supp(f−1

∗ D) is a simple normal crossing divisor. We note that, in
[FA92, 2.9 Definition], Exc(f) is not necessarily of pure codimenison one. So, the
definition of lt in [FA92, 2.13.1] is the same as Definition 3.7.1 above, but lt in the
sense of [FA92] is different from dlt. See Remark 3.7.5 and Examples 3.8.3 and 3.9.3
below. The difference lies in the definition of log resolution! Our definition of log
resolution is the same as [KM98, Notation 0.4 (10)]. By Hironaka, log resolutions
exist for varieties over a field of characteristic zero, see [BEVU05].

Definition 3.7.3 (Log resolution). Let X be a variety and D a Q-divisor on
X. A log resolution of (X,D) is a proper birational morphism f : Y → X such
that Y is smooth, Exc(f) is a divisor and Exc(f)∪Supp(f−1

∗ D) is a simple normal
crossing divisor.

Remark 3.7.4. In the definition of log resolution in [BEVU05, Definition 7.10],
they do not require that the exceptional locus Exc(µ) is of pure codimension one.
However, if µ is a composition of blowing ups, then Exc(µ) is always of pure codi-
mension one.

Remark 3.7.5 (lt in the sense of [FA92]). If we do not assume that Exc(f) is
a divisor in Definition 3.7.3, then Definition 3.7.1 is the definition of lt in the sense
of [FA92], see [FA92, 2.13.1].

Remark 3.7.6 (Local in the analytic topology?). We assume that k = C. Then
the notion of terminal, canonical, klt, plt, and lc, is not only local in the Zariski
topology, but also local in the analytic topology; for the precise statement, see
[Mat02, Proposition 4-4-4]. However, the notion of dlt is not local in the analytic
topology. This is because the notion of simple normal crossing divisors is not local
in the analytic topology. So, [Mat02, Exercise 4-4-5] is incorrect. To obtain an
analytically local notion of log terminal singularities, we must remove the word
“simple” from Definition 3.4.1 (2). However, this new notion of log terminal sin-
gularities seems to be useless. Consider the pair (C3,W ), where W is the Whitney
umbrella, see Section 3.5 and 3.6.
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We note that, by Szabó’s resolution lemma, we do not need the projectivity of
f in the definition of dlt. It is because the log resolution f in Definition 3.7.1 can
be taken to be a composition of blowing ups by Hironaka’s desingularization and
theorem 3.5.1; see also Definition 3.4.1, [KM98, Proposition 2.40 and Theorem
2.44], and [Sza94, Divisorially Log Terminal Theorem]. We summarize:

Proposition 3.7.7. The log resolution f in Definition 3.7.1 can be taken to
be a composition of blow ups of smooth centres. In particular, it may always be
assumed that there exists an effective f-anti-ample divisor whose support coincides
with Exc(f); thus, the notion of dlt coincides with that of wklt, see [FA92, 2.13.4].

So, we can omit the notion of wklt in the log MMP. In [KMM87], they adopted
normal crossing divisors instead of simple normal crossing divisors. So there is a
difference between wklt and weak log-terminal. We note that any wklt singularity is
a weak log-terminal singularity in the sense of [KMM87, Definition 0-2-10 (2)], but
the converse does not always hold. See Section 3.8, especially, Example 3.8.1. In my
experience, dlt, which is equivalent to wklt, is easy to treat and useful for inductive
arguments, but weak log-terminal is very difficult to use. We think that [KM98,
Corollary 5.50] makes dlt useful. For the usefulness of dlt, see [Fuj00a, Fuj00b,
Fuj01] and Chapter 4. See also Example 3.8.1, Remark 3.8.2, and Section 3.9. We
summarize:

Conclusion 3.7.8. The notion of dlt coincides with that of wklt by [Sza94],
see Proposition 3.7.7. In particular, a dlt singularity is automatically a weak log-
terminal singularity in the sense of [KMM87]. Therefore, we can freely apply the
results that were proved for weak log-terminal pairs in [KMM87] to dlt pairs. We
note

klt =⇒ plt =⇒ dlt⇐⇒ wklt =⇒ weak log-terminal =⇒ lc.

For other characterizations of dlt, see [Sza94, Divisorially Log Terminal The-
orem], which is an exercise on Theorem 3.5.1. See also [KM98, Proposition 2.40,
and Theorem 2.44]. The following proposition highlights a useful property of dlt
singularities.

Proposition 3.7.9. [KM98, Proposition 5.51] Let (X,D) be a dlt pair. Then
every connected component of bDc is irreducible (resp. bDc = 0) if and only if
(X,D) is plt (resp. klt).

Thus, dlt is a natural generalization of plt.

Conclusion 3.7.10. Lt in the sense of [FA92] seems to be useless. Exam-
ples 3.8.4 and 3.9.3 imply that the existence of a small resolution causes many
unexpected phenomena. We note that if the varieties are Q-factorial, then there
are no small resolutions by Proposition 3.2.7. Therefore, Q-factorial lt in the sense
of [FA92] is equivalent to Q-factorial dlt.

3.8. Examples

In this section, we collect some examples. The following example says that weak
log-terminal is not necessarily wklt. We omit the definition of weak log-terminal
since we do not use it in this chapter, see [KMM87, Definition 0-2-10].
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Example 3.8.1 (Simple normal crossing vs. normal crossing). Let X be a
smooth surface and D a nodal curve on X. Then the pair (X,D) is not wklt but
it is weak log-terminal.

The next fact is crucial for inductive arguments.

Remark 3.8.2. Let (X,D) be a dlt (resp. weak log-terminal) pair and S an
irreducible component of bDc. Then (S,Diff(D − S)) is dlt (resp. not necessarily
weak log-terminal), where the Q-divisor Diff(D−S) on S is defined by the following
equation:

(KX +D)|S = KS + Diff(D − S).

This is a so-called adjunction formula.

We will treat the adjunction formula for dlt pairs in detail in Section 3.9. In
Example 3.8.1, S = bDc i not normal. This makes weak log-terminal difficult to
use for inductive arguments. The next example explains that we have to assume
that Exc(f) is a divisor in Definition 3.7.1.

Example 3.8.3 (Small resolution). Let X := (xy − uv = 0) ⊂ C4. It is
well-known that X is a toric variety. We take the torus invariant divisor D, the
complement of the big torus. Then (X,D) is not dlt but it is lt in the sense
of [FA92]; in particular, it is lc. Note that there is a small resolution.

The following is a variant of the above example.

Example 3.8.4. [FA92, 17.5.2 Example] Let X = (xy − uv = 0) ⊂ C4 and

D = (x = u = 0) + (y = v = 0) +
1
2

4∑
i=1

(x+ 2iu = y + 2−iv = 0).

If we put

F =
2∑
i=1

(x+ 2iu = 0) +
4∑
i=3

(y + 2−iv = 0),

then 2D = F ∩ X. Thus, 2(KX + D) is Cartier since X is Gorenstein. We can
check that (X,D) is lt in the sense of [FA92] by blowing up C4 along the ideal
(x, u). In particular, (X,D) is lc. The divisor bDc is two planes intersecting at a
single point. Thus it is not S2. So, (X,D) is not dlt. See Remark 3.8.5 below.

Remark 3.8.5. If (X,D) is dlt, then bDc is seminormal and S2 by [FA92, 17.5
Corollary].

Remark 3.8.6. Example 3.8.4 says that [FA92, 16.9.1] is wrong. The problem
is that S does not necessarily satisfy Serre’s condition S2.

3.9. Adjunction for dlt pairs

To treat pairs effectively, we have to understand adjunction. Adjunction is
explained nicely in [FA92, Chapter 16]. We recommend it to the reader. In this
section, we treat the adjunction formula only for dlt pairs. Let us recall the defini-
tion log canonical centre, or LC centre.
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Definition 3.9.1 (Log canonical centre). Let (X,D) be a log canonical pair.
A subvariety W of X is said to be a log canonical centre, or LC centre, for the
pair (X,D), if there exists a proper birational morphism from a normal variety
µ : Y → X and a prime divisor E on Y with discrepancy a(E,D) ≤ −1 such that
µ(E) = W .

The next proposition is adjunction for a higher codimensional centre of log
canonical singularities of a dlt pair. We use it in Chapter 4. For the definition of
the different Diff, see [FA92, 16.6 Proposition].

Proposition 3.9.2 (Adjunction for dlt pairs). Let (X,D) be a dlt pair. We
put S = bDc and let S =

∑
i∈I Si be the irreducible decomposition of S. Then,

W is a LC centre for the pair (X,D) with codimXW = k if and only if W is
an irreducible component of Si1 ∩ Si2 ∩ · · · ∩ Sik for some {i1, i2, · · · , ik} ⊂ I. By
adjunction, we obtain

KSi1
+ Diff(D − Si1) = (KX +D)|Si1

,

and (Si1 ,Diff(D − Si1)) is dlt. Note that Si1 is normal, W is a LC centre for the
pair (Si1 ,Diff(D−Si1)), Sij |Si1

is a reduced part of Diff(D−Si1) for 2 ≤ j ≤ k, and
W is an irreducible component of (Si2 |Si1

)∩ (Si3 |Si1
)∩ · · · ∩ (Sik |Si1

). By applying
adjunction k times, we obtain a Q-divisor ∆ on W such that

(KX +D)|W = KW + ∆

and (W,∆) is dlt.

Sketch of proof. Note that Si1 is normal by [KM98, Corollary 5.52], and
[FA92, Theorem 17.2] and Definition 3.4.1 imply that (Si1 ,Diff(D − Si1)) is dlt.
The other statements are obvious. �

The above proposition is one more reason why dlt is more valuable than other
flavours of log terminal singularities.

Example 3.9.3. Let (X,D) be as in Example 3.8.4. Recall that (X,D) is lt
in the sense of [FA92] but not dlt. It is not difficult to see that the LC centres for
the pair (X,D) are as follows: the origin (0, 0, 0, 0) ∈ X and the two Weil divisors
(x = u = 0) and (y = v = 0) on X; therefore, there are no one dimensional LC
centres.

The final proposition easily follows from the above Proposition 3.9.2; it will
play a crucial role in the proof of the special termination, see Chapter 4.

Proposition 3.9.4. Let (X,D) be as in Proposition 3.9.2. We write D =∑
djDj, where dj ∈ Q and Dj is a prime divisor on X. Let P be a divisor on

W . Then the coefficient of P is 0, 1, or 1− 1
m +

∑ rjdj

m for suitable non-negative
integers rjs and positive integer m. Note that the coefficient of P is 1 if and only
if P is a LC centre for the pair (X,D).

Sketch of proof. Apply [FA92, Lemma 16.7] k times as in Proposition 3.9.2
and then apply [FA92, Lemma 7.4.3]. �
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3.10. Miscellaneous comments

In this section, we collect some comments.

3.10.1 (R-divisors). In the previous sections, we only use Q-divisors for sim-
plicity. We note that almost all the definitions and results can be generalized to R-
divisors with a little effort. In Shokurov’s construction of pl flips [Sho03], R-divisors
appear naturally and are indispensable. We do not pursue R-generalizations here;
however, the reader who understands the results in this chapter, will have no diffi-
culty working out the natural generalisations to R-divisors.

3.10.2 (Comments on the four standard references). We give miscellaneous
comments on the four standard references.

• [KMM87]is the oldest standard reference of the log MMP. The notion of
log-terminal in [KMM87, Definition 0-2-10] is equivalent to that of klt.
We make a remark.

Remark 3.10.3. Theorem 6-1-6 in [KMM87] is [Kaw85, Theo-
rem 4.3]. We use the same notation as in the proof of Theorem 4.3 in
[Kaw85]. By [Kaw85, Theorem 3.2], ′Ep,q1 → ′′Ep,q1 are zero for all p
and q. This just implies that

GrpHp+q(X,OX(−dLe))→ GrpHp+q(D,OD(−dLe))
are zero for all p and q. Kawamata points out that we need one more
Hodge theoretic argument to conclude that

Hi(X,OX(−dLe))→ Hi(D,OD(−dLe))
are zero for all i.

• [FA92] is the only standard reference that treats R-divisors and differ-
ents; see [FA92, Chapters 2 and 16]. In Chapter 2, five flavours of log
terminal singularities, that is, klt, plt, dlt, wklt, and lt, were introduced
following [Sho92]. Alexeev pointed out that [FA92, 4.12.2.1] is wrong;
the following is a counterexample to [FA92, 4.12.1.3, 4.12.2.1].

Example 3.10.4. Let X = P2, B = 2
3L, where L is a line on X. Let P

be any point on L. First, blow up X at P . Then we obtain an exceptional
divisor EP such that a(EP , B) = 1

3 . Let L′ be the strict transform of L.
Next, take a blow-up at L′ ∩ EP . Then we obtain an exceptional divisor
FP whose discrepancy a(FP , B) = 2

3 . On the other hand, it is easy to see
that discrep(X,B) = 1

3 . Thus, min{1, 1 + discrep(X,B)} = 1.

Remark 3.10.5. By this example, [Fuj04, Lemma 2.1] which is the
same as [FA92, 4.12.2.1], is incorrect. For details on the discrepancy
lemma, see [Fuj05a].

• [KM98] seems to be the best standard reference for singularities of pairs in
the log MMP. In the definitions of singularities of pairs, they assume that
D is only a subboundary, see [KM98, Definition 2.34] and Remark 3.3.3.
One must be aware of this fact.

Consider the definition of lt in [KM98, Definition 2.34 (3)]. If D = 0
in Definition 3.3.2, then the notions klt, plt, and dlt coincide (see also
Proposition 3.7.9) and they say that X has log terminal (abbreviated to
lt) singularities.
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Remark 3.10.6. There is an error in [KM98, Lemma 5.17 (2)]. We
can construct a counterexample easily. We put X = P2, ∆ = a line on X,
and |H| = |OX(1)|. Then we have

−1 = discrep(X,∆ +Hg) 6= min{0,discrep(X,∆)} = 0,

since discrep(X,∆) = 0.

• The latest standard reference [Mat02] explains singularities in detail; see
[Mat02, Chapter 4]; however, as we pointed out before, see Remark 3.1.1,
Matsuki made a mistake.

In the definition of lt, see [Mat02, Definition 4-3-2], he required that
the resolution is projective. So, lt in [Mat02] is slightly different from lt
in [FA92]. See Conclusion 3.7.10 above.

Remark 3.10.7 (Comment by Matsuki). On page 178, line 8–9,“by
blowing up only over the locus where σ−1(D) ∪ Exc(σ) is not a normal
crossing divisor, we obtain...” is incorrect. See Example 3.5.4 and Sec-
tion 3.6.

Remark 3.10.8 (Toric Mori theory). In [KMM87, §5-2] and [Mat02,
Chapter 14], toric varieties are investigated from the Mori theoretic view-
point. Toric Mori theory originates from Reid’s beautiful paper [Rei83].
Chapter 14 in [Mat02] corrects some minor errors in [Rei83]. In [KMM87]
and [Mat02], toric Mori theory is formulated for toric projective mor-
phism f : X → S. We note that X is always assumed to be complete;
therefore, the statement at the end of [Mat02, Proposition 14-1-5] is
nonsense. Matuski wrote: “In the relative setting for statement (ii), such
a vector v′i may not exist at all. If that is the case, then the two (n− 1)-
dimensional cones wi,n and wi,n+1 are on the boundary of ∆.” How-
ever, ∆ has no boundary since ∆ is a complete fan in [Mat02]. For
the details of toric Mori theory for the case when X is not complete,
see [FS04, Fuj, Sat05]. The example in [Mat02, Remark 14-2-7(ii)] is
wrong; the original statement in [KMM87] is true. The statement in
[Mat02, Corollary 14-2-2] contains a minor error; for details, see [Fuj,
Remark 3.3, Example 3.4].

Conclusion 3.10.9. Some care should be exercised when using the various
notions of log terminal; we recommend that the reader check the definitions and
conventions very carefully.
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CHAPTER 4

Special termination and reduction to pl flips

Osamu Fujino

4.1. Introduction

This chapter is a supplement to [Sho03, Section 2]. First, we give a simple
proof of special termination modulo the log MMP for lower dimensional varieties,
Theorem 4.2.1. Special termination claims that the flipping locus is disjoint from
the reduced part of the boundary after finitely many flips. It is repeatedly used in
Shokurov’s proof of pl flips [Sho03]. Next, we explain the reduction theorem: The-
orem 4.3.7. Roughly speaking, the existence of pl flips and special termination
imply the existence of all log flips. The reduction theorem is well-known to ex-
perts, cf. [FA92, Chapter 18]; it grew out of [Sho92].

Let us recall the two main conjectures in the log MMP.

Conjecture 4.1.1 ((Log) Flip Conjecture I: The existence of a (log) flip). Let
ϕ : (X,B)→W be an extremal flipping contraction of an n-dimensional pair, that
is,

(1) ϕ is small projective and ϕ has only connected fibers,
(2) −(KX +B) is ϕ-ample,
(3) ρ(X/W ) = 1, and
(4) X is Q-factorial.

Then there should be a diagram:

X 99K X+

↘ ↙
W

which satisfies the following conditions:
(i) X+ is a normal variety,
(ii) ϕ+ : X+ →W is small projective, and
(iii) KX+ +B+ is ϕ+-ample, where B+ is the strict transform of B.

Note that to prove Conjecture 4.1.1 we can assume that B is a Q-divisor, by
perturbing B slightly.

Conjecture 4.1.2 ((Log) Flip Conjecture II: Termination of a sequence of
(log) flips). A sequence of (log) flips

(X,B) =: (X0, B0) 99K (X1, B1) 99K (X2, B2) 99K · · ·

terminates after finitely many steps. Namely, there does not exist an infinite se-
quence of (log) flips.

55
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In this chapter, we sometimes write as follows: Assume the log MMP for Q-
factorial dlt (resp. klt) n-folds. This means that the log flip conjectures I and
II hold for n-dimensional dlt (resp. klt) pairs. For the details of the log MMP,
see [KM98]. Note that in this chapter we run the log MMP only for birational
morphisms. Namely, we apply the log MMP to some pair (X,B) over Y , where
f : X → Y is a projective birational morphism.

We summarize the contents of this chapter: In Section 4.2, we give a simple
proof of special termination. In Section 4.3, we explain the reduction theorem.
This section is essentially the same as [FA92, Chapter 18]. Finally, in Section 4.4,
we give a remark on the log MMP for non-Q-factorial varieties.

Notation 4.1.3. We use the basic notation and definitions in [KM98] freely;
see also Chapter 3. We will work over an algebraically closed field k throughout
this chapter; my favorite is k = C.

4.2. Special termination

Special termination is in [Sho03, Theorem 2.3]. Shokurov gave a sketch of a
proof in dimension four in [Sho03, Section 2]. Here, we give a simple proof, which
is based on the ideas of [FA92, Chapter 7]. Note that [FA92, Chapter 7] grew
out of [Sho92]. The key point of our proof is the adjunction formula for dlt pairs,
which is explained in Section 3.9. Let us state the main theorem of this section.

Theorem 4.2.1 (Special Termination). We assume that the log MMP for Q-
factorial dlt pairs holds in dimension ≤ n− 1. Let X be a normal n-fold and B an
effective R-divisor such that (X,B) is dlt. Assume that X is Q-factorial. Consider
a sequence of log flips starting from (X,B) = (X0, B0):

(X0, B0) 99K (X1, B1) 99K (X2, B2) 99K · · · ,
where φi : Xi → Zi is a contraction of an extremal ray Ri with (KXi +Bi) ·Ri < 0,
and φi

+ : Xi
+ = Xi+1 → Zi is the log flip. Then, after finitely many flips, the

flipping locus (and thus the flipped locus) is disjoint from bBic.

Remark 4.2.2. If B is a Q-divisor in Theorem 4.2.1, then the log flip Conjec-
tures I and II for Q-divisors are sufficient for the proof of the Theorem. This is
because S(b) ⊂ Q (see Definition 4.2.7 below). We note that when we use special
termination in Section 4.3 and [Fuj05b], B is a Q-divisor. If B is not a Q-divisor,
then we need the log flip Conjecture II for R-divisors. For the details, see [Sho96,
5.2 Theorem].

First, we recall the definition of flipping and flipped curves.

Definition 4.2.3. A curve C on Xi is called flipping (resp. flipped) if φi(C)
(resp. φ+

i−1(C)) is a point.

We quickly review adjunction for dlt pairs. For the details, see Section 3.9.

Proposition 4.2.4 (cf. Proposition 3.9.2). Let (X,B) be a dlt pair such that
bBc =

∑
i∈I Di, where Di is a prime divisor on X for every i. Then S is a LC

centre of the pair (X,B) with codimX S = k if and only if S is an irreducible
component of Di1 ∩ Di2 ∩ · · · ∩ Dik for some {i1, i2, · · · , ik} ⊂ I. Let S be a LC
centre of the pair (X,B). Then (S,BS) is also dlt, where KS +BS = (KX +B)|S.
Note that BS is defined by applying adjunction k times repeatedly.
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Definition 4.2.5. A morphism ϕ : (X,B)→ (X ′, B′) of two log pairs is called
an isomorphism of log pairs if ϕ is an isomorphism and ϕ∗(B) = B′.

We need the following definition since the restriction of a log flip to a higher
codimensional LC centre is not necessarily a log flip.

Definition 4.2.6. Let f : V →W be a birational contraction with dimV ≥ 2.
We say that f is type (S) if f is an isomorphism in codimension one. We say that
f is type (D) if f contracts at least one divisor. Let

V
f−−−−→ W

g←−−−− U

be a pair of birational contractions. We call this type (SD) if f is type (S) and g
is type (D). We define (SS), (DS), and (DD) similarly.

Definition 4.2.7. Let B =
∑
bjB

j be the irreducible decomposition of an
R-divisor B. Let b be the set {bj}. We define

S(b) :=
{

1− 1
m

+
∑ rjbj

m

∣∣∣∣ m ∈ Z>0, rj ∈ Z≥0

}
.

Let P be a prime divisor on S. Then the coefficient of P in {BS} is an element
of S(b). See Proposition 3.9.4. Before we give the definition of the difficulty, let us
recall the following useful [FA92, 7.4.4 Lemma]. The proof is obvious.

Lemma 4.2.8 (cf. [FA92, 7.4.4 Lemma]). Fix a sequence of numbers 0 < bj ≤ 1
and c > 0. Then there are only finitely many possible values m ∈ Z>0 and rj ∈ Z≥0

such that

1− 1
m

+
∑
j

rjbj
m
≤ 1− c.

Definition 4.2.9 ([FA92, 7.5.1 Definition]). Let S be a LC centre of the dlt
pair (X,B). We define

db(S,BS) :=
∑

α∈S(b)

]
{
E

∣∣∣ a(E,S,BS) < −α and cS(E) 6⊂ bBSc
}
.

This is a precise version of the difficulty. It is obvious that db(S,BS) < ∞ by
Lemma 4.2.8. We note that (U,BS |U ) is klt, where U = S r bBSc.

Let us start the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1.

Step 1. After finitely many flips, the flipping locus contains no LC centres.

Proof. We note that the number of LC centres is finite. If the flipping locus
contains a LC centre, then the number of LC centres decreases by [FA92, 2.28]. �

So we can assume that the flipping locus contains no LC centres of the pair
(Xi, Bi) for every i. By this assumption, ϕi : Xi 99K Xi+1 induces a birational map
ϕi|Si

: Si 99K Si+1, where Si is a LC centre of (Xi, Bi) and Si+1 is the corresponding
LC centre of (Xi+1, Bi+1). We will omit the subscript |Si if there is no danger of
confusion. Before we go to the next step, we prove the following Lemma.



58 4. REDUCTION TO PL FLIPS

Lemma 4.2.10. By adjunction, we have

a(E,Si, BSi
) ≤ a(E,Si+1, BSi+1),

for every valuation E. In particular,

totaldiscrep(Si, BSi
) ≤ totaldiscrep(Si+1, BSi+1)

for every i.

Sketch of the proof. By the resolution Lemma 3.5, we can find a common
log resolution

Y
↙ ↘

Xi 99K Xi+1

such that Y → Xi and Y → Xi+1 are isomorphisms over the generic points of all LC
centres. We note that Xi 99K Xi+1 is an isomorphism at the generic point of every
LC centres. Apply the negativity Lemma to the flipping diagramXi → Zi ←− Xi+1

and compare discrepancies. Then, by restricting to Si and Si+1, we obtain the
desired inequalities of discrepancies. �

Step 2. Assume that ϕi : Xi 99K Xi+1 induces an isomorphism of log pairs,
for every (d− 1)-dimensional LC centre for every i. Then, after finitely many flips,
ϕi induces an isomorphism of log pairs, for every d-dimensional LC centre.

Remark 4.2.11. The above statement is slightly weaker than Shokurov’s claim
(Bd). See the proof of special termination 2.3 in [Sho03].

Remark 4.2.12. It is obvious that ϕi induces an isomorphism of log pairs for
every 0-dimensional LC centre. When d = 1, Step 2 is obvious by Lemmas 4.2.8
and 4.2.10.

So we can assume that d ≥ 2.

Remark 4.2.13. Let (Si, BSi) be a LC centre. Assume that ϕi : (Si, BSi) →
(Si+1, BSi+1) is an isomorphism of log pairs. Then Si contains no flipping curves
and Si+1 contains no flipped curves. This is obvious by applying the negativity
Lemma to Si → Ti ←− Si+1, where Ti is the normalization of φi(Si).

Proposition 4.2.14. The inequality db(Si, BSi
) ≥ db(Si+1, BSi+1) holds. More-

over, if Si → Ti ←− S+
i = Si+1 is type (SD) or (DD), then db(Si, BSi) >

db(Si+1, BSi+1), where Ti is the normalization of φi(Si). Note that there exists
a φ+

i |Si+1-exceptional divisor E on Si+1. By adjunction and the negativity Lemma,

a(E,Si, BSi
) < a(E,Si+1, BSi+1) = −α

for some α ∈ S(b). Therefore, after finitely many flips, Si → Ti ←− Si+1 is type
(SS) or (DS).

Proof. See [FA92, 7.5.3 Lemma, 7.4.3 Lemma]. We note that ϕi is an iso-
morphism of log pairs on bBSic by assumption. Therefore,

cSi
(E) ⊂ bBSi

c if and only if cSi+1(E) ⊂ bBSi+1c.
More precisely, if cSi(E) (resp. cSi+1(E)) is contained in bBSic (resp. bBSi+1c), then
ϕi is an isomorphism at the generic point of cSi(E) (resp. cSi+1(E)) by the negativity
lemma. Therefore, we obtain db(Si, BSi) ≥ db(Si+1, BSi+1), by Lemma 4.2.10. �
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So we can assume that every step is type (SS) or (DS) by shifting the index i.

Lemma 4.2.15. By shifting the index i, we can assume that a(E,Si, BSi
) =

a(E,Si+1, BSi+1) for every i if E is a divisor on both Si and Si+1.

Proof. By Lemma 4.2.10, we have a(v, Si, BSi
) ≤ a(v, Si+1, BSi+1) for every

valuation v. We note that the coefficient of E is −a(E,Si, BSi) ≥ 0 and that
−a(E,Si, BSi) = 1 or −a(E,Si, BSi) ∈ S(b). Thus, Lemma 4.2.8 implies that
−a(E,Si, BSi) becomes stationary after finitely many steps. �

Let f : S0
0 → S0 be a Q-factorial dlt model, that is, (S0

0 , BS0
0
) is Q-factorial

and dlt such that KS0
0

+ BS0
0

= f∗(KS0 + BS0). Note that we need the log MMP
in dimension d to construct a dlt model. Applying the log MMP to S0

0 → T0, we
obtain a sequence of divisorial contractions and log flips over T0

S0
0 99K S1

0 99K · · · ,

and finally a relative log minimal model Sk00 . Since S1 → T0 is the log canonical
model of S0

0 → S0 → T0, we have a unique natural morphism g : Sk00 → S1 (see
[FA92, 2.22 Theorem]). We note that K

S
k0
0

+ B
S

k0
0

= g∗(KS1 + BS1). Applying

the log MMP to S0
1 := Sk00 → S1 → T1 over T1, we obtain a sequence

S0
1 99K · · · 99K Sk11 → S2

for the same reason, where Sk11 is a relative log minimal model of S0
1 → S1 → T1.

Run the log MMP to S0
2 := Sk11 → S2 → T2. Repeating this procedure, we obtain

a sequence of log flips and divisorial contractions. This sequence terminates by the
log MMP in dimension d.

Lemma 4.2.16. If Si → Ti or Si+1 → Ti is not an isomorphism, then S0
i is not

isomorphic to Ski
i over Ti.

Proof. If Si → Ti is not an isomorphism, then KS0
i

+ BS0
i

is not nef over
Ti. So, S0

i is not isomorphic to Ski
i over Ti. If Si → Ti is an isomorphism, then

KS0
i

+ BS0
i

is nef over Ti and Ski
i = S0

i . In particular, Si+1 is isomorphic to
Si ' Ti. �

Thus we obtain the required results.

Remark 4.2.17. In Step 2, we obtain no information about flipping curves
which are not contained in bBic but which intersect bBic.

Step 3. After finitely many flips, we can assume that bBic contains no flipping
curves and no flipped curves by Step 2. If the flipping locus intersects bBic, then
there exists a flipping curve C such that C · bBic > 0. Note that Xi is Q-factorial.
Then bBi+1c intersects every flipped curve negatively. So bBi+1c contains a flipped
curve. This is a contradiction.

Therefore, we finished the proof of Theorem 4.2.1. �

Remark 4.2.18. Our proof heavily relies on the adjunction formula for higher
codimensional LC centres of a dlt pair. It is treated in Section 3.9. In the final
step (Step 3), Q-factoriality plays a crucial role. As explained in Chapter 3, Q-
factoriality and the notion of dlt are not analytically local.
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Remark 4.2.19. For recent developments in the termination of 4-fold log flips,
see [Fuj04, Fuj05a, Fuj05b].

4.3. Reduction theorem

In this section, we prove the reduction Theorem [Sho03, Reduction Theo-
rem 1.2]. It says that the existence of pl flips and the special termination imply
the existence of all log flips. Here is the definition of a (elementary) pre limiting
contraction.

Definition 4.3.1 (Pre limiting contractions). We call f : (X,D) → Z a pre
limiting contraction (pl contraction, for short) if

(1) (X,D) is a dlt pair,
(2) f is small and −(KX +D) is f -ample, and
(3) there exists an irreducible component S ⊂ bDc such that S is f -negative.

Furthermore, if the above f satisfies
(4) ρ(X/Z) = 1, and
(5) X is Q-factorial,

then f : (X,D) → Z is called an elementary pre limiting contraction (elementary
pl contraction, for short).

Caution 4.3.2. I do not know what is the best definition of a (elementary) pre
limiting contraction. Compare Definition 4.3.1 with [Sho03, 1.1] and [FA92, 18.6
Definition]. We adopt the above Definition in this chapter. The reader should check
the Definition of pl contractions himself, when he reads other papers.

The following is the definition of log flips in this section, which is much more
general than log flips in Conjecture 4.1.1.

Definition 4.3.3 (Log flips). By a log flip of f we mean the (KX +D)-flip of
a contraction f : (X,D)→ Z assuming that

(a) (X,D) is klt,
(b) f is small,
(c) −(KX +D) is f -nef, and
(d) D is a Q-divisor.

A (KX +D)-flip of f is a log canonical model f+ : (X+, D+) → Z of (X,D) over
Z, that is, a diagram

X 99K X+

↘ ↙
Z

which satisfies the following conditions:
(i) X+ is a normal variety,
(ii) f+ : X+ → Z is small, projective, and
(iii) KX+ +D+ is f+-ample, where D+ is the strict transform of D.

Note that if a log canonical model exists then it is unique.

Remark 4.3.4. For the definitions of log minimal models and log canonical
models, see [KMM87, Definition 3.50]. There, they omit “log” for simplicity. So,
a log canonical (resp. log minimal) model is called a canonical (resp. minimal)
model in [KMM87].
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Let us introduce the notion of PL-flips.

Definition 4.3.5 (PL-flips). A (elementary) pl-flip is the flip of f , where f is
a (elementary) pl contraction as in Definition 4.3.1. Note that if the flip exists then
it is unique up to isomorphism over Z.

We will use the next definition in the proof of the reduction theorem.

Definition 4.3.6 (Birational transform). Let f : X 99K Y be a birational map.
Let {Ei} be the set of exceptional divisors of f−1 and D an R-divisor on X. The
birational transform of D is defined as

DY := f∗D +
∑

Ei.

The following is the main theorem of this section. This is essentially the same
as [FA92, Chapter 18].

Theorem 4.3.7 (Reduction Theorem). Log flips exist in dimension n provided
that :

(PLF )eln elementary pl-flips exist in dimension n, and
(ST )n special termination holds in dimension n.

Proof. Let (X,D) be a klt pair and let f : X → Z be a contraction as in
Definition 4.3.3. We define T := f(Exc(f)) ⊂ Z. We may assume that Z is affine
without loss of generality.

Step 1. Let H ′ be a Cartier divisor on Z such that
(i) H := f∗H ′ = f−1

∗ H ′ contains Exc(f).
(ii) H ′ is reduced and contains Sing(Z) and the singular locus of Supp f(D).
(iii) Fix a resolution π : Z ′ → Z. Let Fj ⊂ Z ′ be divisors that generate

N1(Z ′/Z). We assume that H ′ contains π(Fj) for every j. (This usually
implies thatH ′ is reducible.) We note that we can assume that Suppπ(Fj)
contains no irreducible components of Supp f(D) for every j without loss
of generality. Therefore, we can assume that H and D have no common
irreducible components.

The main consequence of the last assumption is the following:
(iv) Let h : Y → Z be any proper birational morphism such that Y is Q-

factorial. Then the irreducible components of the proper transform of H ′

and the h-exceptional divisors generate N1(Y/Z).

Step 2. By Hironaka’s desingularization theorem, there is a projective log
resolution h : Y → X → Z for (X,D +H), which is an isomorphism over Z rH ′.

Then KY +(D+H)Y is a Q-factorial dlt pair, where (D+H)Y is the birational
transform of D+H (see Definition 4.3.6). Observe that h∗H ′ contains h−1(T ) and
h∗H ′ contains all h-exceptional divisors.

Step 3. Run the log MMP with respect to KY + (D +H)Y over Z. We suc-
cessively construct objects (hi : Yi → Z, (D+H)Yi) such that b(D+H)Yic contains
the support of h∗iH

′, and every flipping curve for hi is contained in Supph∗iH
′. If

Ci is a flipping curve, then Ci ⊂ h∗iH ′ and Ci ·h∗iH ′ = 0. By Step 1 (iv) and Step 2,
there is an irreducible component Fi ⊂ h∗iH ′ such that Ci ·Fi 6= 0. Thus a suitable
irreducible component of h∗iH

′ intersects Ci negatively. This means that the only
flips that we need are elementary pl-flips. By special termination, we end up with
a Q-factorial dlt pair h : (Y , (D +H)Y )→ Z such that KY + (D +H)Y is h-nef.
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Step 4 (cf. [KMM87, Theorem 7.44]). This step is called “subtracting H”.
It is independent of the other steps. So we use different notation throughout Step
4. Of course, we assume (PLF )eln and (ST )n throughout this step.

Theorem 4.3.8 (Subtraction Theorem). Let (X,S+B+H) be an n-dimensional
Q-factorial dlt pair with effective Q-divisors S, B, and H such that bSc = S,
bBc = 0. Let f : X → Y be a projective birational morphism. Assume the follow-
ing:

(i) H ≡f −
∑
bjSj, where bj ∈ Q≥0, and Sj is an irreducible component of

S for every j.
(ii) KX + S +B +H is f-nef.

Then (X,S +B) has a log minimal model over Y .

Proof. We give a proof in the form of several lemmas by running the log
MMP over Y guided by H. The notation and the assumptions of Theorem 4.3.8
are assumed in these lemmas. �

Lemma 4.3.9. There exists a rational number λ ∈ [0, 1] such that

(1) KX + S +B + λH is f-nef, and
(2) if λ > 0, then there exists a (KX + S + B)-negative extremal ray R over

Y such that R · (KX + S +B + λH) = 0.

Proof. This follows from the Cone Theorem. See, for example, [KMM87,
Complement 3.6]. We note that [KMM87, §3.1] assumes that the pair has only
klt singularities. However, the Rationality Theorem holds for dlt pairs. Therefore,
[KMM87, Complement 3.6] is true for dlt pairs. See [KMM87, Theorem 3.15,
Remark 3.16]. �

If λ = 0, then the Theorem is proved. Therefore, we assume that λ > 0 and
let φ : X → V be the contraction of R.

Lemma 4.3.10. If φ contracts a divisor E, then conditions (i) and (ii) in The-
orem 4.3.8 above, still hold if we replace f : X → Y with V → Y and B, S, H with
φ∗B, φ∗S, λφ∗H.

Proof. This is obvious. �

Lemma 4.3.11. If φ is a flipping contraction, then φ is an elementary pl con-
traction (see Definition 4.3.1). If p : X 99K X+ is the flip of φ, then conditions (i)
and (ii) above, still hold if we replace f : X → Y with f+ : X+ → Y and B, S, H
with p∗B, p∗S, λp∗H.

Proof. One has to prove that φ is an elementary pl contraction. By hypothesis
R · (KX + S + B + λH) = 0 and R · (KX + S + B) < 0, thus one sees R ·H > 0.
Hence by condition (i), there exists j0 such that R · Sj0 < 0. The latter part is
obvious. �

Lemma 4.3.12. We can apply the above procedure to the new set up in cases
Lemma 4.3.10 and Lemma 4.3.11 if λ 6= 0. After repeating this finitely many
times, λ becomes 0, and one obtain a log minimal model of (X,S +B) over Y . In
particular, Theorem 4.3.8 holds.
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Proof. It is obvious that Lemma 4.3.10 does not occur infinitely many times.
The flip in Lemma 4.3.11 is a (KX+S+B)-flip where the flipping curve is contained
in S. Hence there cannot be an infinite sequence of such flips by special termination
(see Theorem 4.2.1). The end product is a log minimal model. �

Step 5. We go back to the original setting. Apply Theorem 4.3.8 to h : (Y , (D+
H)Y ) → Z, which was obtained in Step 3. More precisely, we put f = h,
X = Y , Y = Z, S + B + H = (D + H)Y , B = {(D + H)Y }, and H =
the strict transform of H ′, and apply Theorem 4.3.8. Then we obtain

h̃ : (Ỹ ,DeY )→ Z

such that Ỹ is Q-factorial, KeY + DeY is dlt and h̃-nef. By the negativity lemma
([KMM87, Lemma 3.38]), we can easily check that h̃ is small and (Ỹ ,DeY ) is klt.
This is a log minimal model of (X,D) over Z.

Step 6. By the base point free Theorem over Z, we obtain the log canonical
model of the pair (X,D) over Z, which is the required flip.

Therefore, we have finished the proof of the reduction Theorem. �

Corollary 4.3.13. In dimension n ≤ 4, (PLF )eln implies the existence of all
log flips.

Proof. Special termination (ST )n holds if n ≤ 4, since the log MMP is true
in dimension ≤ 3. Thus, this corollary is obvious by Theorem 4.3.7. �

4.4. A remark on the log MMP

In this Section, we explain the log MMP for non-Q-factorial varieties. This
result is used in Shokurov’s original construction of pl flips [Sho03] but it is not
needed in this book. We present the result here because we believe that it is of
independent interest.

For simplicity, we treat only klt pairs and Q-divisors in this Section.

Theorem 4.4.1 (Log MMP for non-Q-factorial varieties). Assume that the log
MMP holds for Q-factorial klt pairs in dimension n. Then the following modified
version of the log MMP works for (not necessarily Q-factorial) klt pairs in dimension
n.

Proof and explanation. Let us start with a projective morphism f : X →
Y , where X0 := X is a (not necessarily Q-factorial) normal variety, and a Q-divisor
D0 := D on X such that (X,D) is klt. The aim is to set up a recursive procedure
which creates intermediate morphisms fi : Xi → Y and divisors Di. After finitely
many steps, we obtain a final object f̃ : X̃ → Y and D̃. Assume that we have
already constructed fi : Xi → Y and Di with the following properties:

(i) fi is projective,
(ii) Di is a Q-divisor on Xi,
(iii) (Xi, Di) is klt.

If KXi +Di is fi-nef, then we set X̃ := Xi and D̃ := Di. Assume that KXi +Di

is not fi-nef. Then we can take a (KXi + Di)-negative extremal ray R (or, more
generally, a (KXi

+Di)-negative extremal face F ) of NE(Xi/Y ). Thus we have a
contraction morphism ϕ : Xi → Wi over Y with respect to R (or, more generally,
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with respect to F ). If dimWi < dimXi (in which case we call ϕ a Fano contraction),
then we set X̃ := Xi and D̃ := Di and stop the process. If ϕ is birational, then we
put

Xi+1 := ProjWi

⊕
m≥0

ϕ∗OXi(m(KXi +Di)),

Di+1 := the strict transform of ϕ∗Di on Xi+1 and repeat this process. We note
that (Xi+1, Di+1) is the log canonical model of (Xi, Di) over Wi and that the
existence of log canonical models follows from the log MMP for Q-factorial klt n-
folds. If KWi

+ ϕ∗Di is Q-Cartier, then Xi+1 ' Wi. So, this process coincides
with the usual one if the varieties Xi are Q-factorial. It is not difficult to see that
Xi →Wi ←− Xi+1 is of type (DS) or (SS) (for the definitions of (DS) and (SS),
see Definition 4.2.6). So, this process always terminates by the same arguments as
in Step 2 of the proof of Theorem 4.2.1 in Section 4.2. �

We give one Example of 3-dimensional non-Q-factorial terminal flips. The
reader can find various examples of non-Q-factorial contractions in [Fuj, Section
4].

Example 4.4.2 (3-dimensional non-Q-factorial terminal flip). Let e1, e2, e3
form the usual basis of Z3, and let e4 be given by

e1 + e3 = e2 + e4,

that is, e4 = (1,−1, 1). We put e5 = (a, 1,−r) ∈ Z3, where 0 < a < r and
gcd(r, a) = 1. We consider the following fans:

∆X = {〈e1, e2, e3, e4〉, 〈e1, e2, e5〉, and their faces},
∆W = {〈e1, e2, e3, e4, e5〉, and its faces}, and

∆X+ = {〈e1, e4, e5〉, 〈e2, e3, e5〉, 〈e3, e4, e5〉, and their faces}.
We put X := X(∆X), X+ := X(∆X+), and W := X(∆W ). Then we have a
commutative diagram of toric varieties:

X 99K X+

↘ ↙
W

such that
(i) ϕ : X →W and ϕ+ : X+ →W are small projective toric morphisms,
(ii) ρ(X/W ) = 1 and ρ(X+/W ) = 2,
(iii) both X and X+ have only terminal singularities,
(iv) −KX is ϕ-ample and KX+ is ϕ+-ample, and
(v) X is not Q-factorial, but X+ is Q-factorial,

Thus, this diagram is a terminal flip. Note that the ampleness of −KX (resp. KX+)
follows from the convexity (resp. concavity) of the roofs of the maximal cones in
∆X (resp. ∆X+). The figure below should help to understand this Example.
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One can check the following properties:
(1) X has one ODP and one quotient singularity,
(2) the flipping locus is P1 and it passes through the singular points of X,

and
(3) the flipped locus is P1 ∪ P1 and these two P1s intersect each other at the

singular point of X+.

This example implies that the relative Picard number may increase after a flip
when X is not Q-factorial. So, we do not use the Picard number directly to prove
the termination of the log MMP.
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CHAPTER 5

Extension theorems and the existence of flips

Christopher Hacon and James McKernan

5.1. Introduction

The purpose of this chapter is to give a proof of the following

Theorem 5.1.1. Assume termination of flips in dimension n − 1. Then flips
exist in dimension n.

Since termination of flips holds in dimension 3, it follows that

Corollary 5.1.2. Flips exist in dimension four.

The chapter is organized as follows:
In the rest of §5.1, we will explain some necessary background and give a sketch of
the main arguments in the proof of Theorem 5.1.1. In §5.2 we recall the applications
of the MMP required for the proof of Theorem 5.1.1. In §5.3, we give a criterion
for certain algebras to be finitely generated. In §5.4, we explain the extension
result of [HM06] and its refinements from [HM] and then we give the proof of
Theorem 5.1.1.

5.1.1. The conjectures of the MMP. Throughout this section we consider
a n-dimensional klt pair (X,∆) where X is Q-factorial and ∆ is a Q-divisor. Of
course one could also consider log canonical or divisorial log terminal pairs and
R-divisors instead of Q-divisors. The main conjecture of the MMP is the following:

Conjecture 5.1.3 (Minimal model conjecture). Let (X,∆) be a klt Q-factorial
pair of dimension n, where ∆ is a Q-divisor, and let f : X → S be a projective
morphism. Then there exists a klt pair (X ′,∆′) and a commutative diagram

X
φ //_______

f ��@
@@

@@
@@

X ′

f ′~~}}
}}

}}
}}

S ,

such that f ′ is projective, φ−1 has no exceptional divisors, ∆′ = φ∗∆, a(E,KX +
∆) ≤ a(E,KX′ + ∆′) for every φ-exceptional divisor E and either:

(1) KX′ + ∆′ is f ′-nef, or
(2) there is a non-birational contraction of relative Picard number 1, g : X ′ →

S′ over S such that −(KX′ + ∆′) is g-ample.

It is expected that the pair (X ′,∆′) may be constructed via a finite number of
well understood intermediate steps. If KX+∆ is f -nef, we are in case 1. Otherwise,

67



68 5. EXISTENCE OF FLIPS

by the Cone Theorem, there is a contraction morphism g : X → Z, over S, of relative
Picard number one such that −(KX + ∆) is g-ample. If dimX > dimZ, we have
case 2. Therefore we may assume that g is birational. If g contracts a divisor in
X, then we say that g is a divisorial contraction and we may replace (X,∆) by
(Z, g∗∆). Notice that with each divisorial contraction the rank of the Picard group
drops by 1 and hence one can perform this procedure only finitely many times. The
remaining case is when g is small, i.e. when the exceptional set has codimension at
least 2 in X. In this case, Z is no longer Q-factorial, so we can not replace X by
Z. Instead, we try to construct the flip:

Definition 5.1.4. Let g : X → Z be a small projective morphism of normal
varieties of relative Picard number 1. If D is any Q-divisor such that −D is g-
ample, then the flip of g (if it exists) is a small projective birational morphism
g+ : X+ → Z such that X+ is normal and D+ = (g+)−1

∗ g∗(D) is g+-ample.

If the flip of g exists, it is unique and it is given by

X+ = ProjZ R

where
R = R(X,D) =

⊕
n∈N

g∗OX(nD).

It is too much to expect that the flip exists for an arbitrary choice of D, however
we have the following:

Conjecture 5.1.5 (Existence of Flips). Let (X,∆) be a klt Q-factorial pair of
dimension n, where ∆ is a Q-divisor. Let g : X → Z be a flipping contraction, so
that −(KX + ∆) is relatively ample, and g is a small contraction of relative Picard
number one.

Then the flip g+ : X+ → Z of g exists.

We remark that (X+,∆+) is also klt and X+ is Q-factorial.
Assuming Conjecture 5.1.5, we then replace (X,∆) by (X+,∆+). This “im-

proves” the situation by replacing KX + ∆-negative curves by KX+ + ∆+-positive
curves. For this procedure to eventually lead us to a minimal model, i.e. to a
solution of Conjecture 5.1.3, we need the following:

Conjecture 5.1.6 (Termination of Flips). Let (X,∆) be a klt Q-factorial pair
of dimension n, where ∆ is a Q-divisor.

There is no infinite sequence of (KX + ∆)-flips.

For us the statement that the MMP holds in dimension n means that we are as-
suming Conjectures 5.1.5n and 5.1.6n. It is clear that these imply Conjecture 5.1.3n,
but the converse seems to be unknown.

For completeness we also mention the following closely related conjecture, which
together with Conjectures 5.1.5 and 5.1.6 is considered one of the most important
conjectures of the minimal model program.

Conjecture 5.1.7 (Abundance). Let (X,∆) be a klt pair, where X is Q-
factorial and ∆ is a Q-divisor, and let f : X → S be a projective morphism, where
S is affine and normal.

If KX + ∆ is nef, then it is semiample.
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5.1.2. Previous results. In dimension less than or equal to two, the situation
is well understood, Conjectures 5.1.5 and 5.1.6 are trivially true as there are no flips.

In higher dimensions, the situation is as follows: 3-fold flips for terminal X and
∆ = 0 were constructed by Mori in his famous paper [Mor88]. Conjecture 5.1.53

was then proved by Shokurov and Kollár [Sho92, FA92]). Conjecture 5.1.54 was
established much more recently by Shokurov [Sho03].

Conjecture 5.1.63 was proved by Kawamata [Kaw92]. The statement of Con-
jecture 5.1.63 for R-divisors is due to Shokurov [Sho96].

Shokurov has also established a framework for proving Conjectures 5.1.5 and 5.1.6
inductively. Conjecture 5.1.5n is reduced to the existence of pl-flips and hence to
a question about the finite generation of a certain algebra on a special kind of
(n−1)-dimensional variety. He also shows that Conjecture 5.1.6n, follows from two
conjectures on the behavior of the log discrepancy of pairs (X,∆) of dimension n
(namely acc for the set of log discrepancies, whenever the coefficients of ∆ are con-
fined to belong to a set of real numbers which satisfies dcc, and semicontinuity of
the log discrepancy). Finally, Birkar, in a very recent preprint, [Bir], has reduced
Conjecture 5.1.6n, in the case when KX + ∆ has non-negative Kodaira dimension,
to acc for the log canonical thresholds and the existence of the MMP in dimension
n− 1.

5.1.3. Sketch of the proof. Our proof of Theorem 5.1.1 follows the general
strategy of [Sho03]. The first key step was already established in [Sho92], see also
[FA92] and Chapter 4. In fact it suffices to prove the existence of pl-flips:

Definition 5.1.8. We call a morphism f : X → Z of normal varieties, where
Z is affine, a pl flipping contraction if

(1) f is a small birational contraction of relative Picard number one,
(2) X is Q-factorial and ∆ is a Q-divisor,
(3) KX + ∆ is purely log terminal, where S = x∆y is irreducible, and
(4) −(KX + ∆) and −S are ample.

We remark here that this definition is more restrictive than the usual definition
of a pl flipping contraction: we have assumed that x∆y is irreducible (compare to
Chapter 4). The point here is that if x∆y is allowed to be reducible and S is an
irreducible f -negative component contained in x∆y, then for some rational number
0 < ε� 1 we let ∆′ = ∆− ε(∆− S) and we have that f : (X,∆′)→ Z is a pl flip
and x∆′y is irreducible.

Shokurov has proved the following [Sho92, FA92], Chapter 4:

Theorem 5.1.9. To prove Theorem 5.1.1 it suffices to construct the flip of a
pl flipping contraction.

The main advantage is that this allows us to restrict to S, and then to proceed
by induction on the dimension. If ∆ = S +B, then by adjunction we may write

(KX + S +B)|S = KS +B′,

where B′ is effective and KS + B′ is klt. Recall that we must show that the ring
R = R(X,KX + S +B) is finitely generated. Therefore, we consider the restricted
algebra RS given by the image of the restriction map⊕

m∈N
H0

(
X,OX(m(KX + S +B))

)
→

⊕
m∈N

H0
(
S,OS(m(KS +B′))

)
.
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Shokurov has shown:

Theorem 5.1.10. R is finitely generated if and only if RS is finitely generated.

If RS =
⊕

m∈N H
0
(
S,OS(m(KS +B′))

)
, then Theorem 5.1.1 easily follows by

induction. This is unfortunately too much to expect. Shokurov shows that the
algebra RS satisfies two key properties, namely boundedness and a-saturation. He
conjectures that any such algebra on a variety admitting a weak Fano contraction
is finitely generated. He proves this conjecture in dimension 2 and this gives a
very clear and conceptually satisfying proof of Conjecture 5.1.53, see Chapter 2. In
higher dimension, this strategy seems very hard to implement. Instead we show
that the restricted algebra satisfies a much stronger property which we explain
below.

The problem is birational in nature so that we may replace X by a model Y
and S by its proper transform T and then prove that the corresponding restricted
algebra RT is finitely generated. So we consider µ : Y → X an appropriate log
resolution of (X,∆) and we writeKY +Γ = µ∗(KX+∆)+E where µ∗Γ = ∆ and E is
exceptional. Assume that k(KX +∆) is Cartier, then H0(X,OX(mk(KX +∆))) ∼=
H0(Y,OY (mk(KY +Γ))). If we letGm = (1/mk)Fix(mk(KY +Γ))∧Γ be the biggest
divisor contained both in Fix(mk(KY +Γ)) and Γ, then H0(Y,OY (mk(KY +Γ))) ∼=
H0(Y,OY (mk(KY + Γ − Gm))). Showing that RT is finitely generated is then
equivalent to showing that

⊕
m∈N H

0(T,OT (mk(KT + Θm))) is finitely generated,
where Θm = (Γ − T − Gm)|T . It turns out that we may choose T not depending
on m and Y depending on m so that the homomorphism

H0(Y,OY (mk(KY + Γ−Gm)))→ H0(T,OT (mk(KT + Θm)))

is surjective. If we could show that Θm = Θ does not depend on m, then finite
generation of RT would be equivalent to finite generation of R(T,KT + Θ) which
easily follows as we are assuming the MMP in dimension n− 1 = dimT . Unluckily,
this does not follow directly from the construction, however we are able to deduce
that the restricted algebra RT satisfies several important properties that we now
explain:

After an appropriate choice of an integer k > 0 and of a model T of S, we can
assume that

(RT )(k) =
⊕
m∈N

H0(T,OT (mk(KT + Θm)))

is an adjoint algebra. This means that
(1) Θ• is a convex sequence of effective divisors that is

iΘi + jΘj ≤ (i+ j)Θi+j

which admits a limit Θ.
(2) (T,Θ) is klt. Notice that since we are taking a limit, we must consider a

divisor Θ with real coefficients.
(3) If Mm := Mob(mk(KT + Θm)) and Dm = Mm/m, then

D = limDm ∈ DivR(T )

is semiample.
(4) D• is saturated, that is there exists a Q-divisor F with dF e ≥ 0 such that

MobdjDi + F e ≤ jDj ∀i ≥ j � 0.
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It turns out that using ideas of Shokurov, it is easy to show that any adjoint algebra
is finitely generated.

The main idea to show that RT is an adjoint algebra, is to use the extension
result proved in [HM06] and refined in [HM]. These extension results rely on the
techniques of Siu [Siu98] and Kawamata [Kaw99]. For the convenience of the
reader, we include a self contained treatment in section 5.4. The statement of this
extension result is quite technical, and one of the main difficulties is to show that
we may find birational modifications Y and T of X and S that satisfy all of the
necessary hypothesis.

The key property that must be satisfied is that the base locus of mk(KY + Γ)
should not contain any intersection of components of Supp(Γ). It is easy to see that
the base locus of mk(KY + Γ) does not contain T . We may also assume that Γ is
a divisor with simple normal crossings support such that the components of Γ− T
are disjoint. Therefore, we must simply ensure that the base locus of mk(KY + Γ)
does not contain any component of Γ − T nor any component of (Γ − T ) ∩ T . By
canceling common components of Γ− T and (1/mk)Fix(mk(KY + Γ)) we obtain a
Q-divisor Γm such that mkΓm is integral and the base locus of mk(KY +Γm) does
not contain any components of Γ− T . If the base locus of mk(KY + Γm) contains
a component C of (Γ− T ) ∩ T , then we replace Y by its blow up along a C. Then
the corresponding exceptional divisor is contained in both Γ and the the base locus
of mk(KY + Γm). Therefore, we may cancel an appropriate multiple of this divisor
from Γ as above. Repeating this procedure finitely many times we have that the
base locus of mk(KY + Γm) does not contain any intersection of components of
Supp(Γm). Notice that this procedure produces a variety Y = Ym depending on
m, but it does not change the divisor T .

We then define the Q-divisors Θm = (Γm − T )|T and we must check that⊕
m∈N H

0(T,OT (mk(KT + Θm))) is an adjoint algebra. Properties 1 and 2 follow
easily from the construction. Property 3, is also relatively straightforward since
as a consequence of the MMP in dimension n − 1 = dimT , we may assume that
(after passing to a subsequence), the pairs (T,Θm) have a common minimal model
(cf. Section 5.2). Property 4, is more delicate. Roughly speaking, we would
like to deduce this property, by comparing the linear series |mk(KT + Θm)| and
|mk(KY + Γm)|. Since Mob |mk(KY + Γm)| = Mob |mkµ∗(KX + ∆)|, it is easy
to see that a similar saturation property holds for Mob |mk(KY + Γm)| provided
that F is µ-exceptional. We would like to use Kawamata-Viehweg vanishing to
compare these linear series on Y and on T . Unluckily, we may not assume that
Mob(mk(KT + Θm)) is base point free, however there exists a fixed integer s > 0
such that Mob(msk(KT + Θm)) is base point free for all m > 0. We may then also
assume that (for an appropriate choice of Y = Ym) Qm = Mob(msk(KYm + Γm))
is free. It is at this point that we make use of the fact that −(KX + ∆) is ample so
that by Kawamata-Viehweg vanishing, the homomorphism

H0(Y,OY (KY + T + d(j/i)Qi − µ∗(KX + ∆)e))→ H0(T,OT (d(j/i)Qi|T + F |T e))

is surjective where F = KY + T − µ∗(KX + ∆) and F |T = KT − µ∗(KS + B′).
Therefore, one sees that

(Mob(d(j/i)Qi + F e))|T ≥ Mob(d(j/i)Qi|T + F |T e).

It is not hard to see that since F is exceptional, then Mob(jsk(KY + Γ))|T ≥
(Mob(d(j/i)Qi + F e))|T and that for an appropriate choice of Y , we have Mjs ≥
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Mob(jsk(KY +Γ))|T . It also follows easily that if s divides i, then Mob(d(j/i)Qi|T+
F |T e) ≥ Mob(d(js/i)Mi + F |T e). Therefore, condition 4 also holds (for all i, j > 0
divisible by s).

5.1.4. Notation and conventions. We work over the field of complex num-
bers C. A Q-Cartier divisor D on a normal variety X is nef if D · C ≥ 0 for
any curve C ⊂ X. We say that two Q-divisors D1, D2 are Q-linearly equivalent
(D1 ∼Q D2) if there exists an integer m > 0 such that mDi are linearly equivalent.
We say that a Q-Weil divisor D is big if we may find an ample divisor A and an
effective divisor B, such that D ∼Q A+B.

A log pair (X,∆) is a normal variety X and an effective Q-Weil divisor ∆
such that KX + ∆ is Q-Cartier. We say that a log pair (X,∆) is log smooth, if
X is smooth and the support of ∆ is a divisor with simple normal crossings. A
projective morphism g : Y → X is a log resolution of the pair (X,∆) if Y is smooth
and g−1(∆) ∪ { exceptional set of g } is a divisor with normal crossings support.
We write g∗(KX + ∆) = KY + Γ and Γ =

∑
aiΓi where Γi are distinct reduced

irreducible divisors. The log discrepancy of Γi is 1−ai where ai = −a(Γi,KX +∆).
The locus of log canonical singularities of the pair (X,∆), denoted nklt(X,∆), is
equal to the image of those components of Γ of coefficient at least one (equivalently
log discrepancy at most zero). The pair (X,∆) is klt (kawamata log terminal) if for
every (equivalently for one) log resolution g : Y → X as above, the coefficients of Γ
are strictly less than one, that is ai < 1 for all i. Equivalently, the pair (X,∆) is
klt if the locus of log canonical singularities is empty. We say that the pair (X,∆)
is purely log terminal if the log discrepancy of any exceptional divisor is greater
than zero. A log canonical place for the pair (X,∆) is an exceptional divisor of log
discrepancy at most zero and a log canonical centre is the image of a log canonical
place.

We will also write
KY + Γ = g∗(KX + ∆) + E,

where Γ and E are effective, with no common components, g∗Γ = ∆ and E is
g-exceptional. Note that this decomposition is unique.

Note that the group of Weil divisors with rational or real coefficients forms a
vector space, with a canonical basis given by the prime divisors. If A and B are
two R-divisors, then we let (A,B] denote the line segment

{λA+ µB |λ+ µ = 1, λ ≥ 0, µ > 0 }.

Given an R-divisor, ‖D‖ denotes the sup norm with respect to this basis. We
say that D′ is sufficiently close to D if there is a finite dimensional vector space V
such that D and D′ ∈ V and D′ belongs to a sufficiently small ball of radius δ > 0
about D,

‖D −D′‖ < δ.

We recall some definitions involving divisors with real coefficients:

Definition 5.1.11. Let X be a variety.
(1) An R-Weil divisor D is an R-linear combination of prime divisors.
(2) Two R-divisors D and D′ are R-linearly equivalent if their difference is an

R-linear combination of principal divisors.
(3) An R-Cartier divisor D is an R-linear combination of Cartier divisors.
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(4) An R-Cartier divisor D is ample if it is R-linearly equivalent to
∑
aiAi

with Ai ample Cartier divisors, ai ∈ R≥0 and some ai > 0.
(5) An R-divisor D is effective if it is a positive real linear combination of

prime divisors.
(6) An R-Cartier divisor D is big if it is R-linearly equivalent to the sum of

an ample divisor and an effective divisor.
(7) An R-Cartier divisor D is semiample if there is a contraction π : X → Y

such that D is linearly equivalent to the pullback of an ample divisor.

Note that we may pullback R-Cartier divisors, so that we may define the various
flavors of log terminal and log canonical in the obvious way.

Definition 5.1.12. Let B be an integral divisor on X such that |B| 6= ∅. Let
F = FixB be the fixed part of the linear system |B|, and set M = B − F . We may
write

|B| = |M |+ F.

We call M = MobB the mobile part of B, and we call B = M+F the decomposition
of B into its mobile and fixed part. We say that a divisor is mobile if the fixed part
is empty.

We will need the following lemmas:

Lemma 5.1.13. Let T ⊂ Y be a smooth divisor in a smooth variety, B be an
integral divisor on Y such that T 6⊂ Supp(B), |B|T | 6= ∅ and H0(Y,OY (B)) →
H0(T,OT (B)) is surjective. Then

Mob(B|T ) ≤ (Mob(B))|T .

Proof. We write B = M + F and B|T = MT + FT for the decompositions in
to mobile and fixed parts. Since any divisor in |B|T | is the restriction of a divisor
in |B|, then FT ≥ F |T and so

(Mob(B))|T = M |T = MT + FT − F |T ≥MT = Mob(B|T ).

�

Lemma 5.1.14. Let f : Y → X be a birational morphism of smooth varieties,
T ⊂ X a smooth divisor such that (f−1)∗T → T is an isomorphism and B be an
integral divisor on X such that |B| 6= ∅ and T 6⊂ Supp(B). Then

(Mob(f∗B))|T ≤ (Mob(B))|T .

Proof. We write B = M + F and f∗B = M ′ + F ′ for the decompositions in
to mobile and fixed parts. Since every section of f∗OY (B) is obtained by pulling
back a section of OY (B), one has that F ′ ≥ f∗F and so that identifying T and
(f−1)∗T then

(Mob(B))|T = M |T = (f∗M)|T = (f∗B − f∗F )|T ≥
(f∗B − F ′)|T = M ′|T = (Mob(f∗B))|T .

�

Lemma 5.1.15. Let T ⊂ Y be a smooth divisor in a smooth variety, B be an
integral divisor on Y such that T 6⊂ Supp(B), |B|T | 6= ∅, Fix(B|T ) has simple
normal crossings and H0(Y,OY (B)) → H0(T,OT (B)) is surjective. Then, there
exists a birational map µ : Y ′ → Y given by a finite sequence of blow ups along the
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(strict transforms of the) irreducible components of Fix(B|T ) such that (identifying
T with its strict transform) we have Mob(µ∗B)|T = Mob(B|T ).

Proof. If Fix(B)|T = Fix(B|T ) we are done. The components of Fix(B|T )−
Fix(B)|T are contained in the base locus of MobB so that if µ1 : Y1 → Y is the
blow up of Y along a component C of Fix(B|T ), then the exceptional divisor is
contained in the base locus of µ∗1 MobB. It follows that (identifying T with its
strict transform), we have Fix(µ∗1B|T ) = Fix(B|T ) so that

0 ≤ Fix(µ∗1B|T )− Fix(µ∗1B)|T ≤ Fix(B|T )− Fix(B)|T − C.
It is clear that after repeating this procedure finitely many times, we obtain a
birational map µ : Y ′ → Y such that Fix(µ∗B|T )− Fix(µ∗B)|T = 0. �

5.2. The real minimal model program

We begin by recalling the following well known small generalisation of the base
point free theorem [KMM87, Theorem 7.1]:

Theorem 5.2.1 (Base Point Free Theorem). Let (X,∆) be a Q-factorial klt
pair, where ∆ is an R-divisor. Let f : X → Z be a projective morphism, where Z
is affine and normal, and let D be a nef R-divisor, such that aD− (KX +∆) is nef
and big, for some positive real number a. Then D is semiample.

Assumption 5.2.2. Conjectures 5.1.5 and 5.1.6 hold. That is, if (X,∆) is a
klt Q-factorial pair of dimension n, where ∆ is a Q-divisor, then KX +∆ flips exist
and there is no infinite sequence of KX + ∆ flips.

We will use the following result which cf. 2.1-2.3 of [KMM94].

Lemma 5.2.3. Let (X,∆) be a Q-factorial pair with klt singularities, ∆ ∈
DivQ(X) and f : X → Z a projective morphism to a normal variety. Let W be
an effective Q-divisor such that KX + ∆ is not relatively nef, but KX + ∆ + W
is relatively nef. Then there is a (KX + ∆) extremal ray R over Z and a rational
number 0 < λ ≤ 1 such that KX + ∆ + λW is relatively nef but trivial on R.

Lemma 5.2.4. Let X be a Q-factorial normal variety, f : X → Z a projective
morphism to a normal variety, ∆ ∈ DivQ(X) an effective divisor, A ∈ DivQ(X) an
ample divisor and α ∈ R>0 such that (X,∆+αA) is klt and κ(KX+∆+aA) ≥ 0 for
all rational numbers a > α. If Assumption 5.2.2 holds, then there exists a rational
map φ : X 99K Y over Z given by a finite sequence of (KX + ∆ + αA)-negative
divisorial contractions and flips over Z such that KY + φ∗(∆ + αA) is relatively
nef.

Proof. Let ∆t = ∆ + tA. Fix t > α such that KX + ∆t is nef. If KX + ∆α is
not nef, then KX +∆α′ is not nef for some rational number α < α′ < t. Therefore,
there is a (KX + ∆α′)-extremal ray R and a rational number α′ < t′ ≤ t such that
KX + ∆t′ is nef and (KX + ∆t′) · R = 0. It is easy to see that R is extremal for
KX + ∆ and KX + ∆α. Since KX + ∆t′ is big, R defines a divisorial contraction
or a flip φ : X 99K X ′. We replace t by t′, X by X ′, ∆ by φ∗∆ and A by φ∗A.
Then A is no longer ample, but KX + ∆t is nef and so we may repeat the above
procedure. Since each birational map produced as above, is a step of the KX + ∆
MMP, it follows that this procedure terminates after a finite number of steps. The
lemma now follows easily. �
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Proposition 5.2.5. Let X be a Q-factorial normal variety, f : X → Z be a
projective morphism to a normal variety, ∆ ∈ DivR(X) an effective divisor such
that (X,∆) is klt and KX + ∆ is relatively big. If Assumption 5.2.2 holds, then
there exists a rational map φ : X 99K Y over Z given by a finite sequence of KX+∆
divisorial contractions over Z and flips over Z such that KY +φ∗∆ is relatively nef
and big.

Proof. Since KX + ∆ is big, we have that KX + ∆ ∼R A + E where A is
an ample R-divisor and E is an effective R-divisor. For 0 < ε � 1, we have that
KX + ∆ + ε(A+ E) is klt. We let ∆′ = ∆ + ε(A+ E), then the (KX + ∆′)-MMP
is equivalent to the (KX + ∆)-MMP.

It is easy to see that we may choose ∆′′ ∈ DivQ(X) with the same support
as ∆ + E such that ||∆ + εE − ∆′′|| � 1. In particular, we may assume that
A′′ = ∆ + εE − ∆′′ + εA is ample. We then apply Lemma 5.2.4 to the pair
(X,∆′′ +A′′) and the proposition follows. �

Theorem 5.2.6. Let (X,∆) be a Q-factorial klt pair of dimension n, such that
KX + ∆ is R-Cartier and big. Let f : X → Z be any projective morphism, where
Z is normal. Fix a finite dimensional vector subspace V of the space of R-divisors
containing ∆.

If Assumption 5.2.2 holds in dimension n, then there are finitely many bira-
tional maps ψi : X 99K Wi, 1 ≤ i ≤ l over Z, such that for every divisor Θ ∈ V
sufficiently close to ∆, there is an integer 1 ≤ i ≤ l with the following properties:

(1) ψi is the composition of a sequence of (KX+Θ)-negative divisorial contrac-
tions and birational maps over Z, which are isomorphisms in codimension
two,

(2) Wi is Q-factorial, and
(3) KWi + ψi∗Θ is relatively semiample.

Moreover, there is a positive integer s such that

(4) if r(KX + Θ) is integral then sr(KWi
+ ψi∗Θ) is base point free.

Proof. If Θ is sufficiently close to ∆, then KX + Θ is big, so that by Theo-
rem 5.2.1, (3) is equivalent to the weaker condition that KWi + ψi∗Θ is nef. We
let φ : X 99K Y be the rational map over Z defined in Proposition 5.2.5. Then
KY +φ∗∆ is relatively nef and big. It is easy to see that we may replace (X,∆) by
(Y, φ∗∆) and hence we may assume that KX + ∆ is relatively nef and big.

By Theorem 5.2.1 KX + ∆ is relatively semiample. Let ψ : X → W be the
corresponding contraction over Z. Then there is an ample R-divisor H on W such
that KX + ∆ = ψ∗H. Thus, if Θ is sufficiently close to ∆, writing

KX + Θ = KX + ∆ + (Θ−∆) = ψ∗H + (Θ−∆),

one sees that if KX + Θ is relatively nef over W , then it is relatively nef over Z.
So, replacing Z by W , we may assume that f is birational and KX + ∆ is

relatively R-linearly equivalent to zero. Let B be the closure in V of a ball with
radius δ centred at ∆. If δ is sufficiently small, then for every Θ ∈ B, KX + Θ is
klt. Pick Θ a point of the boundary of B. Since KX + ∆ is relatively R-linearly
equivalent to zero, note that for every curve C (contracted by X → Z),

(KX + Θ) · C < 0 iff (KX + Θ′) · C < 0, ∀ Θ′ ∈ (∆,Θ].
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In particular every step of the (KX + Θ)-MMP over Z is a step of (KX +
Θ′)-MMP over Z, for every Θ′ ∈ (∆,Θ]. Since we are assuming existence and
termination of flips, we have a birational map ψ : X 99K W over Z, such that
KW + ψ∗Θ is nef, and it is clear that KW + ψ∗Θ′ is nef, for every Θ′ ∈ (∆,Θ].

At this point we want to proceed by induction on the dimension of B. To
this end, note that as B is compact and ∆ is arbitrary, our result is equivalent to
proving that (3) holds in B. By what we just said, this is equivalent to proving
that (3) holds on the boundary of B, which is a compact polyhedral cone (since we
are working in the sup norm) and we are done by induction on the dimension of B.

We now prove (4). As Wi has rational singularities and it is Q-factorial, it
follows that the group of Weil divisors modulo Cartier divisors is a finite group.
Thus there is a fixed positive integer si such that if r(KX + Θ) is integral, then
sir(KWi +ψi∗Θ) is Cartier. By Kollár’s effective base point free theorem, [Kol93],
there is then a positive integer M such that Msir(KWi + ψi∗Θ) is base point free.
If we set s to be M times the least common multiple of the si, then this is (4). �

The key consequence of Theorem 5.2.6 is:

Corollary 5.2.7. Let (X,∆) be a klt Q-factorial pair of dimension n, where
KX + ∆ is a big R-divisor. Let f : X → Z be a projective morphism to a normal
affine variety.

Fix a finite dimensional vector subspace V of the space of R-divisors containing
∆. If KX + ∆ is relatively big, and Assumption 5.2.2 holds in dimension n, then
there is a smooth model g : Y → X, a simple normal crossings divisor Γ ⊂ Y and
a positive integer s, such that if π : Y → Z is the composition of f and g then:

(1) If the divisor Θ in V is sufficiently close to ∆, and if r is a positive integer
such that r(KX + Θ) is integral, then the moving part of g∗(rs(KX + Θ))
is base point free and the union of its fixed part with g∗Θ is contained in
the support of Γ.

(2) If k is a positive integer, Θ• is a convex sequence with limit ∆, mk(KX +
Θm) is integral, Pm = Mob(mskg∗(KX + Θm)) and Dm = Pm/m, then
D = limDm exists and is semiample.

Proof. Let ψi : X 99K Wi be the models, whose existence is guaranteed by
Theorem 5.2.6, and let g : Y → X be any birational morphism which resolves the
indeterminacy of ψi, for 1 ≤ i ≤ l. Let φi : Y → Wi be the induced birational
morphisms, so that we have commutative diagrams

Y
φi

!!B
BB

BB
BB

B
g

��~~
~~

~~
~~

X
ψi //_______ Wi.

We may assume that Y is a log resolution of (Wi, (ψi)∗Θ) for 1 ≤ i ≤ l.
Let Θ be sufficiently close to ∆. Then for some i, KWi + ψi∗Θ is semiample.

Suppressing the index i, we may write

g∗(KX + Θ) = φ∗(KW + ψ∗Θ) + E,

where E is effective and φ-exceptional.
Suppose that r(KX + Θ) is integral. Then the moving part of g∗(rs(KX + Θ))

is equal to the moving part of φ∗(rs(KW +ψ∗Θ)), and we can apply Theorem 5.2.6



5.3. FINITE GENERATION 77

to conclude that there is a fixed s such that the moving part of g∗(rs(KX + Θ)) is
base point free and (1) follows.

For (2), notice that by passing to a subsequence, we may assume that there is
a fixed integer i such that

Pm = φ∗i
(
msk(KWi + (ψi)∗Θm)

)
and so that D = skφ∗i

(
KWi + (ψi)∗Θ

)
which is nef and hence semiample. �

5.3. Finite generation

5.3.1. Generalities on Finite generation. In this section we give some of
the basic definitions and results concerning finite generation

Let f : X → Z be a projective morphism of normal varieties, where Z is affine.
Let A be the coordinate ring of Z. Recall Definition 2.3.1 that a function algebra
on X is a graded subalgebra

R =
⊕
i∈N

Ri

of k(X)[T ] such that R0 = A and each Ri is a coherent A-module. We will refer
to a function algebra simply as a graded A-algebra.

Definition 5.3.1. Let R be any graded A-algebra. A truncation of R is any
A-algebra of the form

R(d) =
⊕
m∈N

Rmd,

for a positive integer d > 0.

Then, it is known from Chapter 2 that:

Lemma 5.3.2. R is finitely generated if and only if there is a positive integer d
such that R(d) is finitely generated.

Definition 5.3.3. A divisorial algebra is a graded A-algebra of the form⊕
m∈N

H0
(
X,OX(mB)

)
(or equivalently of the form

⊕
m∈N f∗OX(mB)) where B is an integral Weil divisor

on X.

We have:

Lemma 5.3.4. Let X be a normal variety and let R and R′ be two divisorial
algebras associated to divisors D and D′.

If there exist positive integers a and a′ such that aD ∼ a′D′ then R is finitely
generated iff R′ is finitely generated.

Proof. Clear, since R and R′ have the same truncation. �

We want to restrict a divisorial algebra to a prime divisor S:

Lemma 5.3.5. Let S be a reduced irreducible divisor on X. If the algebra R is
finitely generated then so is the restricted algebra RS. Conversely, if S is linearly
equivalent to a positive rational multiple of B, where B is an effective divisor which
does not contain S and the restricted algebra RS is finitely generated, then so is R.

Proof. See Section 2.3.1. �
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The restricted algebra is not necessarily divisorial. However we will show that
if X → Z is a pl flipping contraction, then on an appropriate model of X, the
corresponding algebra satisfies several key properties (it is in fact an adjoint algebra
in the sense of Definition 5.3.10 below).

Definition 5.3.6. We say that a sequence of divisors B• is additive if

Bi +Bj ≤ Bi+j ,

we say that it is convex if

i

i+ j
Bi +

j

i+ j
Bj ≤ Bi+j ,

and we say that it is bounded if there is a divisor B such that

Bi ≤ B.

We will also say that a sequence B• is eventually convex if there is an integer m0

such that
i

i+ j
Bi +

j

i+ j
Bj ≤ Bi+j ∀i, j ≥ m0.

It is clear that any bounded (eventually) convex sequence admits a limit. When
it is clear from the context, we will often abuse the above definitions and refer to
an eventually convex sequence simply as a convex sequence.

Definition 5.3.7. Let R be the graded A-algebra associated to the additive
sequence B•. Let

Bm = Mm + Fm,

be the decomposition of Bm into its mobile and fixed parts. The sequence of divisors
M• is called the mobile sequence and the sequence of Q-divisors D• given by

Di =
Mi

i
,

is called the characteristic sequence.

Clearly the mobile sequence is additive and the characteristic sequence is con-
vex. The key point is that finite generation of an algebra only depends on the
mobile part in each degree, even up to a birational map:

Lemma 5.3.8. Let R be the graded A-algebra on X associated to an additive
sequence B•. Let g : Y → X be any birational morphism and let R′ be the graded
A-algebra on Y associated to an additive sequence B′

•.
If the mobile part of g∗Bi is equal to the mobile part of B′

i then R is finitely
generated iff R′ is finitely generated.

Proof. Clear. �

Lemma 5.3.9. Let R be the graded A-algebra on X associated to an additive
sequence B• and let D be the limit of the characteristic sequence.

If D is semi-ample and D = Dk for some positive integer k then R is finitely
generated.
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Proof. Passing to a truncation, we may assume that D is free and D = D1.
But then

mD = mD1 = mM1 ≤Mm = mDm ≤ mD,
and so D = Dm, for all positive integers m. Let h : X → W be the contraction
over Z associated to M1, so that M1 = h∗H, for some very ample divisor on W .
We have g∗Mm = mg∗M1 = h∗(mH) and so the algebra R is nothing more than
the coordinate ring of W under the embedding of W in Pn given by H, which is
easily seen to be finitely generated by Serre vanishing. �

5.3.2. Adjoint Algebras. The results in this section are due to Shokurov
[Sho03] and are explained in Chapter 2. We restate these results in a convenient
form, without the use of b-divisors.

Definition 5.3.10. Let Y be a smooth variety, Z an affine variety and π : Y →
Z be a projective morphism. An adjoint algebra is an algebra of the form

R =
⊕
m∈N

H0(Y,OY (Bm))

where B• is an additive sequence such that
(1) there exists an integer k > 0 such that Bm = mk(KY + ∆m) where ∆m

is an effective, bounded and eventually convex sequence of Q-divisors on
Y with limit ∆ ∈ DivR(Y ) such that (Y,∆) is klt,

(2) let Mm = Mob(Bm) be the mobile sequence and Dm = Mm/m the char-
acteristic sequence. Then Dm is saturated, that is there exists a Q-divisor
F on Y with dF e ≥ 0 such that

Mob(djDi + F e) ≤ jDj

for all i ≥ j � 0,
(3) D = limDm is semiample.

Lemma 5.3.11 (Diophantine Approximation). Let Y be a smooth variety and
let π : Y → Z be a projective morphism, where Z is affine and normal. Let D be a
semiample R-divisor on Y . Let ε > 0 be a positive rational number.

Then there is an integral divisor M and a positive integer m such that
(1) M is base point free,
(2) ‖mD −M‖ < ε, and
(3) If mD ≥M then mD = M .

Proof. Immediate from Lemma 2.4.12. �

Theorem 5.3.12. Let Y be a smooth variety and π : Y → Z a projective mor-
phism, where Z is affine and normal. Let R be an adjoint algebra on Y .

Then R is finitely generated.

Proof. Let Di = (1/i)Mi and D = limDi. If G = SuppD, then there exists
a number ε > 0 such that dF − εGe ≥ 0. By Lemma 5.3.11, there is a positive
integer m, an integral divisor M such that ||mD −M || ≤ ε and if mD ≥ M , then
mD = M . Since

mD + F = M + (mD −M) + F ≥M + F − εG,
we have that

Mob(dmD + F e) ≥M.
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Since the sequence Di is saturated, we have that for all i ≥ m� 0,

Mob(dmDi + F e) ≤ mDm.

Taking the limit as i goes to infinity, we have

M ≤ Mob(dmD + F e) ≤ mDm ≤ mD.

It follows that these inequalities are all equalities and so D = Dm. The assertion
now follows from Lemma 5.3.9. �

5.4. Multiplier ideal sheaves and extension results

5.4.1. Definition and first properties of multiplier ideal sheaves. We
begin by recalling the usual definition of multiplier ideal sheaves and some proper-
ties that will be needed later on:

Definition 5.4.1. Let Y be a smooth variety and D an effective Q-divisor and
µ : W → Y a log resolution of the pair (Y,D). The multiplier ideal sheaf of D is
defined as

J (Y,D) = J (D) = µ∗OW (KW/Y − xµ∗Dy).

Note that the pair (Y,D) is klt iff the multiplier ideal sheaf is equal to OY .
Another key property of multiplier ideal sheaves is that they are independent of the
log resolution. Multiplier ideal sheaves have the following basic property [Tak06,
Example 2.2 (1)]:

Lemma 5.4.2. Let (Y,∆) be a klt pair, where Y is a smooth variety, and let D
be any effective Q-divisor. Let σ ∈ H0(Y, L) be any section of a line bundle L, with
zero locus Σ ⊂ Y .

If D − Σ ≤ ∆ then σ ∈ H0(Y, L⊗ J (D)).

Proof. Let µ : W → Y be a log resolution of the pair (Y,D + ∆). As Σ is
integral

xµ∗Dy− µ∗Σ ≤ xµ∗∆y,

and as the pair (Y,∆) is klt,

KW/Y − xµ∗∆y ≥ 0.

Thus

µ∗σ ∈ H0
(
W,µ∗L(−µ∗Σ)

)
⊂

⊂ H0
(
W,µ∗L(−µ∗Σ +KW/Y − xµ∗∆y)

)
⊂

⊂ H0
(
W,µ∗L(KW/Y − xµ∗Dy)

)
.

Pushing forward via µ, we get

σ ∈ H0(Y, L⊗ J (D)).

�

We also have the following important vanishing result, which is an easy conse-
quence of Kawamata-Viehweg vanishing:
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Theorem 5.4.3. (Nadel Vanishing) Let Y be a smooth variety and let ∆ be
an effective divisor. Let π : Y → Z be any projective morphism and let N be any
integral divisor such that N −∆ is relatively big and nef.

Then
Riπ∗(OY (KY +N)⊗ J (∆)) = 0, for i > 0.

Corollary 5.4.4. Let Y be a smooth variety and let ∆ =
∑
δi∆i be a Q-

divisor with simple normal crossings support and 0 ≤ δi ≤ 1. Let π : Y → Z be any
projective morphism and let N be any integral divisor such that N −∆ is relatively
big and nef and its restriction to any intersection ∆i0 ∩ . . . ∩∆it of components of
x∆y is relatively big.

Then
Riπ∗OY (KY +N) = 0, for i > 0.

Proof. We proceed by induction on the number of components of x∆y and on
the dimension of Y . If x∆y = 0, the claim follows from Nadel’s vanishing theorem
above. Therefore, we may assume that there is an irreducible divisor S ⊂ x∆y. We
consider the short exact sequence

0→ OY (KY +N − S)→ OY (KY +N)→ OS(KS + (N − S)|S)→ 0.

By induction, one sees that Riπ∗OY (KY + N − S) = 0 and Riπ∗OS(KS + (N −
S)|S) = 0 for i > 0 and hence Riπ∗OY (KY +N) = 0 as required. �

We now wish to generalise the definition of multiplier ideal sheaves to the
setting of log pairs. To this end, we fix some notation:

Assumption 5.4.5. We consider a smooth log pair (Y,∆) where every compo-
nent of ∆ has coefficient one. Given a log resolution µ : W → Y , we will write

µ∗(KY + ∆) = KW + Θ− E
where Θ and E are effective divisors with no common components and µ∗Θ = ∆.

Note that W is smooth, Θ + E has simple normal crossings support and that
E is µ-exceptional.

Definition 5.4.6. Let L be a line bundle on Y and V ⊂ H0(Y, L) be a non-
zero vector subspace such that there is a divisor D ∈ |V | which does not contain
any log canonical centre of (Y,∆) (equivalently D does not contain any subvariety
obtained by intersecting components of Γ). Pick a log resolution of |V |, i.e. a
resolution µ : W → Y such that µ∗|V | = |V ′|+ F where |V ′| is base point free and
F + Θ + Exc(µ) has simple normal crossings support. For any rational number
c > 0, the multiplier ideal sheaf J∆,c·|V | is defined by the following formula

J∆,c·|V | = µ∗OW (KW/Y + Θ− µ∗∆− xcFy).

Remark 5.4.7. When ∆ = 0, this is the usual definition of multiplier ideal
sheaf i.e. J0,c·|V | = J (Y, c · |V |).

Remark 5.4.8. Note that any component of the strict transform of ∆ is au-
tomatically a component of Θ. By the Resolution Lemma of [Sza94], we may in
fact choose a resolution which is a sequence of blow ups along smooth centres not
containing any of the log canonical centres of (Y,∆), and therefore we may assume
in this case that Θ = (µ−1)∗∆.
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Proposition 5.4.9. The multiplier ideal sheaf J∆,c·|V | (when defined) does not
depend on the choice of the log resolution µ : W → Y .

Proof. This is an easy consequence of [HM06, Lemma 3.4]. �

Lemma 5.4.10. For any divisor 0 ≤ ∆′ ≤ ∆, we have

J∆,c·|V | ⊂ J∆′,c·|V |.

In particular J∆,c·|V | ⊂ J (Y, c · |V |).

Proof. Let F be an exceptional divisor extracted by µ. Then the coefficient
of F in

(KW + Θ)− µ∗(KY + ∆),
is either the log discrepancy minus one, whenever the log discrepancy is at least
one, or it is zero. In particular the coefficient of F is an increasing function of the
log discrepancy of F . It follows easily that letting KW + Θ′ − E′ = µ∗(KY + ∆′)
where Θ′ and E′ are effective and have no common components, then

(KW + Θ)− µ∗(KY + ∆) ≤ (KW + Θ′)− µ∗(KY + ∆′),

which in turn gives the inclusion of ideal sheaves. �

Lemma 5.4.11. If L is a divisor such that for some p > 0, no log canonical
centre of (Y,∆) is contained in the base locus of |pL|. Then

J∆, c
p ·|pL| ⊂ J∆, c

pk ·|pkL|

holds for every integer k > 0.

Proof. This is analogous to [Laz04, Lemma 11.1.1]. �

Definition 5.4.12. If L is a divisor such that for some m > 0, no log canonical
centre of (Y,∆) is contained in the base locus of |mL|. The asymptotic multiplier
ideal sheaf J∆,c·||L|| associated to Y , ∆, c and L is then defined as the unique
maximal member of the family of ideals {J∆, c

p ·|pL|}p∈mN and so

J∆,c·||L|| = J∆, c
p ·|pL| for all p sufficiently divisible.

It is easy to see that J∆,c·||L|| does not depend on m. We now fix some further
notation:

Assumption 5.4.13. (1) T ⊂ Y is a smooth divisor in a smooth variety,
(2) ∆ a reduced divisor on Y not containing T such that (Y, T + ∆) is log

smooth,
(3) given a log resolution µ : W → Y , we will now write

µ∗(KY + T + ∆) = KW + T ′ + Θ− E

where T ′ is the strict transform of T , Θ and E are effective, T ′ + Θ and
E have no common components and µ∗Θ = ∆,

(4) Z is an affine normal variety, and π : Y → Z is a projective morphism.

Since we are assuming that Z is affine, for any coherent sheaf F on Y , we
may identify π∗F with H0(Y,F). We will denote restriction to T via subscripts.
For example DT = D|T and if T is not contained in the base locus of |L|, then
|L|T ⊂ |LT | denotes the restriction of the linear series |L| to T .
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Definition 5.4.14. If L is a divisor, such that for some m > 0, no log canonical
centre of (Y, T+∆) is contained in the base locus of |mL|. The asymptotic multiplier
ideal sheaf

J∆T ,c·||L||T ⊂ OT
associated to ∆, c and L is then defined as the unique maximal member of the
family of ideals {J∆T ,

c
p ·|pL|T }p∈mN.

Lemma 5.4.15. If L is a divisor such that for some m > 0, no log canonical
centre of (Y, T + ∆) is contained in the base locus of |mL|, then

J∆T ,||L||T ⊂ J∆T ,||LT ||.

Proof. This follows easily from the inclusion of linear series |pL|T ⊂ |pLT |.
�

Lemma 5.4.16. Let L be a divisor such that for some m > 0, no log canonical
centre of (Y, T + ∆) is contained in the base locus of |mL|. Then

(1) J∆,c1·||L|| ⊂ J∆,c2·||L||, for any rational numbers c1 ≥ c2,
(2) J∆,c·||L|| ⊂ J∆,c·||L+H||, for any semiample divisor H,
(3) Im

(
π∗OY (L)→ π∗OT (L)

)
⊂ π∗J∆T ,||L||T (LT ).

Proof. (1) and (2) are clear. We may assume that J∆T ,||L||T = J∆T ,
1
k |kL|T

and that µ : W → Y is chosen so that µ∗|kL| = |Vk| + Fk and µ∗|L| = |V | + F
where F +Fk +(µ−1)∗T +Exc(µ) has simple normal crossing support and |V |, |Vk|
are base point free. Since kF ≥ Fk one sees that there are inclusions

OW (µ∗L− F ) ⊂ OW (µ∗L− xFk/ky) ⊂

OW (µ∗L− xFk/ky + E) ⊂ OW (µ∗L+ E).

We now push forward via π ◦ µ. Since |V | = µ∗|L| − F and E is effective and
µ-exceptional, both the left and right hand sides push forward to π∗OY (L). So the
image of π∗OY (L) is equal to the image of

(π ◦ µ)∗OW (µ∗L+ E − xFk/ky).

Since ET ′ = KT ′/T +ΘT ′−µ∗∆T , one sees that the image of π∗OY (L) is contained
in

(π ◦ µ)∗OT ′(µ∗LT + ET ′ − xFk/ky) = π∗J∆T ,||L||T (LT ).

�

Lemma 5.4.17. Suppose that L is a divisor on Y such that

(1) L ≡ A+B where A is an ample Q-divisor, and B is an effective Q-divisor,
(2) there exists an integer m > 0 such that the base locus of |mB| contains

no log canonical centres of (Y, T + ∆).

Then

π∗J∆T ,||L||T (KT + ∆T + LT ) ⊂
⊂ Im

(
π∗OY (KY + T + ∆ + L)→ π∗OT (KT + ∆T + LT )

)
.
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Proof. For any k sufficiently big and divisible we consider µ : W → Y a log
resolution of |kL| so that in particular µ∗|kL| = |Vk|+ Fk where |Vk| is base point
free. We write µ∗(KY + ∆ + T ) = KW + T ′ + Θ − E where T ′ := (µ−1)∗T . We
have

KT ′ + ΘT ′ − ET ′ = µ∗(KT + ∆T )

where ΘT ′ , ET ′ are effective with no common components. Therefore

J∆T ,||L||T = µ∗OT ′(ET ′ − xFk/ky).

There is a short exact sequence

0→ OW (KW + Θ + µ∗L− xFk/ky)→
→ OW (KW + T ′ + Θ + µ∗L− xFk/ky)→

→ OT ′(KT ′ + ΘT ′ + (µ∗L− xFk/ky)T ′)→ 0.

Claim 5.4.18. If k is sufficiently big and divisible, then

R1(π ◦ µ)∗
(
OW (KW + Θ + µ∗L− xFk/ky)

)
= 0.

Proof of the claim. As in (5.4.8), we may assume that Θ = (µ−1)∗∆. Re-
call that µ∗|kL| = |Vk| + Fk and |Vk| is base point free. We may assume that
Fk ≤ kµ∗B so that Fk and Θ have simple normal crossings support and no com-
mon component and Vk ≥ kµ∗A. Therefore Vk/k is relatively nef and big and Vk/k
restricted to any intersection Θi0 ∩ . . . ∩ Θit of components of Θ is relatively big.
The assertion now follows by applying Corollary 5.4.4 with N = Θ+µ∗L− xFk/ky
and ∆ = Θ + {Fk/k} so that N −∆ ∼Q Vk/k.

�

Since µ∗OW (KW +T ′+Θ+µ∗L) = OY (KY +T +∆+L), we have a surjective
homomorphism

π∗OY (KY + T + ∆ + L) ⊃ (π ◦ µ)∗OW (KW + T ′ + Θ + µ∗L− x
Fk
k

y)

→ (π ◦ µ)∗OT ′(KT ′ + Θ + µ∗L− x
Fk
k

y) = π∗J∆T ,||L||T (KT + ∆T + LT ),

whence the assertion. �

5.4.2. Extending Sections.

Theorem 5.4.19. Let T ⊂ Y be a smooth divisor in a smooth variety. Let H
be a sufficiently very ample divisor and set A = (dimY + 1)H. Assume that

(1) B is an effective Q-divisor such that T + B has simple normal crossings
support and (Y, T +B) is log canonical,

(2) k is a positive integer such that kB is integral,
(3) Given L = k(KY + T + B), then there exists an integer p > 0 such that

no log canonical centre of (Y, T + dBe) is contained in the base locus of
|pL|.

Then
J||mLT +HT || ⊂ JdBT e,||mL+H+A||T , ∀m > 0.
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Proof. We follow the argument of [HM06] which in turn is based on [Kaw99].
We proceed by induction on m.

By assumption mLT +HT is big, and there exists an integer p > 0 such that no
log canonical centre of (Y, T+dBe) is contained in the base locus of |p(mL+H+A)|
(for any m > 0). Therefore, both sides of the proposed inclusion are well-defined.

If m = 0, the result is clear. Assume the result for m. We have that

B =
∑

bjBj where 0 < bj =
βj
k
≤ 1.

We define

∆i =
∑
j

δi(j)Bj where δi(j) =

{
0 if 1 ≤ i ≤ k − βj ,
1 if k − βj < i ≤ k + 1.

With this choice of ∆i, we have

0 ≤ ∆1 ≤ ∆2 ≤ ∆3 ≤ · · · ≤ ∆k = ∆k+1 = dBe,

and every coefficient of ∆i is one. Set

Di = KY + T + ∆i and D≤i =
∑
j≤i

Dj .

With this choice of Di, we have L = D≤k. Possibly replacing H by a multiple, we
may assume that Hi = D≤i−1 + ∆i + H and Ai = H + D≤i + A are ample, for
1 ≤ i ≤ k. We are now going to prove, by induction on i, that

J||mLT +HT || ⊂ J∆i+1
T ,||mL+D≤i+H+A||T where 0 ≤ i ≤ k,

where we adopt the convention that D≤0 = 0.
Since ∆1 ≤ dBe, it follows by Lemma 5.4.10 that

JdBT e,||mL+H+A||T ⊂ J
1
∆1

T ,||mL+H+A||T ,

and so the case i = 0 follows from the inclusion

J||mLT +HT || ⊂ JdBT e,||mL+H+A||T ,

which we are assuming by induction on m. Assume the result up to i− 1. Then

H0
(
T,J||mLT +HT ||(mL+D≤i +H +A)

)
⊂ H0

(
T,J∆i

T ,||mL+D≤i−1+H+A||T (mL+D≤i +H +A)
)

= H0
(
T,J∆i

T ,||mL+D≤i−1+H+A||T (mL+D≤i−1 +H +A+KT + ∆i
T )

)
⊂ Im

(
H0

(
Y,OY (mL+D≤i +H +A)

)
→ H0

(
T,OT (mL+D≤i +H +A)

))
⊂ H0

(
T,J∆i+1

T ,||mL+D≤i+H+A||T (mL+D≤i +H +A)
)
,

where we use induction to get the inclusion of the first line in the second line,
Lemma 5.4.17 to get the inclusion of the third line in the fourth line (recall that
D≤i−1+H+A = Ai−1 is ample and there is an integer p > 0 such that the base locus
of pmL contains no log canonical centre of (Y, T + ∆i)), and (3) of Lemma 5.4.16
to get the inclusion of the fourth line in the fifth line. By an easy generalisation of
[Kaw99, Lemma 3.2], the coherent sheaf

J||mLT +HT ||(mL+D≤i +H +A) = J||mLT +HT ||(mL+Hi +A+KT ),
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is generated by global sections; this implies that

J||mLT +HT || ⊂ J∆i+1
T ,||mL+D≤i+H+A||T .

This completes the induction on i. It follows that

J||mLT +HT || ⊂ JdBT e,||(m+1)L+H+A||T .

But then by (1) and (2) of Lemma 5.4.16, one sees that

J||(m+1)LT +HT || ⊂ J||mLT +HT || ⊂ JdBT e,||(m+1)L+H+A||T ,

and this completes the induction on m and the proof. �

Corollary 5.4.20. With the same notation and assumptions of Theorem 5.4.19.
For any positive integer m, the image of the natural homomorphism

H0
(
Y,OY (mL+H +A)

)
→ H0

(
T,OT (mL+H +A)

)
contains the image of H0

(
T,OT (mL + H)

)
considered as a sub-vector space of

H0
(
T,OT (mL+H +A)

)
by the inclusion induced by any section in H0(Y,OY (A))

not vanishing along T .

Proof. We fix a section σ ∈ H0
(
Y,OY (A)

)
not vanishing on T . Then we have

H0
(
T,J||mLT +HT ||(mL+H)

)
· σ ⊂ H0

(
T,J||mLT +HT ||(mL+H +A)

)
.

As we have seen in the proof of Theorem 5.4.19, H0(T,J||mLT +HT ||(mL+H +A))
is contained in the image of H0(Y,OY (mL +H + A)). The assertion now follows
since

H0
(
T,OT (mLT +HT )

)
= H0

(
T,J||mLT +HT ||(mL+H)

)
.

�

Theorem 5.4.21. Let T ⊂ Y be a smooth divisor in a smooth variety and let
π : Y → Z be a projective morphism, where Z is normal and affine. Let m be a
positive integer, and let L be a Cartier divisor on Y , such that L ∼Q m(KY +T+B).
Assume that

(1) T is not contained in the support of B, (Y, T + B) is log smooth and
xBy = 0 so that (Y, T +B) is purely log terminal,

(2) B ∼Q A + C, where A is an ample Q-divisor and C is an effective Q-
divisor, which does not contain T ,

(3) there exists an integer p > 0 such that no log canonical centre of (Y, T +
dBe) is contained in the base locus of |pL|.

Then the natural restriction homomorphism

H0
(
Y,OY (L)

)
→ H0

(
T,OT (L)

)
,

is surjective.

Proof. By Corollary 5.4.20, one sees that there exists a sufficiently ample
divisor H not containing T such that, for all l > 0 sufficiently divisible, the natural
homomorphism

H0
(
Y,OY (lL+H)

)
→ H0

(
T,OT (lL+H)

)
contains the image of H0

(
T,OT (lL)

)
, considered as a subspace of H0

(
T,OT (lL+

H)
)

by the inclusion induced by HT .
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For any sufficiently small rational number ε > 0, we have that KY + T + (1−
ε)B + εA+ εC is purely log terminal. Let A′ = εA, and B′ = (1− ε)B + εC, then
A′ +B′ ∼Q B and KT +A′T +B′

T is klt.
Fix a non-zero section

σ ∈ H0(T,OT (L)).

Let Σ be the zero locus of σ. As observed above, we may find a divisor Gl ∼ lL+H,
such that

GlT = lΣ +HT .

If we set

N = L−KY − T and Θ =
m− 1
ml

Gl +B′,

then
N ∼Q (m− 1)(KY + T +B) +A′ +B′.

Since

N −Θ ∼Q A′ +B′ − m− 1
ml

H −B′ = A′ − m− 1
ml

H,

is ample for sufficiently large number l, it follows that,

H1(Y,OY (L− T )⊗ J (Θ)) = H1(Y,OY (KY +N)⊗ J (Θ)) = 0,

by Nadel’s vanishing Theorem 5.4.3. Consider now µ : W → Y , a log resolution of
(Y, T + Θ) and let T ′ = (µ−1)∗T . We have a short exact sequence

0→ OW (KW/Y − xµ∗Θy− µ∗T )→
→ OW (KW/Y − xµ∗Θy + T ′ − µ∗T )→

→ OT ′(KT ′/T − xµ∗Θy)→ 0.

Pushing forward, since R1µ∗OW (KW/Y − xµ∗Θy) = 0, we get the short exact
sequence

0→ J (Y,Θ)(−T )→ adj(Y, T ; Θ)→ J (T,ΘT )→ 0

where adj(Y, T ; Θ) = µ∗OW (KW/Y − xµ∗Θy + T ′ − µ∗T ) ⊂ OY . Then

H0(Y,OY (L)⊗ adj(Y, T ; Θ))→ H0(T,OT (L)⊗ J (T,ΘT ))

is surjective Now

ΘT − Σ = B′
T +

m− 1
ml

(lΣ +HT )− Σ ≤ B′
T +

m− 1
ml

HT .

Since (T,B′
T ) is klt, then (

T,B′
T +

m− 1
ml

HT

)
,

is klt for l sufficiently large. But then

σ ∈ H0(T,OT (L)⊗ J (ΘT )),

by Lemma 5.4.2 and so σ lifts to H0(Y,OY (L)). �

This next result shows that if the components of B are disjoint, then one can
substantially weaken the hypothesis that no log canonical centre of (Y, T + dBe) is
contained in the base locus of |L|.



88 5. EXISTENCE OF FLIPS

Corollary 5.4.22. Let T ⊂ Y be a smooth divisor in a smooth variety and
let g : Y → X and f : X → Z be projective morphisms of normal varieties and
π : Y → Z the composition of f and g. Assume that Z is affine g is birational and
T is not g-exceptional. Let m be a positive integer such that m(KY + T + B) is
Cartier. Assume that

(1) T is not contained in the support of B, (Y, T + B) is log smooth and
xBy = 0 so that (Y, T +B) is purely log terminal,

(2) B ≥ g∗A, where mA is a very ample divisor on X,
(3) there exists a divisor G ∈ |m(KY + T +B)| such that G and T +B have

no common component, and
(4) no two components of B − g∗A intersect.

Then we may find a birational map h : Y ′ → Y such that
(i) h is given by a sequence of blow ups along smooth codimension 2 subvari-

eties corresponding to the intersection of divisors of log discrepancy 0 for
(Y, dT +B − g∗Ae). In particular, in a neighbourhood of T these are just
the components of T ∩ dB − g∗Ae (and their strict transforms) so that if
T ′ = (h−1)∗T denotes the strict transform of T , then h : T ′ → T is an
isomorphism,

(ii) if we write KY ′ +Γ′ = h∗(KY +T +B)+E′ where Γ′ and E′ are effective
with no common component h∗Γ′ = T + B and E′ is exceptional, then
there exists a Q-divisor T ′ ≤ Γ ≤ Γ′ such that mΓ is integral and iden-
tifying T ′ with T and setting (Γ − T )T = Θ, one has that the restriction
homomorphism

H0(Y ′,OY ′(ml(KY ′ + Γ)))→ H0(T,OT (ml(KT + Θ)))

is surjective for any integer l > 0, and
(iii) the natural homomorphism

H0(Y ′,OY ′(m(KY ′ + Γ)))→ H0(Y,OY (m(KY + T +B)))

is an isomorphism.

Proof. We are free to replace mA by a linearly equivalent divisor. Therefore,
we may assume that mA is a very general divisor in |mA|. Since no two components
of B−g∗A intersect, the only possible log canonical centres of (Y, T+dBe) contained
in G, are the components of T ∩ dB − g∗Ae.

We consider now a birational morphism h : Y ′ → Y given by a sequence of
blow ups with smooth codimension 2 centres equal to the irreducible components
of T ∩ dB − g∗Ae that are contained in G. Since the only such centres are divisors
in T , it follows that h|T ′ : T ′ → T is an isomorphism. We may write

KY ′ + Γ′ = h∗(KY + T +B),

where, by an easy log discrepancy computation, Γ′ is effective and contains T ′.
Note that m(KY ′ + Γ′) is integral and that G′ = h∗G ∈ |m(KY ′ + Γ′)|. Let

m(KY ′ + Γ′) = N + F ′,

be the decomposition of m(KY ′ + Γ′) into its moving and fixed parts.

Claim 5.4.23. After finitely many blow ups along smooth codimension 1 sub-
varieties of T ′ given by the (strict transforms of the) irreducible components of
T ∩ dB − g∗Ae, we may assume that in a neighbourhood of T ′, the base locus
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of N does not contain any log canonical centre of KY ′ + dΓ′ − h∗g∗Ae and if a
component F0 of F ′ contains a log canonical centre of KY ′ + dΓ′ − h∗g∗Ae, then
F0 ⊂ Supp(Γ′ − h∗g∗A).

Proof. Let C1, · · · , Cr be the codimension 1 smooth divisors in T given by
T ∩Supp(B−g∗A). Let h : Y ′ → Y be a morphism obtained by blowing up Y along
a sequence of subvarieties Ci and their strict transforms. Then the strict transform
of T ⊂ Y is isomorphic to T and so we again denote it by T . Similarly for the strict
transform of each Ci ⊂ T . It is also easy to see that h induces an isomorphism of
log pairs between (T ′, (Γ′ − T ′)|T ′) and (T, (Γ− T )|T ).

Suppose that Ci is contained in Bs(Mob(m(KY + T + B))) with multiplicity
n, then we blow up along Ci. We denote this morphism also by h : Y ′ → Y and
we let E be the corresponding exceptional divisor. Then N = |h∗ Mob(m(KY +
T + B)) − nE| has no fixed divisors and multCi |N | ≤ n (here, as above N =
Mob(m(KY ′ +Γ′))). Repeating this procedure finitely many times, we may assume
that Ci 6⊂ Bs(N) for all i (this can be seen by a computation on a surface given
by the intersection of dimY ′ − 2 general very ample divisors). Further blowing up
along the Ci’s, we may assume that Γ′ − h∗g∗A + F ′ has simple normal crossings
at a general point of each Ci (this can also be checked by restricting to a surface
given by the intersection of dimY ′ − 2 general very ample divisors). Since each Ci
is given by the intersection of 2 divisors in Supp(Γ′−h∗g∗A), then, if a component
F0 of F ′ contains Ci, it must be contained in Supp(Γ′ − h∗g∗A).

�

The only other log canonical centres of KY ′+dΓ′−h∗g∗Ae are smooth codimen-
sion 2 subvarieties given by the intersection of 2 components of dΓ′ − T ′ − h∗g∗Ae.
These centres do not intersect T ′. After repeateadly blowing up such centres (as
in the proof of 5.4.26), we may assume that all the codimension 2 log canonical
centres of KY ′ + dΓ′ − h∗g∗Ae are contained in T ′.

Cancelling common components of F ′ and Γ′, we may therefore find divisors F
and Γ, with no common components, such that

m(KY ′ + Γ) = N + F,

is the decomposition of m(KY ′ +Γ) into its moving and fixed parts. It is clear that
F contains no log canonical centres of (Y ′, dΓe).

Since A is ample, there is an effective and g ◦h-exceptional divisor H such that
h∗g∗A−H is ample. In this case

Γ− T ′ ∼Q (h∗g∗A−H) + (Γ− T ′ − h∗g∗A+H) = A′ + C.

(ii) now follows from Theorem 5.4.21. Since 0 ≤ (Γ′ − Γ) ≤ F ′, there is a natural
identification

H0(Y ′,OY ′(m(KY ′ + Γ′))) ∼= H0(Y ′,OY ′(m(KY ′ + Γ))),

and so (iii) also follows. �

In the next lemma, we continue to assume the notation and the hypothesis of
Corollary 5.4.22.

Lemma 5.4.24. Let µ : Ȳ → Y be any birational morphism such that µ∗(KY +
T +B) = KȲ + T̄ + B̄− F̄ where T̄ = (µ−1)∗T , Ȳ is smooth, T̄ + B̄, F̄ are effective
with simple normal crossings support and no common components, µ∗B̄ = B and
F̄ is µ-exceptional. Then
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(1) After cancelling common components of mB̄ and Fix(m(KȲ + T̄ + B̄))
and further blowing up Ȳ along smooth centres contained in Ȳ − T̄ , the
hypothesis of Corollary 5.4.22 hold for ḡ = g ◦ µ : Ȳ → X, T̄ and B̄ (in
place of g : Y → X, T and B) so that we may define h̄ : Ȳ ′ → Ȳ and Θ̄
analogously to h : Y ′ → Y and Θ in Corollary 5.4.22.

(2) Θ̄ = (µ|−1
T̄

)∗Θ so that

KT̄ + Θ̄ = (µ|T̄ )∗(KT + Θ) + F̄ ′

where F̄ ′ is an effective and µ|T̄ -exceptional Q-divisor.

Proof. 1 and 2 of Corollary 5.4.22 are clearly satisfied by ḡ = g ◦ µ : Ȳ → X,
T̄ and B̄. 3 is satisfied once we cancel common components of mB̄ and Fix(m(KȲ +
T̄ + B̄)). For 4 of Corollary 5.4.22, notice that the components of (B̄ − ḡ∗A) ∩ T̄
are the divisors in T̄ of log discrepancy less than one for (T,B − A) and hence
these components are disjoint. It is then clear that 4 holds in a neighbourhood
of T̄ . It suffices now to repeateadly blow up Ȳ along intersections of the various
components of B̄ − ḡ∗A.

In the definition of Θ, we pick an appropriate birational map h : Y ′ → Y
and after cancelling common components of Γ′ and 1

mFix(m(KY ′ + Γ′)) we obtain
a divisor Γ such that (Γ − T )|T = Θ. It is clear that Θ is supported on the
components Ci of (Γ−T )|T i.e. on those (finitely many) divisors of log-discrepancy
less than one for (T, (Γ − T )|T ). Θ̄ is also supported on the divisors in T̄ of log-
discrepancy less than one for (T, (Γ− T )|T ), i.e. on the strict transforms C̄i of Ci.
Therefore, to show that Θ̄ = (µ|−1

T̄
)∗Θ, it suffices to check that the multiplicity of

Θ and Θ̄ along each of the components Ci and C̄i coincides. To see this, notice
that passing to a common resolution, we may reduce to the case that µ : Ȳ → Y
is induced by a sequence of blow ups along smooth centres. Each time we blow up
along a centre not containing any Ci, we have an isomorphism in a neigbourhood
of the generic points of each Ci and hence the coefficients of Θ are unchanged. If
we blow up along a centre containing some Ci, then we may in fact assume that
we are blowing up along Ci and an easy computation shows that in this case the
coefficients of Θ are also unchanged.

Since (T,Θ) is terminal, one sees that the divisor F̄ ′ defined above is effective
and µ|T̄ -exceptional. �

Corollary 5.4.25. The divisor Θ defined in Corollary 5.4.22 does not depend
on the choice of the morphism h : Y ′ → Y .

Proof. Immediate from Lemma 5.4.24. �

The next result is quite standard. It shows that the assumption that the
components of B are disjoint is not as restrictive as one might think. For any
divisor B =

∑
biBi, we let 〈B〉 =

∑
aiBi where ai = bi if 0 < bi < 1 and ai = 0

otherwise.

Lemma 5.4.26. Let (X,∆) be a log pair. We may find a log resolution

g : Y → X,

with the following properties. Suppose that we write

KY + Γ = g∗(KX + ∆) + E,
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where Γ and E are effective, with no common components, g∗Γ = ∆, and E is
exceptional.

Then no two components of 〈Γ〉 intersect.

Proof. This is well known and easy to prove, see for example [HM, Lemma 6.7].
�

5.4.3. The Restricted Algebra is an Adjoint Algebra. The main result
of this section is the following:

Theorem 5.4.27. Let (X,∆) be a Q-factorial log pair of dimension n and let
f : X → Z be a projective morphism, where Z is affine and normal. Let k be a
positive integer such that D = k(KX + ∆) is Cartier, and let R be the divisorial
algebra associated to D. Assume that

(1) KX + ∆ is purely log terminal,
(2) S = x∆y is irreducible,
(3) S 6⊂ Bs|D|,
(4) ∆− S ≥ A, where kA is very ample, and
(5) −(KX + ∆) is ample.

If the MMP holds in dimension n−1 (cf. Assumption 5.2.2), then the restricted
algebra RS is finitely generated.

Recall that by definition the restricted algebra RS is the image of the homo-
morphism ⊕

m∈N
f∗OX(mD)→

⊕
m∈N

f∗OS(mD).

The only interesting case of Theorem 5.4.27 is when f is birational, since oth-
erwise the condition that −(KX + ∆) is ample implies that κ(X,KX + ∆) = −∞.

We note that Theorem 5.4.27 implies Theorem 5.1.1.

Lemma 5.4.28. Theorem 5.4.27n implies Theorem 5.1.1n.

Proof. By Theorem 5.1.9 it suffices to prove the existence of pl flips. Since Z
is affine and f is small, it follows that S is mobile. By Theorem 5.1.10 it follows that
it suffices to prove that the restricted algebra is finitely generated. Hence it suffices
to prove that a pl flip satisfies the hypothesis of Theorem 5.4.27. Properties (1-2)
and (5) are automatic and (3) follows as S is mobile. ∆ − S is automatically big,
as f is birational, and so ∆ − S ∼Q A + B, where A is ample, and B is effective.
As S is mobile, we may assume that B does not contain S. Replace ∆ − S by
(1− ε)(∆− S) + ε(A+B) for some rational number 0 < ε� 1, and replace k by a
sufficiently divisible multiple. �

Proof of Theorem 5.4.27. As remarked above, we may assume that f is
birational. Let g : Y → X be any morphism, whose existence is guaranteed by
Lemma 5.4.26. We may write

KY + Γ = g∗(KX + ∆) + E,

where Γ and E are effective, with no common components, g∗Γ = ∆, E is ex-
ceptional and no two components of 〈Γ〉 intersect. Since k(KX + ∆) is Cartier,
k(KY + Γ) and kE are integral. Let T be the strict transform of S and let π the
composition of f and g. Let

mk(KY + Γ) = Nm +Gm,
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be the decomposition of mk(KY + Γ) into its moving and fixed parts. By assump-
tion, T is not a component of Gm. We may assume that kA is a very general divisor
in |kA| so that in particular g∗A and the strict transform of A are equal.

Cancelling common components of Γ and Gm, we may find divisors T + g∗A ≤
Γ0
m ≤ Γ and G0

m, with no common components, such that

mk(KY + Γ0
m) = Nm +G0

m.

Set Θ = (Γ − T )|T . It is now easy to see that the hypothesis of Corollary 5.4.22
are satisfied (with B = Γ0

m − T ) and so, for all m > 0, there is a birational map
hm : Ym → Y which is a log resolution of (Y,Γ) such that

(i) In a neighbourhood of T , h is given by a sequence of blow ups along smooth
divisors in T so that if Tm = (h−1

m )∗T denotes the strict transform of T ,
then hm|Tm : Tm → T is an isomorphism.

(ii) If we writeKYm +Γ′m = h∗m(KY +Γ)+Em, where Γ′m, Em are effective with
no common components, (hm)∗Γ′m = Γ and Em is exceptional, then there
exists a divisor Γm such that Tm ≤ Γm ≤ Γ′m and identifying Tm with T ,
and setting (Γm−T )|T = Θm, one has that the restriction homomorphisms

H0(Ym,OYm(mlk(KYm + Γm)))→ H0(T,OT (mlk(KT + Θm)))

are surjective for all integers l > 0.
(iii) The natural homomorphism

H0(Ym,OYm
(mk(KYm

+ Γm)))→ H0(Y,OY (mk(KY + Γ)))

is an isomorphism.
The sequence Θm is possibly not convex, because it is obtained by canceling

common components of Γ′m and of the fixed part of mk(KYm + Γ′m) (and then
restricting to T ). The problem occurs when the coefficient of a component of
mkΓ′m goes from being smaller than the coefficient of the corresponding divisor in
the fixed part of mk(KYm +Γ′m) to being bigger. Since there are only finitely many
components of Θm, it is clear that for m sufficiently divisible, the sequence Θm is
convex. Since (a truncation of) Θ• is a convex sequence with Θm ≤ Θ, the limit
Θ′ of the sequence Θ• exists and KT + Θ′ is klt. Therefore (1) of Definition 5.3.10
is satisfied.

Claim 5.4.29. We may also assume that for all m > 0, Pm = Mob(msk(KT +
Θm)) is base point free, lim(Pm/m) is semiample and

Φ = Supp(Θ) + Fix(msk(KT + Θm))

is contained in a divisor with simple normal crossings support (not depending on
m).

Proof. Let s be the integer and µ : T̄ → T be the morphism whose existence
is guaranteed by Corollary 5.2.7. Therefore, Mob(mskµ∗(KT + Θm)) is base point
free for all m sufficiently divisible, lim(1/m) Mob(mskµ∗(KT + Θm)) is semiample
and Fix(mskµ∗(KT +Θm)) is contained in a simple normal crossings divisor (which
does not depend on m). We may write KT̄ + Θ̄m = µ∗(KT + Θm) + Fm where
Θ̄m = (µ−1)∗Θm and Fm is effective and exceptional. Clearly Mob(msk(KT̄ +Θ̄m))
is also base point free and lim(1/m) Mob(msk(KT̄ + Θ̄m)) is also semiample. We
may assume that µ : T̄ → T is induced by a birational morphism µ : Ȳ → Y which
is a log resolution of (Y,Γ).
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We now replace Y, T by Ȳ , T̄ . By Lemma 5.4.24, we may assume that (i), (ii)
and (iii) continue to hold. �

Notice that up to this point, we may assume that each morphism hm : Ym → Y
is obtained by a sequence of blow ups along smooth codimension 2 subvarieties ob-
tained by intersecting divisors of log discrepancy 0 for (Y, dΓ− g∗Ae). Since prop-
erties (i), (ii) and (iii) continue to hold after further blowing up along codimension
2 subvarieties as above, we may therefore assume that for all m′ ≥ m the morphism
hm′ factors through hm.

We now proceed to show that we may assume that after replacing Ym by ap-
propriate models obtained by repeated blow ups of Y along components of Φ and
along smooth centres disjoint from T , the following properties also holds:

(iv)
Qm = Mob(msk(KYm + Γm)) is free,

Qm|T = Pm = Mob(msk(KT + Θm)),

(v) for all m > 0 we have

(Mob(msk(KYms + Γms)))|T = Mob(msk(KT + Θms)),

(vi) for all m′ ≥ m ≥ 0, hm′ factors as hm ◦ hm′,m where hm′,m : Ym′ → Ym is a
morphism which in a neighbourhood of T is induced by a finite sequence of blow
ups along the components of the simple normal crossing divisor Φ. (Here, Y0 = Y
and hm′,0 = hm′).

In a neighbourhood of T , we may assume that (up to this point) hm is given by
BlCim

◦. . .◦BlC1 , a sequence of blow ups along the components Ci of (dΓ−g∗Ae)∩T .
Since (dΓ−g∗Ae)∩T ⊂ Φ and Φ is a simple normal crossings divisor in T , replacing
each hm,m−1 = BlCim

◦. . .◦BlCim−1
by BlDjm

◦. . .◦BlDjm−1+1 ◦BlCim
◦. . .◦BlCim−1

,
where the Djt are components of Φ, we may still assume that properties (i), (ii)
and (iii) continue to hold. We are hence free to replace each morphism hm,m−1 by
its composition with further blow ups along components of Φ.

Notice that
Fix(msk(KT + Θm)) ⊂ Φ

and so by (ii) and Lemma 5.1.15, after further blowing up Ym−1 along the compo-
nents of Φ, we may assume that Qm|T = Pm. It is easy to see that

Fix(msk(KT + Θms)) ⊂ Fix(msk(KT + Θm)) + Supp(Θ1) ⊂ Φ

and hence (after further blowing up along components of Φ) we may also assume
that

(Mob(msk(KYms + Γms)))|T = Mob(msk(KT + Θms)).

Further blow ups along smooth centres not intersecting T will ensure that |Qm| is
base point free.

Lemma 5.4.30. Let Mm = Mob(mk(KT + Θm)), then

Pms
ms
≥ Mms

m
≥ Pm

m
≥ sMm

m
.
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Proof. This follows easily from the inclusion of linear series

|msk(KT + Θms)|×s ⊂ |ms2k(KT + Θms)|,
|msk(KT + Θm)|+msk(Θms −Θm) ⊂ |msk(KT + Θms)|, and

|mk(KT + Θm)|×s ⊂ |msk(KT + Θm)|.
�

Therefore, by Claim 5.4.29, D = lim(Mi/i) = lim(Pi/si) is semiample and so
3 of Definition 5.3.10 is satisfied. We have already seen that 1 of Definition 5.3.10
holds. In Lemma 5.4.31 below, we will show that a truncation of the characteristic
sequence of RT =

⊕
π∗OT (Mm) is saturated. Therefore, 2 of Definition 5.3.10 is

also satisfied (by a truncation of RT ), and so by Lemma 5.3.2 and Theorem 5.3.12,
RT is finitely generated. Therefore, as RS is isomorphic to RT , it is also finitely
generated. �

It suffices therefore to prove the following:

Lemma 5.4.31. There exists a divisor FT on T such that dFT e ≥ 0 and

Mob(d(js/is)Mis + FT e) ≤Mjs ∀i ≥ j > 0.

In particular, the truncation of the restricted algebra (RT )(s) is saturated with re-
spect to FT .

Proof. We write gm = g ◦ hm : Ym → X and we set

KYm + Γ′m = g∗m(KX + ∆) + E′m.

Let Fm = E′m − Γ′m + T , then writing KS + ∆S = (KX + ∆)|S , one sees that

KT + (Γ′m − T )|T = g∗m(KS + ∆S) + E′m|T .
An easy log discrepancy computation shows that E′m|T is exceptional and so the
above expression is unique. Therefore, Fm|T is independent of m and so we denote
it by FT . By assumption (X,∆) is purely log terminal and so (S,∆S) is klt i.e.

dFT e ≥ 0.

We will need the following two claims:

Claim 5.4.32. The natural restriction map,

H0(Yi,OYi(d(j/i)Qi + Fie))→ H0(T,OT (d(j/i)Pi + FT e)),
is surjective, for any positive integers i and j. In particular, by Lemma 5.1.13, we
have that

(Mob(d(j/i)Qi + Fie))|T ≥ Mob(d(j/i)Pi + FT e).
Proof. Recall that by (iv) Qi is base point free and Qi|T = Pi. Considering

the short exact sequence

0→ OYi
(d(j/i)Qi + Fie − T )→ OYi

(d(j/i)Qi + Fie)
→ OT (d(j/i)Pi + FT e)→ 0,

it follows that the obstruction to the surjectivity of the restriction map above is
given by,

H1(Yi,OYi(d(j/i)Qi + (Fi − T )e))
= H1(Yi,OYi(KYi + dg∗i (−(KX + ∆)) + (j/i)Qie))
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which vanishes by Kawamata-Viehweg vanishing, as g∗i (−(KX +∆)), is big and nef
and (j/i)Qi is base point free and hence nef. �

Claim 5.4.33. For every pair of positive integers i and j we have

Mob(d(j/i)Qi + Fie) ≤ Mob(jskg∗i (KX + ∆)).

Proof. Since E′i is gi-exceptional, we have

Qi = Mob(isk(KYi
+ Γi)) ≤ Mob(isk(KYi

+ Γ′i)) =

= Mob(iskg∗i (KX + ∆) + iskE′i) = Mob(iskg∗i (KX + ∆)) ≤
≤ g∗i (isk(KX + ∆)).

Therefore,

Mob(d(j/i)Qi + Fie) ≤ Mob(djskg∗i (KX + ∆) + Fie)
= Mob(jskg∗i (KX + ∆) + dFie) = Mob(jskg∗i (KX + ∆))

where we used the fact that dFie is gi-exceptional. �

Therefore, since by (iii) Mob(jskg∗js(KX + ∆)) = Mob(jsk(KYjs + Γjs)), by
(v) we have that Mjs = Mob(jskg∗js(KX + ∆))|T . Since for any i ≥ j, gis factors
through gjs, by Lemma 5.1.14, one sees that

Mob(jskg∗js(KX + ∆))|T ≥ Mob(jskg∗is(KX + ∆))|T .
Therefore, by Lemma 5.4.33, Corollary 5.4.32 and Lemma 5.4.30 we have that

Mjs ≥ (Mob(jskg∗is(KX + ∆)))|T ≥ Mob(d(j/is)Qis + Fise)|T ≥
≥ Mob(d(j/is)Pis + FT e) ≥ Mob(d(js/is)Mis + FT e)

and Lemma 5.4.31 follows. �
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CHAPTER 6

Saturated mobile b-divisors on weak del Pezzo klt
surfaces

Alessio Corti, James McKernan and Hiromichi Takagi

6.1. Introduction

In this chapter, we study saturated mobile b-divisors on del Pezzo surfaces.
Saturation is a key concept introduced by Shokurov; for instance, the finite genera-
tion conjecture implies existence of flips and it states that a canonically a-saturated
algebra on a relative Fano pair is finitely generated.

Here, we study the simplest nontrivial examples of saturation, in the hope to
build an intuitive understanding of what the condition means. Our main result is
generalised in the CCS conjecture, which is the subject of Chapter 7. The examples
show that the notion of saturation for mobile b-divisors is very subtle and, even in
the surface case, it is far from straightforward.

Definition 6.1.1. Let (X,B) be a klt pair; as usual, we denote by A =
A(X,B) the discrepancy b-divisor of the pair (X,B). An effective b-divisor D on
X is A-saturated, or canonically saturated, if DY is AY -saturated on high models
Y → X of X.

To spell this out, there exists a model Y → X such that

MobdDY ′ + AY ′e ≤ DY ′

for all models Y ′ → Y . If this formula holds on some model W → X, we say that
A-saturation holds on W .

Definition 6.1.2. A relative weak del Pezzo pair is a pair (X,B) of a surface
X and a Q-divisor B ⊂ X, together with a proper morphism f : X → Z such that
−(KX +B) is f -nef and f -big.

The main result of this chapter is the following:

Theorem 6.1.3. Let (X,B)→ Z be a relative weak del Pezzo klt surface pair.
Denote by (X ′, B′)→ (X,B) the terminal model. There are:

(1) A finite set of Z-morphisms ϕi : X ′ → Ti where Ti/Z is either a normal
surface /Z or P1/Z,

(2) (when Z = {pt} only) finitely many normal surfaces Yj together with pro-
jective birational morphisms hj : Yj → X and elliptic fibrations χj : Yj →
P1,

such that the following holds: If M is any mobile A-saturated b-divisor on X, then
either

97
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(a) M descends to (X ′, B′)→ (X,B) and there is an index i such that MX′ =
ϕ∗i (ample divisor on Ti), or

(b) For some j, M descends to Yj and MYj = χ∗j (ample divisor on P1), or
(c) X is a proper surface and −(KX +B) ·MX ≤ 1.

Remark 6.1.4. (1) In Case (b), M can never descend to X ′; indeed, if
χ : X ′ → ∆ is an elliptic fibration, then −(K+B) can not be ample along
the fibres of χ.

(2) With more work, it is possible to show that the b-divisors in Case (c) of
the theorem form, in a natural way, a bounded family F of b-divisors. We
do not pursue this here; in particular, we do not give a precise definition of
a bounded family of b-divisors. By contrast, it is clear that the b-divisors
in Case (a) and Case (b) of the theorem do not form a bounded family.

In §6.3, we show that Theorem 6.1.3 is a consequence of the following, which
is proved in §6.4.

Theorem 6.1.5. Let (X,B) be weak del Pezzo terminal surface pair. Then
there are:

(1) finitely many conic fibrations ϕi : X → P1, and
(2) finitely many normal surfaces Yj, together with projective birational mor-

phisms hj : Yj → X and elliptic fibrations χj : Yj → P1,
such that: If M is a mobile A-saturated b-divisor and |M| is composed with a pencil,
then either

(a) M descends to X and, for some i, MX = ϕ∗i (ample divisor on P1), or
(b) For some j, M descends to Yj and MYj = χ∗j (ample divisor on P1).

The proof is in §6.4.

6.2. Example

We give an important xample of A-saturated b-divisor.

Example 6.2.1. Let X be a del Pezzo surface with canonical singularities
and degree 1 ≤ d ≤ 9. Let P ∈ X be a nonsingular point and assume that
P ∈ F1, F2 ∈ | −KX | are nonsingular at P and are tangent to order d at P :

(F1 · F2)P = dP

It is easy to find this configuration on any del Pezzo surface.
We work with a general member B0 ∈ |F1, F2| and set B = bB0 for 1− 1/d ≤

b < 1; it is clear that (X,B) is a klt del Pezzo surface.
Let f : Y → X be the sequence of blow ups of infinitely near points starting

with P0 = P ∈ X:

Y = Yd = BlPd−1 Yd−1 → · · · → Y2 = BlP1 Y1 → Y1 = BlP0 X → X

which resolves the base locus of the linear system |F1, F2|; define

M = F1 − P0 − · · · − Pd−1.

We claim that M is A-saturated. Indeed, by construction, M descends to Y .
Denoting by Ei ⊂ Y the exceptional divisor above the point Pi−1, we have

dA(X,B)Y e = E1 + · · ·+ Ed.
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It is easy to see that M is A-saturated; indeed

Mob
(
MY + dA(X,B)Y e

)
= Mob

(
MY + E1 + · · ·Ed

)
=

= Mob
(
f∗(F1)− P1 − · · · − Pd−1

)
= f∗(F1)− P0 − · · · − Pd−1.

6.3. Preliminaries

In this section, we show that Theorem 6.1.5 implies Theorem 6.1.3.

Proposition 6.3.1. Let (X,B)→ Z be a relative weak del Pezzo terminal pair
and M a mobile A-saturated b-divisor on X. Then either

(a) M descends to X, or
(b) |H0(X,M)| defines an elliptic fibration g : Y → ∆. If F ⊂ Y is a fibre,

then dAY e · F = 1. In particular, there is a unique component E of
dAY e which meets F , a(E,B) ≤ 1, and the set-theoretic base locus of
|H0(X,M)| consists of the single point P = cXE ∈ X. Or

(c) X is a proper surface and −(KX +B) ·MX ≤ 1.

Remark 6.3.2. (1) The proof of the proposition shows that, if M is (com-
posed with) a pencil, then Case (a) or (b) holds.

(2) It is natural to want to study Case (b) in greater detail; we do this in
Lemma 6.4.5 in the next section, after additional preliminaries.

(3) With more work, it is possible to show that the b-divisors in Case (c) of
the theorem form, in a natural way, a bounded family F of b-divisors. We
do not pursue this here; in particular, we do not give a precise definition
of a bounded family of b-divisors.

Example 6.3.3. We give an example of Case (c). Let E ⊂ X = P2 be a
nonsingular cubic; fix a positive integer d ≥ 4. There are finitely many points p
with the property that OE(3dp) ' OE(d), but this does not hold for any smaller
multiple. Pick anyone of these points P ∈ E, and let z be the length 3d curvilinear
scheme with support P contained in E, P ∈ z ⊂ E. Let π : Y → X be the birational
map determined by z, so that π is a sequence of 3d blow ups, with centre along E
and its strict transforms.

Let C be the general element of the linear system of plane curves of degree
which contain z. By our assumption on P , C is reduced and irreducible. We have

KC = (KX + C)|C = C|C − E|C = C|C − 3dP,

so that C|C = KC +3dP . Let D be the strict transform of C in Y , and let M = D,
considered as a b-divisor on X. By construction D|D = KD. Then M is mobile and
big. As before, M is A(X,B)-saturated where B = bE, for any 1−1/(3d) ≤ b ≤ 1.
On the other hand, visibly M does not descend to X. Note that:

−(KX +B) ·MX ≤
(
3 + 3

1− 3d
3d

)
d = 1.

Proof of Proposition 6.3.1. The statement extracts the part of Theorem 2.4.6
that still works; the proof is very similar. Let f : Y → X be a high enough log res-
olution of (X,B) such that

• A-saturation holds on Y , and
• M descends to Y , that is, |MY | = |H0(Y,M)| is free.

Claim 6.3.4. The divisor E = dAY e is integral, f-exceptional, and:
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(1) every f-exceptional divisor appears in E with > 0 coefficient, that is, the
support of E is all of the exceptional set,

(2) H1(Y,E) = (0).

The first part of the claim is obvious; to prove the second part, note that

−f∗(KX +B) = −KY + AY

is nef and big, hence H1(Y, dAY e) = H1(Y,E) = (0). We are assuming that M is
A-saturated; in particular, this implies that

E = Bs |MY + E|.
A general member MY of |MY | is connected unless possibly in the case where
|MY | is composed with a pencil. If we write MY =

∐k
i=0Mi, where the Mi are the

connected components, then vanishing ensures that the restriction map

H0(Y,MY + E)→ H0(M0, (MY + E)|M0)

is surjective, therefore E ∩M0 = Bs |H0(M0, (MY + E)|M0)|.
If M0 is an affine curve, this implies that E ∩M0 = ∅ and M descends to X,

as in Theorem 2.4.6. (This happens, for instance, if X → Z is birational; here,
however, we are not assuming that X → Z is birational.) From now on, we assume
that M0 is a (nonsingular) proper curve. We have(

MY + E
)
|M0

=
(
M0 + dAY e

)
|M0

=

=
(
M0 +KY + d−f∗(KX +B)e

)
|M0

= KM0 +D

where D = d−f∗(KX + B)e|M0 is a divisor of degree degD > 0. Indeed, because
−(KX + B) is nef and big, −f∗(KX + B) · C > 0 for all but finitely many curves
Ci ⊂ Y for which −f∗(KX +B) ·Ci = 0. Because M0 is a mobile curve, M0 is not
one of the Ci.

Elementary and well known properties of linear series on nonsingular proper
algebraic curves imply that:

Either: |H0(M0, (MY +E)|M0 | is base point free, and then M descends to
X,

Or: Bs |H0(M0, (MY + E)|M0 | = E|M0 = P ∈ M0 consists of a single point
and degD = 1.

In the first case, we are in Case (a) of the statement. In the second case, we consider
two subcases.

If |MY | is (composed with) a pencil, then it defines a fibration g : Y → ∆ to a
curve. It follows that MY |M0 = 0, hence

KM0 +D = (MY + E)|M0 = E|M0

has degree 1, which implies that KM0 = 0, M0 is a curve of genus 1 and we are in
Case (b) of the statement.

Otherwise, |MY | is not (composed with) a pencil, MY = M0 is connected, and
then we are in Case (c) of the statement. �

Theorem 6.1.5 implies Theorem 6.1.3. Because −(K +B) is nef and big,
the Mori cone NE(X ′/Z) is a finitely generated polyhedron; in addition, every ex-
tremal ray is generated by a rational curve on X. Therefore the set of Z-morphisms
ϕ : X ′ → T with ϕ∗OX′ = OT is finite. In (1), we take this finite set.
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When Z = {pt}, in (2) we take the finite set of Theorem 6.1.5(2).
With these choices, we show that the statement holds. Let M be a mobile and

A-saturated b-divisor. If we are in Case (a) of Proposition 6.3.1, then M descends
to X ′, hence |M| defines a morphism; the Stein factorisation of this morphism is one
of the ϕi : X ′ → Ti. If we are in Case (b) of Proposition 6.3.1, then the statement
follows from the corresponding bit in Theorem 6.1.5. If we are in Case (c) of
Proposition 6.3.1, the statement is made in Proposition 6.3.1. �

6.4. Mobile b-divisors of Iitaka dimension one

The aim of this section is to prove Theorem 6.1.5. The key result is Lemma 6.4.5,
where we study in detail Case (b) of Proposition 6.3.1.

Definition 6.4.1. A mobile b-divisor M on a variety X is indecomposable if
a general member of |M| is irreducible. Otherwise we say that M is decomposable.

Remark 6.4.2. (1) If M is decomposable, then |M| is composed with a
pencil. If M descends to Y , then we can write MY =

∑k
i=0Mi where

the Mi move in a connected, possibly irrational, pencil. If X is a rational
surface, then the pencil is rational. In this case, we can write

M =
k∑
i=0

Mi

where Mi Y = Mi, and the Mi are indecomposable and all linearly equiv-
alent to M0.

(2) If M is A-saturated, then M0 is also A-saturated. Thus, in the proof
of Theorem 6.1.5, we can and do restrict ourselves to indecomposable
b-divisors.

Lemma 6.4.3. Let X be a nonsingular surface, B = bB0 where B0 ⊂ X is a
curve and 0 ≤ b < 1, and let P0 = P ∈ B0 be a nonsingular point. Let f : Y → X
be a birational morphism, which is the composition of k blowups of infinitely near
points

Y = Yk = BlPk−1 Yk−1 → · · · → Y2 = BlP1 Y1 → Y1 = BlP0 X → X.

Denote by E ⊂ Y the last exceptional divisor extracted by f . If a(E,B) ≤ 1, then
either

(1) k = 1, or
(2) k > 1, the centre of each blow up lies on the strict transform of B0, and

b ≥ 1− 1/k.

Remark 6.4.4. When b = 0, B = ∅ and we conclude that k = 1.

Proof. The statement is obvious if k = 1. If k > 1, we claim that the centre
of each blow up lies on the strict transform of B0 and

a(E,B) = k(1− b).
Denote by fk−1 : Yk−1 → X the composition of the first k − 1 blowups and by
Ek−1 ⊂ Yk−1 the last exceptional divisor extracted by fk−1. If a(Ek−1, B) = ak−1,
then the coefficient of Ek−1 in f∗k−1(K +B) is −ak−1, hence

1 ≥ a(E,B) ≥ 1− b+ ak−1 > ak−1.
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It follows that 1 ≥ ak−1. By induction, we may assume that the centres of the first
k − 1 blowups lie on the strict transform of B0 and that

ak−1 = (k − 1)(1− b).
If Pk−1 is not on the strict transform of B0, then a(E,B) ≥ 1 + ak−1 > 1, a
contradiction. Therefore, Pk−1 is on the strict transform of B0 and

a(E,B) = 1− b+ ak−1 = k(1− b)
as was to be shown. Finally, 1 ≥ k(1− b) implies b ≥ (k − 1)/k. �

In the following lemma we study in detail Case (b) of Proposition 6.3.1.

Lemma 6.4.5. Let (X,B) be weak del Pezzo terminal surface pair and M an
indecomposable A-saturated mobile b-divisor on X. Assume that we are in Case (b)
of Proposition 6.3.1, that is, M does not descend to X and |M| is a pencil of elliptic
curves. The following hold:

1. Let P = Bs |H0(X,M)| ∈ X be the base locus of |H0(X,M)| (by Propo-
sition 6.3.1 this base locus consists of a single point). Then a general member
F ∈ |H0(X,M)| is nonsingular at P and, if F1, F2 ∈ |H0(X,M)|, then F1 ·F2 = dP
where d = F 2.

2. The divisor MX is eventually free and defines a birational morphism

ϕ : X → X = Proj⊕n≥0H
0(X,nMX)

where
(1) MX ∈ | −KX |,
(2) X is a del Pezzo surface with canonical singularities and degree K2

X
= d,

(3) if B = ϕ(B), then (X,B) is a klt del Pezzo pair.
3. Write B =

∑
biBi; if P ∈ B0 is a nonsingular point of SuppB, then

b0 ≥ 1− 1/d. If, in addition, d > 1, then F ·B0 = dP and B0 = ϕ(B0) ∈ | −KX |;
in particular, B0 is a curve of arithmetic genus 1.

Remark 6.4.6. In 2, we are not saying that, as a b-divisor onX, M is A(X,B)-
saturated.

Proof. The first statement follows immediately from Lemma 6.4.3.
Because M is mobile and X is a surface, it follows that MX is nef. The base

point free theorem implies that MX is eventually free. By the first statement, a
general member F ∈ |M| ⊂ |MX | is a nonsingular elliptic curve. Consider the
exact sequence

0→ OX(KX)→ OX(KX + F )→ OF → 0.
Since X is a rational surface, H0(X,KX) = H1(X,KX) = (0); from the exact
sequence, we then get H0(X,KX +F ) = H0(OF ) = C. This shows that KX +F ∼
E ≥ 0 is linearly equivalent to an effective divisor which is exceptional over X;
hence, ϕ(F ) ∈ | −KX | and X is a Gorenstein del Pezzo surface.

The divisor −(K +B) is nef and big; therefore, we can write

(K +B)−
∑

aiEi = ϕ∗(KX +B)

where the Ei are exceptional and all ai ≥ 0. It follows that (X,B) is a klt del
Pezzo pair. In particular X has rational Gorenstein, hence canonical singularities.
This shows the second statement.
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By Lemma 6.4.3, b0 ≥ 1 − 1/d and (B0 · F )P = dP , while it is still possible
that F ·B0 > d.

Claim 6.4.7. If d ≥ 2, then either B0 · F = d or B0 · F = d+ 1.

Later we show that in the first case B0 = ϕ(B0) ∈ |−KX |, and that the second
case does not occur. To show the claim, note that

0 < −(K +B) · F ≤ −(K + b0B0) · F = d− b0B0 · F ≤ d−
d− 1
d

B0 · F,

thus (d− 1)B0 · F < d2 and the claim follows.
Denote by Y → X a resolution of the base locus of |M| and by g : Y → ∆ the

associated elliptic fibration.
If B0 · F = d, the strict transform B′

0 ⊂ Y is contained in a fibre. Since
B0 · F = d, B0 = ϕ(B0) ∈ | −KX | and then B0 is a curve of arithmetic genus 1.

In the remaining part of the proof we derive a contradiction from the assump-
tion that d ≥ 2 and B0 · F = d + 1. The strict transform B′

0 ⊂ Y is a section of
g : Y → P1; hence B′

0 = B0 = P1. The linear system

|M||B0 − dP

is a pencil of divisors of degree 1; therefore, ϕ(B0) = B0 = P1. The morphism
ϕ : X → X factors through the minimal resolution X̃ → X of X. Denote by
ψ : X → X̃ the induced morphism, write B̃ = ψ(B), and B̃0 = ψ(B0); it is easy to
see, as above, that (X̃, B̃) is a weak del Pezzo klt surface pair.

Claim 6.4.8. H1(X̃,−K eX − B̃0) = (0).

To show the claim, write B̃ = bB̃0 + C +D where

C =
∑

ciCi with all ci ≥ 1/2 and D =
∑

diDi with all di < 1/2.

By the vanishing theorem of Kawamata and Viehweg,

(0) = Hi(X̃,−K eX + d−2B̃e) = Hi(X̃,−B̃0 − dCe)

for i > 0. We have an exact sequence:

(0) = H1
(
X̃,−K eX − B̃0 − dCe

)
→ H1

(
X̃,−K eX − B̃0

)
→

→ H1
(
dCe, (−K eX − B̃0)|dCe

)
.

The claim follows once we show that the group on the right vanishes. First of
all −K eX is nef and big (X̃ → X is the minimal resolution of a del Pezzo surface
with canonical singularities); it follows that −K eX · Ci = 0 for all i, for otherwise
−K eX · Ci > 0 for some i and then we would have:

0 < −K eX · (−K eX − B̃) = −K eX · (−K eX − bB̃0 − C −D) ≤

≤ −K eX ·
(
−K eX − d− 1

d
B̃0 −

1
2

∑
Ci

)
=

= d− d2 − 1
d
− 1

2

∑
(−K eX) · Ci ≤

1
d
− 1

2
,

which is a contradiction if d ≥ 2. It follows that dCe is a disjoint union of reduced
ADE cycles. If G is a connected component of dCe, then B̃0|G is nef and, because
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B0 = B̃0 = B0 = P1, necessarily B̃0 ·G ≤ 1, hence H1(G, B̃0|G) = (0). We conclude
that

H1
(
dCe, (−K eX − B̃0)|dCe

)
= H1

(
dCe,−B̃0|dCe

)
= (0)

and the claim follows.
It follows from the claim that the restriction

H0(X̃,−K eX)→ H0(B̃0,−K eX| eB0
)

is surjective. This is a contradiction, because the group on the left has dimension
d+ 1, while the group on the right has dimension d+ 2. This contradiction shows
that the second case of Claim 6.4.7 does not occur and thus completes the proof. �

Corollary 6.4.9. Let (X,B) be a weak del Pezzo terminal pair. The set of
nonsingular points P ∈ SuppB such that

(1) P = Bs |M| for some M as in Case (b) of Proposition 6.3.1, and
(2) in the notation of Lemma 6.4.5, d ≥ 2

is finite.

Proof. Because B has a finite number of components, it is sufficient to show
that there are finitely many such points on each component of B. Let B0 be a
component of B and P,Q ∈ B0 points with the stated property. Then

P −Q ∈ PicB0

is a d-torsion point; by Lemma 6.4.5(3), if d ≥ 2, then B0 is a curve of arithmetic
genus 1, hence the d-torsion of PicB0 is finite. �

Proof of Theorem 6.1.5. We construct a finite set F of surfaces Y , bira-
tional morphisms Y → X and fibrations Y → P1. We take F = F1 ∪ F2 ∪ F3 ∪ F4

where Fi are defined as follows:
First, F1 is the set of all morphisms ϕ : X → P1 with ϕ∗OX = OP1 ; this set is

finite because the Mori cone NEX is polyhedral.
Consider now the finite set F2 of birational morphisms ϕ : X → X where X

is a del Pezzo surface with canonical singularities and degree d = 1, and ϕ is an
isomorphism above the base point P of | −KX |. To an element of F2 we associate
the surface Y → X obtained by blowing up the unique point above P , and we let
Y → P1 be the obvious elliptic fibration.

By Corollary 6.4.9, there are only finitely many nonsingular points P ∈ SuppB
that can be the base point of a mobile A-saturated b-divisor M on X with the
properties stated there; F3 is the set of surfaces Y → X obtained by blowing up d
points above P in the strict transform of B.

Finally, F4 is the set of surfaces E ⊂ Y → P ∈ X which extract all valuations
E as in Case (b) of Proposition 6.3.1 with centre a singular point of SuppB. This
set is finite since, for every point P ∈ X, there are finitely many valuations E such
that a(E,B) ≤ 1.

Let now M be a mobile A-saturated b-divisor on X and assume that M is
indecomposable and |M| is composed with a pencil. If M descends to X, then it
appears in F1. Otherwise, we are in Case (b) of Proposition 6.3.1 and either d = 1,
or d ≥ 2. If d = 1, by Lemma 6.4.5, M is listed in F2. If d ≥ 2, then either P is
a nonsingular point of SuppB, in which case M is listed in F3, or P is a singular
point of SuppB and in this case M is listed in F4. �



CHAPTER 7

Confined divisors

James McKernan

7.1. Introduction

To any graded functional algebra R ⊂ k(X)[t] on a normal variety X, one can
associate a sequence of mobile b-divisors M• which satisfy an obvious additivity
relation

Mi + Mj ≤Mi+j .

This sequence gives rise to the characteristic system D•, defined by

Di =
Mi

i
,

which in turn gives rise to an integral extension of graded algebras R ⊂ R(X,D•);
the algebra R(X,D•) is known as a pbd-algebra.

Shokurov isolates two properties of pbd-algebras:
(1) boundedness Di ≤ D, D fixed,
(2) asymptotic canonical saturation there is a natural number d such that

MobdjDi + Ae ≤ jDj ,

whenever d divides i and j,
which conjecturally imply that the given algebra is finitely generated:

Conjecture 7.1.1 (FGA). Suppose that we are given a pbd-algebra R =
R(X,D•), a morphism X → Z and a boundary ∆, where

(1) KX + ∆ is kawamata log terminal,
(2) X → Z is proper, and Z is affine,
(3) −(KX + ∆) is relatively big and nef,
(4) D• is bounded, and
(5) D• is asymptotically canonically saturated.

Then R is finitely generated.

In fact any pbd-algebra which satisfies (1-5) is called a Shokurov algebra, so
that 7.1.1 is equivalent to the conjecture that every Shokurov algebra is finitely
generated.

To prove 7.1.1 the key point is to prove that the characteristic system stabilises.
In this chapter, among other things, we prove (FGA)≤2; at the moment, we are
unable to prove (FGA)3.

Shokurov is able to state a general conjecture, the CCS conjecture, whose
statement is independent of the existence of the ambient variety X. (CCS)n implies
(FGA)n which in turn implies flips exist in dimension n+ 1.

105
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Definition 7.1.2. Let (X,B = BX) be a pair of a normal variety and a Q-
divisor B, where we always assume that KX +B is Q-Cartier. A crepant model of
(X,BX) is a pair (Y,BY ), together with a birational map π : X 99K Y such that
for some commutative diagram

Z
q

  @
@@

@@
@@

p

~~~~
~~

~~
~

X
π //_______ Y.

we have
p∗(KX +BX) = KZ +BZ = q∗(KY +BY ).

In particular note that the discrepancy b-divisor is invariant up to a choice of
crepant model.

7.2. Diophantine Approximation and Descent

In this section we recall some of the arguments that follow §2.4.3. The idea
there was to recycle the one dimensional case. The problem in higher dimensions is
that MiX need not be base point free. Of course for each i we can find Yi so that
Mi Yi is base point free. The problem is to find one model Y that works universally
for all i.

In dimension two the choice of this model presents no problems; pick Y to be
the unique terminal model of the klt pair (X,B). In higher dimensions the choice
of Y is more problematic. As usual, write Di = (1/i)Mi, D = limDi (assuming
that it exists). It turns out that a minimal reasonable requirement is that DY is
nef; in practice we require even more, namely that DY is semiample.

We first recall the limiting criterion, see Section 2.3.7.

Theorem 7.2.1. (Limiting Criterion) Let X be a normal variety and let X →
Z be a proper birational morphism to an affine variety.

Then the pbd-algebra R = R(X,D•) is finitely generated iff there is an integer
k such that the subsequence Dk• is constant.

Definition 7.2.2. Let D be a b-divisor. The obstruction divisor O = O(X,D)
for some model X is

O = DX −D.

Remark 7.2.3. The obstruction divisor is exceptional over X. It follows that
the obstruction divisor only depends on the numerical class of D. Note also that
the obstruction divisor is effective provided that D is b-nef.

Theorem 7.2.4. Let (X,B) be a klt pair and let π : X → Z be a proper bira-
tional morphism to the affine variety Z. Let R = R(X,D•) be a pbd-algebra on X,
and let D = limiDi.

Suppose that we may find a variety Y/Z, such that
(1) DY is semiample.
(2) There is a sequence of positive integers r1, r2, . . . , such that

dA(X,B)− riOie ≥ 0 where lim
i→∞

ri =∞ and Oi = O(Y,Di).

Then R is finitely generated, D descends to Y and Di = D, for i large enough.
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Proof of 7.2.4. We follow the proof of the Nonvanishing Lemma closely. By
assumption there is a fixed effective divisor G on Y such that the support of DiY

is contained in G. Pick a rational number γ > 0 such that the pair (Y,BY + γG)
is klt. Then for any rational number 0 < ε ≤ γ, we have dA(Y,BY + εG)e ≥ 0.

By Lemma 2.4.12, there is a positive integer m and an integral divisor M on
Y with the following properties,

(i) the linear system |M | is base point free,
(ii) ‖mDY −M‖ < ε/4, and
(iii) If mDY −M is effective then mDY = M .
Now pick i� m, such that

‖mDiY −mDY ‖ < ε/4.

If we set F = mDiY −M , the triangle inequality yields

‖F‖ ≤ ‖mDiY −mDY ‖+ ‖mDY −M‖ ≤ ε/2.
Hence for every model g : W → Y we have

mDiW = g∗(mDiY )−mOiW = g∗M + g∗F −mOiW ≥
g∗M + 1/2g∗(−εG)−mOiW .

Thus

mDiW + A(Y,BY ) ≥
g∗M + 1/2A(X,B + εG)W + 1/2(A(X,B)W − 2mOiW ).

Since i � m, we may assume that ri > 2m. Rounding up, and taking the mobile
part, we then get MobdmDiW + AW e ≥ g∗M .

On the other hand, by asymptotic saturation, we may find a good resolution
g : W → Y , such that MobdmDiW + AW e ≤ mDmW . But then g∗M ≤ mDmW

so that, pushing down to Y , M ≤ mDmW . It follows by (iii) that Di is eventually
constant, and we must have equality in the inequalities above, so that Di = M =
D. �

Thus there is now a clear strategy to prove (FGA)n. Find sufficient conditions
to guarantee the existence of a model satisfying (1) and (2) of 7.2.4. In the next
section we focus on condition (2), since this condition is quite novel. Shokurov’s
clever idea is to drop any reference to the sequence of b-divisors D• and work
instead with general canonically saturated b-divisors.

7.3. Confined b-divisors

Definition 7.3.1. We will say that the pair (X,∆) is canonical if every ex-
ceptional divisor has discrepancy ≥ 0 and if the coefficient of every component of
∆ is ≤ 1.

Definition 7.3.2. Let X be a variety and let B be a divisor such that KX +B
is terminal. Let F be a set of divisors. We say that F is canonically confined by c
if for every G ∈ F, KX +B + cG is canonical.

We say that F is canonically confined by c up to linear equivalence if for every
G′ ∈ F there exists G ∈ |G′| such that KX +B + cG is canonical.

There are similar definitions, where canonical is replaced by log canonical.
There are similar notions for b-divisors.
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Note the following subtlety:

Example 7.3.3. Linear equivalence of b-divisors makes sense. We define |M|
to be the linear system of all effective b-divisors linearly equivalent to M. We have

|M|X ⊂ |MX |,

and in general the inequality is strict. For example let L be a line in X = P2 and
let M be the b-divisor given by the single prime divisor L. Then MX = L so that
|MX | is the complete linear system of lines in P2. However |M|X = {L}. A more
interesting example arises if we take Y → X the blow up of P2 at a point p ∈ L,
M the strict transform of L and we set M = M . In this case |MX | is again the
complete linear system of lines in P2 and |M|X is the linear system of lines through
p. The whole point is that M is not exceptionally saturated. Indeed

Mob(MY + E) = Mob(M + E) = M + E > M = MY .

Lemma 7.3.4. Suppose that we have a sequence of b-divisors D• on (X/Z,B).
Suppose that the set F = {Mi} is log canonically confined by c up to linear equiva-
lence on a crepant model (Y,BY ).

Then (2) of 7.2.4 holds.

Proof. By assumption, for every i, we may find Gi ∈ |Mi| such that (Y,B +
cGi) is klt, that is dA(X,B + cGi)e ≥ 0, where Gi is the trace of Gi on Y . Hence

dA(X,B)− ciO(Di)e = dA(X,B)− cO(Mi)e = dA(Y,BY )− cO(Gi)e
= dcGi + A(Y,BY )− cGie = dcGi + A(Y,BY + cGi)e ≥ 0.

Now set ri = ci. �

Thus we would like to find sufficient conditions ensuring that a set of b-divisors
is log canonically confined up to linear equivalence.

Lemma 7.3.5. Let (X,∆) be a pair, π : Y → X a birational morphism and E
an exceptional divisor extracted by π. Let D be any Q-Cartier divisor. Let us write

KY + Γ = π∗(KX + ∆), D̃ + bE = π∗D, and

KY + Γ′ = π∗(KX + ∆ + aD).

If the coefficient of E in Γ is e and in Γ′ is e′, then e′ = e+ ab.

Proof. Clear. �

Lemma 7.3.6. Let F be a set of divisors.
(1) If F is canonically confined then it is log canonically confined. The con-

verse holds provided that KX + ∆ is terminal.
(2) F is log canonically confined iff the log canonical threshold of the elements

of F is bounded away from zero.
(3) Suppose that X is smooth and the pair (X,∆) is terminal. Then F is

canonically confined iff the multiplicity of the elements of F is bounded.
(4) If F forms a bounded set (in the sense of moduli) then F is canonically

confined.
(5) If every element of F is base point free then F is canonically confined up

to linear equivalence.
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Proof. We first prove (3). Suppose thatX is smooth. It is clear by Lemma 7.3.5
that if F is log canonically confined, then the multiplicity of the elements of F is
bounded. Now suppose that the pair (X,∆) is terminal. Then the log discrepancy
is at least 1+ε, for some ε > 0. If the multiplicity is bounded, then we may pick c so
that for every G ∈ F, the multiplicity of cG is at most cε. It follows by Lemma 7.3.5
again, and an obvious induction, that (X,∆ + cG) is canonical.

Now we turn to (1). One direction is clear. So suppose that F is log canonically
confined by c. Pick a good resolution π : Y → X; write

π∗(K + ∆) = KY + ∆′ + E

where ∆′ = π−1
∗ ∆ (by construction, KY + ∆′ +E is a terminal sub-boundary) and

let F∗ = {π∗G | G ∈ F} By construction, for every G∗ ∈ F∗, KY + ∆′ + E + cG∗

is a log canonical sub-boundary. It follows that F∗ has bounded multiplicities;
therefore, by what we just said, F∗ is canonically confined on the pair (Y,∆′); from
this it follows that F is canonically confined on (X,∆).

The other cases are easy. �

There are similar notions for b-divisors and linear equivalence, whenever appro-
priate. In particular (5) holds for b-divisors associated to base point free divisors.

(4) and (5) in conjunction present a strategy to prove that a set F of b-divisors
is log canonically confined up to linear equivalence; prove that the subset of b-
divisors that are not base point free is bounded. In practice it turns out that, at
least for a surface, it is easier to prove this on a crepant terminal pair. For this
reason Shokurov prefers to work with the notion of canonically confined.

7.4. The CCS conjecture

In this section we state a version of the CCS conjecture, and we develop some
general techniques to attack this conjecture. Unfortunately it is not clear how to
formulate the CCS conjecture. Clearly we want a conjecture that is strong enough
to imply the FGA conjecture. On the other hand, we want a statement which does
indeed hold, and which someone might hopefully prove in the future.

With this said, in the interests of pedagogy, we give the easiest version of the
CCS conjecture to state, and we have limited ourselves to stating only one version.
Anyone with a serious interest in this topic is well advised to consult the paper
of Shokurov [Sho03], which by way of contrast states many different conjectures,
which are all variations on the following theme:

Conjecture 7.4.1 (CCS). Suppose that KX +B is klt and −(KX +B) is nef
and big over Z (respectively fix a rational map X 99K T over Z, with normalized
graph

Γ
p

��~~
~~

~~
~

q

��?
??

??
??

X //_______ T

such that q∗OΓ = OT ). Then there is a constant c > 0 and a bounded family
(respectively finite set)

{ (Yt, Tt) | t ∈ U },
with the following properties:
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For every t ∈ U , (Yt, Bt) is a crepant Q-factorial model of X and there are
contraction morphisms ψt : Yt → Tt, φt : Tt → Z, where the relative cone of nef
divisors of φt is spanned by a finite number of semiample divisors. Moreover for
every mobile and A = A(X,B)-saturated b-divisor M (respectively convex sequence
M• of mobile and A-saturated b-divisors, where M = Mi), we may find t ∈ U with
the following properties

(1) We may find G ∈ |M|Yt such that (Yt, BYt + cG) is log canonical,
(2) MY = ψ∗tM where M is a big and nef divisor on Tt.

Note that we do not require that Bt is effective in the CCS conjecture (although
see the remark below).

Theorem 7.4.2. (CCS)n implies (FGA)n.

Proof. We are given a convex bounded canonically asymptotically saturated
sequence M• of mobile b-divisors and it suffices to prove that the sequence D•
is eventually constant. By convexity, possibly up to truncation, the divisors Mi

define the same contraction. By (CCS)n we may assume that there is a fixed pair
(Y/T/Z,BY ) such that (1) and (2) of Conjecture 7.4.1 holds for infinitely many
Mi. As Mi is pulled back from T , then so is DY and as every nef divisor on T is
semiample, DY is semiample. Now apply Theorem 7.2.4. �

Remark 7.4.3. Given M, the CCS conjecture imposes three non-trivial con-
ditions on the model Yt:

(a) We may find G ∈ |M|Yt such that (Yt, BYt + cG) is log canonical,
(b) MYt is nef, and
(c) MYt is semiample.

Now we only expect conditions (a) and (b) to hold on a relatively high model.
Indeed roughly speaking one needs to eliminate any component of the base locus
(certainly those of high multiplicity).

On the other hand one only expects condition (c) to hold on a relatively low
model. Indeed, in practice, the way to show (c) is to show first that the cone of nef
divisors of Tt/Z is spanned by a finite number of semiample divisors, and this is a
very stringent condition. In practice, the most natural way to satisfy this condition
is to require that there is an effective divisor Θ on T such that −(KT + Θ) is nef
and big over Z, where KT +Θ is klt. Thus if ψt is birational, that is M is big, then
we need Yt to be Fano, or at least close to Fano.

Since we have two conflicting requirements on Yt, the CCS conjecture seems
very hard.

Here is an example to illustrate the fact that we need to work on more than
one model:

Example 7.4.4. Let f : X → Z be a small birational contraction of threefolds of
relative Picard number one. Assume, for example, that both X and the exceptional
locus C is smooth and that there is a surface D which is f -negative.

Consider the constant sequence of b-divisors, Di = D. Then the sequence of
b-divisors Mi is not canonically confined. Indeed suppose that it were. First note
that canonically confined and log canonically confined are equivalent. Thus there
would be a constant c > 0 and divisors Si ∼ iD such that KX + ciSi is maximally
log canonical at the generic point of C, where ci ≥ c.
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But then by codimension two subadjunction,

(KX + ciSi)|C = KC +Gi,

where Gi is effective. On the other hand, the degree of the left hand side goes to
−∞ whilst the right hand side is bounded from below, a contradiction.

On the other hand if we can find the opposite f+ : X+ → Z of f , then the
existence of these divisors on X+ is trivial, since D+ is ample. This shows that we
need at least nef in the CCS conjecture. If f is a flopping contraction then this also
shows that U is non-trivial.

7.5. The surface case

With the work done in Chapter 6, CCS2 is a small observation:

Theorem 7.5.1. (CCS)≤2 holds.

Corollary 7.5.2. (FGA)≤2 holds.

Given any valuation ν of X, consider the sequence of blow ups obtained by
iteratively blowing up the centre of ν. We will call this sequence of blow ups the
Zariski tower. We say that ν is a geometric valuation, if this sequence stops, in the
sense that ν corresponds to a divisor. We call the first model on which the centre
of ν is a divisor, the top of the tower. The number of blows ups to get X to the
top is called the length of the tower.

Definition 7.5.3. Let X be a variety and let V be a set of geometric valuations
on X. We say that V forms a bounded family, if there is a bounded family Y → B
of varieties, such that for every for every ν ∈ V, there is a t ∈ B such that Yt is
birational to X and ν is a divisorial valuation on Yt.

Remark 7.5.4. Note that if V is a bounded set of valuations, then we may
further assume that for each t, there is a birational morphism Yt → X.

Lemma 7.5.5. Fix a log terminal pair (X,B), where X is a surface. Fix a real
number b.

Then the set of valuations of log discrepancy at most b is bounded.

Proof. Since the set of all surfaces that can be obtained from X by a fixed
number of blow ups forms a bounded family, it suffices to prove that there is a
uniform bound on the length of a valuation ν of log discrepancy at most b.

Passing to a log resolution, we might as well assume that the pair (X,B) has
normal crossings. Pick m such that m(KX +B) is Cartier. It follows that if ν is an
algebraic valuation of log discrepancy a, then ma is an integer. In particular there
are only finitely many possible values a of the log discrepancy less than b.

It suffices then, to prove that for any tower of blow ups, the log discrepancy of
each successive exceptional divisor goes up strictly. So suppose that we are at some
step Y of the Zariski tower and that the centre of ν on Y is q. Then at most two
components of C = BY pass through q, with coefficients x ≤ y say. In this case, by
direct calculation, the exceptional divisor has log discrepancy

2− x− y > 1− x ≥ 1− y,

and we are done by induction. �
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Remark 7.5.6. Note that the corresponding result in higher dimensions fails.
The problem is that we have no control over the degrees of the centres of any
valuation of bounded log discrepancy, so that knowing that the length of the Zariski
tower is bounded is of no use.

Proof of Theorem 7.5.1. Let X be a surface over Z and let (Y,BY ) be a
terminal model. We are looking for a bounded family of pairs (Yt, Tt), such that
MYt is nef and pulled back from Tt, every nef divisor on Tt is semiample, and there
is a constant c such that there is an D ∈ |M|Yt with KYt +BYt + cD canonical. We
will choose models Yt over Y .

Suppose first that |M| is big. In this case we may take Yt = Y and Tt = Y .
Indeed, since −(KY + BY ) is nef and big over Z, it is automatic that every nef
divisor is semiample, by the base point free Theorem. If |M|Y is free, then we may
take any c < 1. If M is big, but |M|Y is not free, then, by Theorem 6.1.3, Z is a
point and

−(KY +BY ) ·MY ≤ 1.
As |M|Y has no base components, it follows that S ∈ |M|Y forms a bounded family
and the existence of c is then clear.

Otherwise, by Theorem 6.1.3 again, it follows that MY defines a pencil, and
there is a model ψ : W → Y and a morphism f : W → T down to a curve T , such
that the only exceptional divisor E which is horizontal for f has log discrepancy at
most two. As |M|W is base point free, we may take any c < 1. As E dominates T ,
T ' P1 and the condition that every nef divisor on T is semiample is trivial.

It suffices to prove that we may take a bounded family of such surfaces W . We
prove this in two different ways. One way is to apply Lemma 7.5.5. It follows that
the valuations corresponding to E form a bounded family, and from there it is easy
to see that the set of all such surfaces W forms a bounded family. On the other
hand, we could appeal to the fact that −(KY +BY ) ·C is at most one, to conclude
that C belongs to a bounded family. It follows that we may resolve the basis locus
of the linear system associated to C using a bounded family. But this also then
resolves the basis locus of |M|X and so W belongs to a bounded family.

Now suppose that we fix a contractionX 99K T . If this contraction is birational,
then arguing as above we can work on the terminal model, and we can take U to be
the single point {(Y, Y )}. Otherwise T ' P1, and again we can take U be a single
point. �

7.6. A strategy for the general case

We conclude the chapter by presenting a general strategy to prove the CCS
conjecture, modelled on the surface case just discussed.

Suppose that we are given a pair (X,B) and an integral mobile b-divisor M.
Our aim is to control the base locus of the linear system |M|X . To this end, we
pick a general element S ∈ |M|X . We work on some high model π : Y → X over X.
In particular we assume that Y is smooth and |M|Y is free. Let T be the divisor
in |M|Y lying over S.

Lemma 7.6.1. Let (X,B) be a log pair over Z and let M be a mobile b-divisor.
Pick a general element S ∈ |M|.

Then we may find a sufficiently high model π : Y → X, with the following
properties
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(a) |M|Y is free.
(b) The union the support of the inverse image of B and S is a divisor with

normal crossings.
(c) The locus V ⊂ X where π is not an isomorphism is the union of the locus

where the pair (X,B) does not have normal crossings and the base locus
of |M|X .

Further, if Y is any model which satisfies (a-c), then Y has the following ad-
ditional property:

(d) If M is A-saturated, then MY is AY (Y,BY )-saturated over Z.

Proof. Let ψ : W → X be a log resolution of the pair (X,B+S), which is an
isomorphism outside of the locus where the pair (X,B + S) does not have normal
crossings. As M is mobile, S is certainly reduced, and the locus where (X,B + S)
does not have normal crossings, is contained in the locus where the pair (X,B)
does not have normal crossings, union the base locus of |M|X . Blowing up the base
locus of |M|W , we may assume that (a-c) hold.

By Remark 2.3.25, (d) holds. �

Clearly the base locus of |M|X is contained in S. As usual, we restrict to T
and analyse the base locus on T . However, instead of restricting |M|Y to T , we
consider the restriction L of the line bundle OY (M + dAY e). In this case the base
locus of |M|X is related to the base locus of |L| in a much more indirect fashion.

Definition 7.6.2. Let KX + B be a pair over Z and let M be an integral
mobile b-divisor. Pick a general element S ∈ |M|X and pick a model π : Y → X
satisfying (a-c) of Lemma 7.6.1. Let V be the locus where π is not an isomorphism
and F the inverse image of V . Let T be the divisor in |M|Y lying over S, and let
L be the restriction to T of the line bundle OY (M + dAY e).

We say that the pair (L, |M|X) is g-free if
(1) The base locus of |L| is contained in F .
(2) Given any point p ∈ V , we may find S ∈ |M|X such that the base locus

of |L| does not intersect the fibre π−1(p).

Here the g of g-free stands for generic. Note that even though g-free is a
property of both L and the linear system |M|X , we will abuse notation and often
drop the reference to the choice of S.

Remark 7.6.3. Note that if the singular locus of X is at most zero dimensional,
then then |L| is g-free iff |L| is free, since in this case S is disjoint from the singular
locus of X. In particular this holds if X has dimension at most two, or if X is a
terminal threefold. In general however, S will always intersect the singular locus of
V and the inverse image of this locus is always contained in the base locus of L.

Proposition 7.6.4. Suppose that −(KX + B) is nef and big over Z, where
KX +B is terminal. Let M be an integral mobile b-divisor which is A = A(X,B)-
saturated over Z. Let S ∈ |M|X be a general element. Pick a model π : Y → X
satisfying (a-c) of Lemma 7.6.1.

Let T ∈ |M|Y be the general element corresponding to S, and let L be the
restriction of the line bundle OY (MY + dAY e) to T .

(1) Let B be a component of the base locus of |M|X and let E be an exceptional
divisor, with centre B. Then every every component E′ of E ∩ T is a
component of the base locus of |L|.
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(2) |M|X is free iff L is g-free.
(3) The line bundle L has the form

c1(L) = KT + ∆ +D,

where ∆ has normal crossings, every coefficient lies between zero and one,
and D = (−π∗(KX + ∆))|T is the pullback of a nef and big divisor from
S.

Proof. We first prove (1). Now, as MY is AY saturated, it follows that

Mob |MY + dAY e| ≤ |MY |.
By assumption |M|Y is a free linear system. As the pair (X,B) is klt, dAY e is
effective, and as the pair (X,B) is terminal, the support of dAY e is precisely the
exceptional locus. Thus every component of the exceptional locus is a component
of the base locus of the linear system |MY + dAY e|.

Let B be a component of the base locus of the linear system |M|X , and let
E be an exceptional divisor on Y with centre B. By what we just said, E is a
component of the linear system |MY + dAY e|. Let E′ be any component of E ∩ T .
Consider the restriction exact sequence,

0 −→ OY (dAY e) −→ OY (T + dAY e) −→ L −→ 0.

Taking global sections, we get a restriction map on linear systems

|T + dAY e| → |L|.
This map is surjective as

H1(Y, dAY e) = H1(Y,KY + d−π∗(KX +B)e) = 0,

by Kawamata-Viehweg vanishing. Suppose that E′ is not a component of the base
locus of |L|. Then we could find a section of L which does not vanish at any point
of E′. By surjectivity, we could lift this section to Y , and it would follow that E
is not a component of the base locus of |T + dAY e|, a contradiction. Thus E′ is a
component of the base locus of |T + dAY e|. Hence (1).

We turn to the proof of (2). By assumption |M|Y is a free linear system. Since
AY is exceptional and dAY e is effective, it follows that the only possibly base locus
of the linear system |MY + dAY e| is supported on the exceptional locus of π. We
have a commutative diagram,

T

f

��

� � // Y

π

��

F

��

? _oo

S � � // X V? _oo

Suppose that |M|X is free. Then the only locus where the map f is not an iso-
morphism, is supported in V ∩ S. As |M|X is free, given any point p ∈ V , we may
always pick an S that does not contain this point, so that T will not even intersect
the fibre over p.

Now suppose that the base locus of the linear system |L| is supported in V ,
and that we may avoid the fibre over any point p of V . Suppose that |M |X is not
free. Pick a component B of the base locus, and a point p ∈ B. Let q be a point in
the fibre over p. Then there must be an exceptional divisor E, containing q, with
centre B which intersects T , since the linear system |M |Y is free. But then any
component E′ of E ∩ T is a component of the base locus of |L|, by (1), and one of



7.7. ACKNOWLEDGEMENTS 115

these components contains q. But then the whole fibre over p is in the base locus
of |L|, which contradicts our assumption that L is g-free. This proves (2).

Finally we prove (3). We have

c1(L) = (T + AY )|T = (T +KY + d(−π∗(KX +B))e)|T
= KT + dDe = KT + ∆ +D,

where we applied adjunction to get from line two to line three, D is the restriction
of −(KY +B) to T and ∆ is defined as the difference dDe −D. Now −(KX +B)
is big and nef over Z, so that D is certainly nef over Z. However as T is the
general element of a base point free linear system, it follows that D is also big over
Z. Clearly the coefficients of ∆ lie between zero and one. On the other hand,
the support of ∆ is contained in the support of the strict transform of B and the
exceptional locus. As this has normal crossings in X and T is the general element
of a base point free linear system, it follows that ∆ has normal crossings. Hence
(3). �

Clearly, given Proposition 7.6.4, we should study carefully the base locus of
adjoint line bundles. In general, since we are only assuming that D is big and nef,
and we make no other assumption about the positivity of L, and since we want to
prove that |L| is close to being free, rather than some multiple of L, this is rather
a tall order.
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CHAPTER 8

Kodaira’s canonical bundle formula and
subadjunction

János Kollár

8.1. Introduction

Let (X,∆) be a log canonical pair. The aim of this chapter is to study the
structure of the set of points where (X,∆) is not klt.

I call this set the non-klt locus of (X,∆), but, unfortunately, in the literature
the misleading name locus of log canonical singularities is more frequent. Thus,
for any (X,∆), set

nklt(X,∆) = {x ∈ X : (X,∆) is not klt at x}.

It is frequently also denoted by LCS(X,∆).
Let f : X ′ → X be any log resolution of (X,∆) and E1, . . . , Em all the divisors

on X ′ with discrepancy −1. Then

nklt(X,∆) = f(E1 + · · ·+ Em),

thus one can effectively compute nklt(X,∆) from any log resolution of (X,∆).
There are certain subvarieties of nklt(X,∆) that are specially important. A

W ⊂ X is called a log canonical centre or LC centre if there is a log resolution
f : X ′ → X and a divisor E with discrepancy −1 such that f(E) = W .

Let f : X ′ → X be a log resolution as above. For any J ⊂ {1, . . . ,m}, any
irreducible component of f(∩i∈JEi) is a log canonical centre. Conversely, it is easy
to see that every log canonical centre of (X,∆) is obtained this way from a fixed
log resolution. In particular, the number of log canonical centres is finite.

A log canonical centre W ⊂ X is called exceptional if there is a unique divisor
EW on X ′ with discrepancy −1 such that f(EW ) = W and f(E′) ∩W = ∅ for
every other divisor E′ 6= E on X ′ with discrepancy −1.

Exceptional centres seem rather special, but in almost all cases (e.g., when
(X, 0) is klt) the “tie breaking method” shows that every minimal log canonical
centre of (X,∆) is an exceptional log canonical centre of some other (X,∆′).

The case when W ⊂ X is a codimension 1 log canonical centre, (that is, when
∆ = W + ∆′ for some ∆′ whose support does not contain W ) is described by
the inversion of adjunction theorems [FA92, Sec.17]. The precise relationship is a
little technical, but these theorems say, roughly, that there is an effective Q-divisor
Diff(∆′) on W such that

(1) KW + Diff(∆′) = (KX + ∆)|W , and
(2) (W,Diff(∆′)) is also log canonical.

117
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Our main interest here is in understanding the higher codimension log canonical
centres of (X,∆).

Let W be any log canonical centre of (X,∆). Then there is a log resolution
f : X ′ → X and a divisor E with discrepancy −1 such that f(E) = W . Write

KX′ + E + ∆′ ∼Q f∗(KX + ∆).

By the usual adjunction formula,

KE + ∆′|E = (KX′ + E + ∆′)|E ∼Q f∗
(
(KX + ∆)|W

)
. (∗)

We can thus view f : E → W as a log-analog of elliptic surfaces in that the log
canonical class of (E,∆′|E) is a pull back of some divisor from the base W .

The generalization of Kodaira’s canonical bundle formula to this setting was
accomplished in [Fuj86] for surfaces and in [Kaw98] in general. Our presentation
is also influenced by the papers of Ambro [Ambb, Amb04, Amb05a]. The end
result we would like to get is a formula

KE + ∆′|E = f∗(KW + L+B), (∗∗)

where B is effective, (W,B) is log canonical and L is semiample.
Putting (∗) and (∗∗) together would give the Subadjunction Theorem:
(1’) KW + L+B = (KX + ∆)|W , and
(2’) (W,B) is also log canonical.

There are, unfortunately, 2 technical points that get in the way.
First, we should not expect L to be semiample (= the pull back of an ample

divisor by a morphism), but only to be mobile (= the pull back of an ample
divisor by a rational map). Actually, we can prove only the weaker result that L is
pseudo-mobile (= numerically a limit of mobile divisors).

Second, in general KW + B is not Q-Cartier, thus it makes no sense to talk
about it being log canonical. This forces us to introduce a slightly artificial extra
divisor, but this seems to cause only minor problems in applications.

In Section 8.8 we prove Ambro’s theorem that nklt(X,∆) is seminormal and
Section 8.9 gives a summary of the positivity properties of relative dualizing sheaves
which are used in the proof.

Finally Section 8.10 shows how these methods imply Zhang’s theorem that a
log Fano variety is rationally connected.

8.2. Fujita’s canonical bundle formula

Let f : S → C be a relatively minimal elliptic surface. That is, S is smooth and
proper, the smooth fibers of f are all elliptic curves and no −1-curve is contained
in a fiber of f .

Basic invariants of f : S → C are
i) the j-invariant of the smooth fibers, viewed as a map j : C →M1

∼= P1,
ii) the set of singular fibers B ⊂ C, and
iii) the singular fibers EP for P ∈ B.

Kodaira’s canonical bundle formula (see [Kod63, Sec.12] or [BPVdV84, Sec.IV.12])
computes the canonical class of S in terms of χ(OS), χ(OC) and the multiple fibers.

It is, however, much better to compute KS in terms of the above 3 invariants.
A formula of this type was developed by [Fuj86], building on earlier examples of
[Uen73].
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It turns out that we need to know only a single rational number c(P ) attached
to the singular fibers. First it was related to the order of the monodromy around
the singular fiber, but now we recognize it as the log canonical threshold of the
fiber. That is

c(P ) := max{c : (S, c · EP ) is log canonical}.
Fujita’s formula computes the canonical bundle of S in terms of these invariants:

Theorem 8.2.1. With the above notation,

KS ∼Q f∗
(
KC + 1

12j
∗OP1(1) +

∑
P∈B

(1− c(P ))[P ]
)
. (8.2.1.1)

Its main features can be summarized as follows:
i) The canonical class KS is the pull-back of a Q-divisor D on C.
ii) D can be written as KC + J +B, where

• J is a Q-linear equivalence class which is the pull-back of an ample
divisor from the moduli space of the smooth fibers (we call this the
moduli part or the j-part), and

• B is an effective Q-divisor that depends on the singular fibers only
(we call this the boundary part).

A far reaching generalization of these observations is Iitaka’s program which asserts
that the situation is similar for any algebraic fiber space f : X → Y whose generic
fiber is not uniruled. See [Mor87] for a summary of the known results and an
introduction to the methods.

Our first aim is to develop a generalization of Fujita’s canonical bundle formula
to morphisms f : X → Y whose general fiber has trivial canonical class. In fact,
the resulting formula also applies to pairs (X,∆), as long as KX + ∆ is Q-linearly
trivial on the generic fiber. We can even allow ∆ to contain certain divisors with
negative coefficient and this turns out to be crucial in many applications.

Before we start with the higher dimensional case, let us think about its general
features based on further study of elliptic surfaces.

In dimensions ≥ 3 we can not achieve relative minimality easily, so it makes
sense to check what happens to Fujita’s formula for elliptic surfaces

f ′ : S′ π→ S
f→ C

which are not relatively minimal.
The first thing we notice is that now KS′ is not a pull-back of anything. Indeed,

if E ⊂ S′ is a −1-curve contained in a fiber of f ′ then (E ·KS′) = −1 but E has
zero intersection number with any divisor that is pulled back from C.

We can write KS′ = π∗KS+E for some effective divisor E and then the formula
becomes

KS′ − E ∼Q (f ′)∗
(
KC + 1

12j
∗OP1(1) +

∑
p∈B

(1− c(P ))[P ]
)
. (8.2.1.2)

This looks quite unsatisfactory since it is not straightforward to determine E from
the singular fibers. If S′ is obtained from S by blowing up distinct points pi ∈ S
with exceptional curves Ei, then E =

∑
Ei. However, if we first blow up p1 ∈ S

to get E1 and then p2 ∈ E1 ⊂ Bp1S to get E2, then E = E1 + 2E2 and now E1 is
a −2-curve. A typical singular fiber of f also consists of −2-curves, thus here we
treat different −2-curves in the fibers differently.
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We may decide not to deal with this precisely, and just say that in (8.2.1.2),
E is some divisor whose support is in the singular fibers. In this form, we lose
uniqueness. Indeed, if we decrease the coefficient of [P ] from 1−c(P ) to 1−c(P )−d,
we can compensate for this by replacing E by E + d · f−1(P ). Thus we obtain a
formula

KS′ +RS ∼Q (f ′)∗
(
KC + 1

12j
∗OP1(1) +BC

)
,

where BC is some Q-divisor with support in B and RS is some Q-divisor with
support in (f ′)−1(B). Of course here BC and RS are interrelated, but we do not
have a precise statement any longer.

Instead of looking at this as a loss, we should treat it as an opportunity. So far
we tried to keep the left hand side of (8.2.1.1) to be KS or as closely related to KS

as we could. This, however, did not work very well in the non minimal case.
Let us now shift our attention to C and try to make a good choice there. So

we need to write down a divisor of the form∑
P∈B

a(P )[P ] for some a(P ) ∈ Q.

If we pick a(P ) = 0, then we do not see the singular fibers at all. The next best
choice is a(P ) = 1 for every P . In the elliptic surface case, this works marvelously.

Theorem 8.2.2. Let f : S → C be an elliptic surface, not necessarily relatively
minimal. Let B ⊂ C be a finite set containing all critical values of f . Then there
is a unique Q-divisor R on S such that

(1) KS +R ∼Q f∗
(
KC + 1

12j
∗OP1(1) +B

)
,

(2) SuppR ⊂ f−1(B),
(3) (S,R) is lc, and
(4) for every P ∈ B there is a Q ∈ f−1(P ) such that (S,R) is not klt at Q.

I leave it to the reader to derive this result from Theorem 8.2.1. It also follows
as a very special case of Theorem 8.5.1.

The main advantage of this version is that the conditions on B and R are
easy to generalize to higher dimensions. We have to focus on the log canonical
condition. The advantage of the log canonical normalization is one of the key
insights coming from the theory of singularities of pairs. (See [Kol97] or [KM98]
for introductions.)

Note the very nice additional feature that we do not need to know which fibers
are singular. If f−1(p) is a smooth fiber and we add p to B by accident, then
condition (8.2.2.4) says that R must contain a divisor with coefficient 1 lying over
p. Since f−1(p) is irreducible, we have to add f−1(p) to R with coefficient 1.

8.3. The general canonical bundle formula

Let X,Y be normal projective varieties and f : X → Y a dominant morphism
with connected fibers. Let F be the generic fiber of f . If H is a Q-Cartier divisor
on Y then f∗H|F ∼Q 0.

Conversely, if G is any divisor on X such that G|F ∼Q 0 then an easy lemma
(8.3.4) shows that there is a (non unique) vertical divisor G′ such that G+G′ ∼Q
f∗H for some divisor H on Y .

8.3.1 (Main questions). Let us apply the above to a divisor of the form
G = KX +R1, assuming as before that (KX +R1)|F = KF +R1|F ∼Q 0. We thus
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get that there is a vertical divisor R2 such that KX+R1+R2 ∼Q f∗HR1,R2 for some
divisor HR1,R2 depending on R1, R2. We consider two closely related questions:

(1) Given f : X → Y and R1, find an optimal choice of R2.
(2) Given f : X → Y and R such that

KX +R ∼Q f∗M for some divisor M ,

write M = KY + J +B in an insightful way.

The first part is quite easy to do by following the example of Theorem 8.2.2.
Remember, however, that in the surface case we needed to know the critical values
of the morphism f , or, equivalently, the singular fibers of f . In higher dimensions
every fiber may be singular, so a different definition is needed. It is again the log
canonical condition that gives the right answer.

Basically, we would like to say that the fiber Xy := f−1(y) is “good” if
(Xy, R|Xy ) is lc, but for technical reasons it is more convenient to formulate it
slightly differently.

Definition 8.3.2. Let X and Y be normal and f : X → Y a dominant projec-
tive morphism. Let R be a Q-divisor on X and B ⊂ Y an irreducible divisor.

We say that f has slc (=semi log canonical) fiber over the generic point of B if
no irreducible component of R dominates B and (X,R+f∗B) is lc over the generic
point of B.

We say that f has slc fibers in codimension 1 over an open set Y 0 ⊂ Y if
f has slc fibers over the generic point of every prime divisor which intersects Y 0.
Note that this implies that (X r f−1(Z), R) is lc for some closed subset Z ⊂ Y 0 of
codimension ≥ 2.

If X is smooth and R is a relative snc subboundary over an open set Y 0, then
f has slc fibers in codimension 1 over Y 0.

If π : X ′ → X is birational and we write KX′ + R′ ∼Q π∗(KX + R) with
π∗R

′ = R, then f has an slc fiber over the generic point of B iff f ◦ π has an slc
fiber over the generic point of B.

Thus, if (X,R) is lc then there are only finitely many divisors B ⊂ Y such that
f does not have an slc fiber over the generic point of B.

Although we do not need it, it is worth noting that by [Kaw] this is equivalent
to the following 3 conditions:

(1) f∗B is generically reduced over the generic point of B,
(2) no component of R dominates B, and
(3) the generic fiber of (f∗B,R|f∗B) is slc.

The following proposition gives a solution to (8.3.1.1). (Note that the Q-
factoriality assumption on Y seems restrictive, but it is easy to satisfy by throwing
away all the singular points of Y .)

Proposition 8.3.3. Let X,Y be normal and f : X → Y a projective, dominant
morphism with generic fiber F . Assume that Y is Q-factorial. Let R1 be a Q-divisor
on X and B a reduced divisor on Y . Assume furthermore that

(1) (KX +R1)|F ∼Q 0, and
(2) f has irreducible slc fibers in codimension 1 over Y rB.

Then there is a unique Q-divisor R2 on X and a unique Q-linear equivalence class
L on Y such that
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(3) KX +R1 +R2 ∼Q f∗(KY + L+B),
(4) SuppR2 ⊂ f−1(B),
(5) (X r f−1(Z), R1 +R2) is lc for some closed subset Z ⊂ Y of codimension
≥ 2,

(6) every irreducible component of B is dominated by a log canonical centre
of (X,R1 +R2).

Proof. By Lemma 8.3.4, there is a vertical divisor V on X such that KX +
R1 + V ∼Q 0. Set M = −B, then we can write this as

KX +R1 + V ∼Q f∗(M +B). (8.3.3.3∗)

We next change V and M until we get the right form.
Let aiVi be an irreducible summand of V such that f(Vi) 6⊂ B. By assumption,

the generic fiber of Vi → f(Vi) is irreducible of dimension dimX − dimY , thus
Wi := f(Vi) is a divisor and Vi is the only irreducible component of f−1(Wi) which
dominates Wi. Thus we can subtract aif∗(Wi) from V and aiWi from M while
keeping (8.3.3.3*) valid. Repeating this if necessary, at the end we can assume that
f(SuppV ) ⊂ B and (8.3.3.3*) holds.

We know that (X,R1 +V − cf∗(B)) is lc along f−1(B) for c� 1. Next we can
add a suitable

∑
aif

∗(Bi) such that (X,R1 + V − cf∗(B) +
∑
aif

∗(Bi)) is lc but
not klt over an open subset of each Bi. Set R2 := V − cf∗(B) +

∑
aif

∗(Bi). We
have satisfied both (8.3.3.5) and (8.3.3.6).

Finally assume that we have two such choices, giving

KX +R1 +R2 ∼Q f∗(KY + L+B) and KX +R1 +R′2 ∼Q f∗(KY + L′ +B).

This gives that R2 − R′2 ∼Q f∗(L − L′). By (8.3.5) this implies that R2 − R′2 =
f∗(

∑
ciBi) for some ci ∈ Q. Assume that cj > 0 and let W ⊂ X be an lc centre of

(X,R1 +R′2) dominating Bj . Then (X,R1 +R′2 + cjf
∗(Bj)) is not lc along W , but

at the generic point of W it coincides with (X,R1 + R2). Thus cj ≤ 0 for every j
and similarly cj ≥ 0 for every j. Therefore R2 = R′2 and so L ∼Q L′. �

Lemma 8.3.4. Let X,Y be projective varieties and f : X → Y a morphism with
generic fiber F . Let D be a Q-divisor on X such that D|F ∼Q 0.

Then there is a vertical divisor E on X such that D + E ∼Q 0.

Proof. By assumption there is an integer m > 0 and a rational function h on
F such that mD|F = (h)F . One can also view h as a rational function on X, thus
E′ := mD − (h)X is a divisor on X which is disjoint from the generic fiber, thus
vertical. Set E := − 1

mE
′. �

Lemma 8.3.5. Let X,Y be projective varieties and f : X → Y a dominant
morphism with connected fibers. Let D be a vertical Q-divisor on X such that
D ∼Q f∗B for some Q-divisor B.

Then there is a Q-divisor B′ on X such that D = f∗(B′).

Proof. By assumption there is an m > 0 and an h ∈ k(X) such that mD −
f∗(mB) = (h). Since h has neither poles nor zeros on the generic fiber F , h|F
is constant, that is, h ∈ f∗k(Y ). Thus h = f∗h′ for some h′ ∈ k(Y ) and then
mD = f∗(mB + (h′)). �

The second aim (8.3.1.2) is harder to achieve, and the precise results are some-
what technical. They are much easier to state if suitable normal crossing assump-
tions are satisfied.



8.3. THE GENERAL CANONICAL BUNDLE FORMULA 123

Definition 8.3.6 (Standard normal crossing assumptions). We say that f : X →
Y and the divisors R,B satisfy the standard normal crossing assumptions if the
following hold

(1) X,Y are smooth,
(2) R+ f∗B and B are snc divisors,
(3) f is smooth over Y rB, and
(4) R is a relative snc divisor over Y rB.

In practice, the assumptions on X and on divisors on X are completely harmless.
By contrast, we have to do some work to compare our problem on Y with the
corresponding problem on a blow up of Y .

We can now formulate the first version of the general Kodaira type formula.
Later we also consider certain cases when Rh is not effective, which is crucial for
some applications.

Theorem 8.3.7. Let f : X → Y and R,B satisfy the normal crossing assump-
tions (8.3.6). Assume that KX + R ∼Q f∗HR for some Q-divisor HR on Y . Let
R = Rh + Rv be the horizontal and vertical parts of R and assume that Rh is an
effective subboundary. Then we can write

KX +R ∼Q f∗
(
KY + J(X/Y,R) +BR

)
such that the following hold.

(1) The moduli part (or j-part) J(X/Y,R) is nef and depends only on (F,Rh|F )
and Y , where F is the generic fiber of f

(2) The boundary part BR depends only on f : X → Y and Rv. More pre-
cisely, BR is the unique smallest Q-divisor supported on B such that

Rv + f∗
(
B −BR) ≤ red(f∗B).

Moreover,
(3) (Y,BR) is lc iff (X,R) is lc,
(4) if bRhc = 0 then (Y,BR) is klt iff (X,R) is klt, and
(5) Bi appears in BR with nonnegative coefficient iff f∗OX(d−Rve) 6⊂ OBi,Y .

Proof. This is a special case of the general version to be established in (8.5.1).
Here I only explain the condition (8.3.7.2) and show how it implies (8.3.7.3–5).

The important observation is that the condition (8.3.7.2) is a linear extension
of the log canonical normalization suggested by Theorem 8.2.2.

Indeed, note first that by (8.3.7.2) BR = B iff Rv ≤ red(f∗B) and every
irreducible component of B is dominated by an irreducible component of Rv which
has coefficient 1. More generally, (X,R) is lc iff Rv ≤ red(f∗B) which is equivalent
to B ≥ BR using (8.3.7.2). Finally B ≥ BR iff (Y,BR) is lc, proving (8.3.7.3).
Similarly, if bRhc = 0 then (X,R) is klt iff Rv < red(f∗B) which is equivalent to
B > BR hence to (Y,BR) being klt. This is (8.3.7.4).

In order to see (8.3.7.5), we can replace Y by Y r∪j 6=iBj . Thus we may assume
that B is irreducible. Then, from (8.3.7.2) we see that BR < 0 ⇔ Rv + f∗B <
red f∗B. This can be rearranged to f∗B − red f∗B < −Rv which is equivalent to
f∗B ≤ d−Rve and finally to OB,Y (B) ⊂ f∗OX(d−Rve), proving (8.3.7.5). �

In connection with (8.3.7), there are several unsolved problems.
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8.3.8 (Open problems). Notation and assumptions as in (8.3.7). Conjecturally,
J(X/Y,R) is the pull-back of an ample Q-divisor by a rational map. Moreover,
this rational map should be the natural map of Y to a compactified moduli space
of the smooth fibers.

One key problem is that it is not clear (not even conjecturally) how to com-
pactify the moduli space of the smooth fibers.

Another difficulty, as shown to me by Ambro and Birkar, is that in the case
when (F,R|F ) is not klt, we may have only a semiample line bundle on the moduli
space of the smooth fibers.

To see such an example, let f : X → P1 be a minimal ruled surface and E ⊂ X
a section with E2 = −m < 0 and typical fiber F0. Set R := E + 1

n (H1 + · · ·+Hn)
where Hi ∈ |E +mF0|. Then KX +R ∼Q f∗KP1 , thus BR = J(X/P1, R) = 0.

It is actually pretty clear why J(X/Y,R) does not see much of the moduli of
(F,R|F ). If R = Z +R′ where Z is a smooth horizontal divisor, then

(KX +R)|Z = (KZ + Z +R′)|Z = KZ +R′|Z .

Thus, applying (8.3.7) to f : Z → Y we get that

KX +R ∼Q f∗(KY + J(Z/Y,R′|Z) +BR′|Z ).

By repeating this procedure if necessary, we see that the log canonical case of (8.3.7)
essentially follows from the klt case.

A slight problem is that I do not see how to prove that the resulting formulas for
J(X/Y,R) and BR are independent of the choice of Z. For the present applications
this does not matter, so the reader could skip the general case and the necessary
mixed Hodge theoretic considerations.

8.4. Fiber spaces of log Kodaira dimension 0

In this section we define the j-part of the canonical bundle formula (8.3.7) in
the general setting when Rh need not be effective.

Definition 8.4.1. Let (X,∆) be an lc pair, X proper and ∆ effective. We say
that (X,∆) has log Kodaira dimension 0, denoted by κ(X,∆) = 0 if h0(X,OX(m(KX+
∆))) = 1 for every sufficiently divisible positive m.

Equivalently, there is a unique, effective Q-divisor E such that KX + ∆ ∼Q E.
For us it will be more convenient to set R = ∆ − E. Then (X,R) is lc,

KX +R ∼Q 0, but R is usually not effective.
Write R = R(≥0) − R(≤0) as the difference of its positive and negative parts.

Note thatR(≤0) ≤ E but the two are different if ∆ and E have common components.
If κ(X,∆) = 0 then also h0(X,OX(mR(≤0))) = 1 for every sufficiently divisible

positive m.

It turns out that instead of assuming κ(X,∆) = 0, we need only a weaker
restriction for the canonical bundle formula to work.

Definition 8.4.2. Assume that (X,R) is lc and KX +R ∼Q 0. Define

p+
g (X,R) := h0(X,OX(dR(≤0)e)).

Explanation. If X is smooth and KX ∼ E is effective then R = −E. In this
case p+

g (X,R) = h0(X,OX(KX)), thus p+
g (X,R) = pg(X), the usual geometric

genus.
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If κ(X,∆) = 0 then h0(X,OX(mR(≤0))) ≤ 1 for every m. Since dR(≤0)e ≤
mR(≤0) for m� 1, we see that in this case p+

g (X,R) = 1.
For a pair (X,∆) one defines the log canonical ring as

R(X,KX + ∆) :=
∑
m≥0

H0(X,OX(mKX + bm∆c)).

The reason for rounding down is that this way we do get a ring. Our definition of
p+
g corresponds to rounding up: h0(X,OX(mKX + dm∆e)). That is why I added

the superscript + to the notation. Note that

R+(X,KX + ∆) :=
∑
m≥0

H0(X,OX(mKX + dm∆e))

is a module over the log canonical ring R(X,KX + ∆) which may be interesting to
study.

Lemma 8.4.3. Let g : X ′ → X be a proper birational morphism and write

KX′ +R′ ∼Q g∗(KX +R) with g∗R
′ = R.

Then p+
g (X,R) ≥ p+

g (X ′, R′) and equality holds if p+
g (X,R) = 1.

Proof. The inequality follows from g∗(R′(≤0)) = R(≤0). Since p+
g ≥ 1 always,

this implies the last claim. �

Let f : (X,∆)→ Y be a proper morphism whose generic fiber has log Kodaira
dimension 0. As we already noted, we would like to define a compactified moduli
spaceM for the fibers and a semiample Q-divisor H onM such that the “j-part”
of the canonical bundle formula is given by j∗H where j : Y 99KM is the moduli
map. In the case of elliptic curves M∼= P1 and

We are, unfortunately, not able to accomplish this in general. Instead we
construct Q-divisor classes J(X/Y,R) which play the role of j∗H in the canonical
bundle formula. These classes J(X/Y,R) have all the right properties, except
possibly semiampleness.

The general definition is a bit technical, so let us start with a classical case.

Example 8.4.4. Let f : X → Y be a proper morphism of smooth varieties with
generic fiber F such that KF ∼ 0. Then f is smooth over an open subset Y 0 ⊂ Y .
Set X0 := f−1(Y 0).

The key observation is that for a smooth projective variety Z, H0(Z, ωZ) can
be identified with the bottom piece of the Hodge filtration of HdimZ(Z,C). (See
Section 8.9 for a summary of the relevant concepts and facts from Hodge theory.)

Use this for the smooth fibers of f to obtain that f∗ωX0/Y 0 is the lowest piece
of the Hodge filtration of the variation of Hodge structures RdimF f∗CX0 .

If Y rY 0 is a snc divisor and RdimF f∗CX0 has unipotent monodromies around
it, then Hodge theory gives a canonical extension of f∗ωX0/Y 0 to a line bundle J
on Y , which actually coincides with f∗ωX/Y , see (8.9.7). In this case we can set

J(X/Y ) := the divisor class corresponding to J .
There is always a generically finite morphism π : Y ′ → Y and a resolution

f ′ : X ′ → X ×Y Y ′ → Y ′ such that f ′ : X ′ → Y ′ satisfies these conditions. Set

J(X/Y ) :=
1

deg π
π∗J(X ′/Y ′).
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For R 6= 0 the definition follows the same pattern. First we relate p+
g (X,R) to

Hodge theory and then we use the theory of variation of Hodge structures to get
the right J(X/Y,R) if various normal crossing assumptions hold. The general case
is then defined by push forward from a normal crossing version.

8.4.5 (Hodge theoretic interpretation of p+
g (X,R)). Assume that X is smooth,

R is a snc divisor, (X,R) is lc and KX +R ∼Q 0. We can uniquely write

R = D + ∆−G where D = bR(≥0)c, G = dR(≤0)e, (8.4.5.1)

and so ∆ is the fractional part of R satisfying b∆c = 0. In particular, p+
g (X,R) =

h0(X,OX(G)). Since (X,R) is lc, D and ∆ have no common irreducible components
and D is reduced. Furthermore, (X,R) is klt iff D = 0.

Choose any m > 0 such that m∆ is an integral divisor and m(KX + R) ∼ 0.
Setting V = OX(G−KX −D), we have an isomorphism

V m ∼= OX(m∆). (8.4.5.2)

As in (8.9.3), the canonical section 1 ∈ H0(X,OX(m∆)) determines an m-sheeted
cyclic cover π : X ′ → X such that

π∗ωX′ ∼=
m−1∑
i=0

ωX ⊗ V i(−bi∆c). (8.4.5.3)

For i = 1 we get the direct summand

ωX ⊗ V (−b∆c) = ωX ⊗ V ∼= OX(G−D). (8.4.5.4)

First, we obtain the following:

8.4.5.5 Claim. If (X,R) is klt then H0(X,OX(G)) is naturally a direct sum-
mand of H0(X ′, ωX′). �

Although X ′ has quotient singularities, we still get a pure Hodge structure on
Hi(X ′,C) andH0(X ′, ωX′) is the bottom piece of the Hodge filtration for i = dimX
(8.9.11). This is completely adequate for our purposes, but it is conceptually better
to view this in one of the following ways.

(6) The µm-Galois action of the covering X ′ → X also acts on HdimX(X ′,C).
The corresponding eigenspaces are sub Hodge structures, giving a direct
sum decomposition

HdimX(X ′,C) =
m−1∑
i=0

HdimX(X ′,C)(i),

and we can choose the indexing such that H0(X,ωX ⊗ V i(−bi∆c)) is
naturally the bottom piece of the Hodge filtration on the ith summand.

(7) The canonical section 1 ∈ H0(X,OX(m∆)) determines a flat structure of
V |Xr∆. Let V denote the sheaf of locally constant sections. (This can also
be viewed as a sheaf associated to a representation π1(X r ∆) → µm.)
It turns out that the Hodge structure on Hj(X,V) is pure and in fact
naturally isomorphic to the above Hj(X ′,C)(1). Thus H0(X,OX(G−D))
is naturally the bottom piece of the Hodge filtration of HdimX(X,V).
(Note that the natural map between topological and coherent cohomology
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on X ′ is given by Hj(X ′,C) � Hj(X ′,OX′). Under the µm-action, one
of the eigenvalues gives

Hj(X,V−1) � Hj(X,V −1).

For j = dimX we take the dual sequence

H0(X,ωX ⊗ V ) ↪→ HdimX(X,V)

to get the claimed injection. Here the first term is coming from Serre du-
ality and the second from Poincaré duality on the (2 dimX)-dimensional
space X.)

If (X,R) is lc but not klt then D 6= 0. Set D′ := redπ∗(D). Then we get that

π∗ωX′(D′) ∼=
m−1∑
i=0

ωX ⊗ V i(D − bi∆c).

As before, we obtain thatH0(X,OX(G)) is naturally a direct summand ofH0(X ′, ωX′(D′)).
These groups are related to mixed Hodge structures as follows. (See [GS75, Sec.5]
for a very clear introduction to mixed Hodge theory on smooth (open) varieties.)
As explained in (8.9.11), these results extend to X ′ r D′, although the latter has
quotient singularities.

(6’) The mixed Hodge structure on HdimX(X ′ r D′,C) has only weights ≥
dimX and we get a direct sum decomposition of mixed Hodge structures

HdimX(X ′ rD′,C) =
m−1∑
i=0

HdimX(X ′ rD′,C)(i).

Furthermore,H0(X,OX(G)) is naturally a direct summand ofH0(X ′, ωX′(D′)),
which is the bottom piece of the Hodge filtration.

(7’) The mixed Hodge structure on HdimX(X r D,V) has only weights ≥
dimX and H0(X,OX(G)) is naturally isomorphic to the bottom piece of
its Hodge filtration.

Definition 8.4.6 (Moduli part or j-part). Let f : (X,R) → Y be a proper
morphism of normal varieties with generic fiber F such that

(1) (F,R|F ) is lc, KF +R|F ∼Q 0 and p+
g (F,R|F ) = 1.

Let Y 0 ⊂ Y and X0 := f−1(Y 0) be open subsets such that KX0 +R0 ∼Q 0 where
R0 := R|X0 . As before, write

R0 = D0 + ∆0 −G0 where D0 = bR0
(≥0)c, G

0 = dR0
(≤0)e.

As a first step, assume that the following additional conditions also hold:
(2) X0, Y 0 are smooth and
(3) R0 is a relative snc divisor over Y 0.

Setting V = OX0(G0 −KX0 −D0), we have an isomorphism

V ⊗m ∼= OX0(m∆0),

which defines a local system V on X0 r (D0 ∪∆0). Assume also that
(4) Y is smooth, Y r Y 0 is a snc divisor and
(5) RdimF f∗V has only unipotent monodromies.
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Then the bottom piece of the Hodge filtration of RdimF f∗V has a natural extension
to a line bundle J on Y . Set

J(X/Y,R) := the divisor class corresponding to J .

If the conditions (8.4.6.2–5) are not satisfied, then take a generically finite
morphism π : Y ′ → Y and a resolution f ′ : X ′ → X×Y Y ′ → Y ′ such that f ′ : X ′ →
Y ′ satisfies the conditions (8.4.6.1–5). Set

J(X/Y,R) :=
1

deg π
π∗J(X ′/Y ′, R′).

Remark 8.4.7. It is not immediately clear that the above construction does
not depend on the various choices made.

One of the subtle choices is the isomorphism V ⊗m ∼= OX0(m∆0). Any two
isomorphisms differ by an invertible element of OX0 ; these are all pull backs of
units on Y 0. Depending on which unit we chose, we get completely different cyclic
covers.

(For example, in the simple case when Y 0 = A1 r {0} with coordinate x,
we can use either of the isomorphisms O⊗2

Y 0
∼= OY 0 given by σ0(1 ⊗ 1) = 1 or

σ1(1 ⊗ 1) = x. The first one gives the disconnected double cover y2 = 1 and the
second the connected double cover y2 = x.)

The divisor of a unit of OY 0 on Y is of the form
∑
ciBi, where Y rY 0 =

∑
Bi

and by (8.9.3), the resulting cyclic cover depends only on ci mod m. Thus, given
f : X → Y and R we get only finitely many possible local systems Vj .

Correspondingly, we get finitely many possible local systems RdimF f∗Vj and
any two differ only by tensoring with a rank 1 local system which comes from a
representation π1(Y 0)→ µm. Therefore by pulling back to a suitable étale cover of
Y 0, the local systems RdimF f∗Vj become isomorphic. Thus the unipotent reduction
corrects for the ambiguity in the construction of V0.

This is, however, one of the main reasons that J(X/Y,R) is defined only as
a Q-linear equivalence class, even when there is a reasonably natural choice of an
integer divisor in this equivalence class.

8.4.8 (Base change diagrams). Let f : X → Y be a proper morphism of normal
varieties. Let h : Y ′ → Y be any dominant and generically finite map of normal
varieties and choose any hX : X ′ → X ×Y Y ′ which is birational onto the main
component with X ′ normal and projective. Let πX : X ′ → X be the composite. If
we are given a Q-divisor R on X such that KX + R ∼Q 0 then there is a unique
Q-divisor R′ on X ′ such that KX′ + R′ ∼Q 0 and (hX)∗R′ = (deg πX) · R. We
obtain a base change diagram:

πX : X ′ → Y ′ ×Y X → X
f ′ ↘ ↓ ↓ f

Y ′ π→ Y

The main properties of J(X/Y,R) are summarized in the next result:

Proposition 8.4.9. Let f : (X,R) → Y be a proper morphism of normal va-
rieties with generic fiber F . Assume that (F,R|F ) is lc, KF + R|F ∼Q 0 and
p+
g (F,R|F ) = 1. Then the class J(X/Y,R) constructed in (8.4.6) is well defined,

and it has the following properties.
(1) (Birational invariance) J(X/Y,R) depends only on (F,R|F ) and Y .
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(2) (Push forward) For any base change diagram as in (8.4.8)

J(X/Y,R) =
1

deg π
π∗J(X ′/Y ′, R′).

(3) (Pull back) If X,Y,R,B satisfy the normal crossing assumptions (8.3.6)
then

J(X ′/Y ′, R′) = π∗J(X/Y,R).
(4) (Semipositivity) If X,Y,R,B satisfy the normal crossing assumptions (8.3.6)

then J(X/Y,R) is nef.

Proof. If a variation of Hodge structures has unipotent monodromies, then so
does every pull back and the canonical extension commutes with pull backs. This
shows (8.4.9.3).

The property (8.4.9.2) is part of our definition and coupled with (8.4.9.3) it
shows that J(X/Y,R) is well defined. (8.4.9.1) is a special case of (8.4.9.2).

Finally (8.4.9.4) again follows from Hodge theory (8.9.8). �

Remark 8.4.10. The base change conjecture [Ambb, Conj.5] says that J(X/Y,R)
should commute with arbitrary pull backs but it was pointed out by Prokhorov that
this is too much. We expect that J(X/Y,R) is a pull back of a fixed ample class by
a rational map Y 99KM. Pull backs by rational maps do no commute with further
pull backs; we get problems over the points where the map is not defined.

Thus (8.4.9.3) may be the strongest form of the base change conjecture that
one can expect to hold. It is essentially equivalent the form proved in [Amb04,
Amb05a].

8.5. Kawamata’s canonical bundle formula

We are now ready to prove the general Kodaira formula for fiber spaces whose
generic fiber satisfies p+

g = 1.

Theorem 8.5.1. Let X,Y be normal projective varieties and f : X → Y a
dominant morphism with generic fiber F . Let R be a Q-divisor on X such that
KX +R is Q-Cartier and B a reduced divisor on Y . Assume that

(1) KX +R ∼Q f∗(some Q-Cartier divisor on Y ),
(2) p+

g (F,R|F ) = 1, and
(3) f has slc fibers in codimension 1 over Y rB.

Then one can write

KX +R ∼Q f∗
(
KY + J(X/Y,R) +BR

)
, where

• J(X/Y,R) is the moduli part defined in (8.4.6). It depends only on
(F,R|F ) and on Y .

• BR is the unique Q-divisor supported on B for which there is a codimen-
sion ≥ 2 closed subset Z ⊂ Y such that
(a) (X r f−1(Z), R+ f∗(B −BR)) is lc and
(b) every irreducible component of B is dominated by a log canonical

centre of (X,R+ f∗(B −BR)).

Remark 8.5.2. 1. The formulation is slightly sloppy since B − BR need not
be a Q-Cartier divisor, thus the pull back f∗(B −BR) need not make sense. Note,
however, that we can assume that Z ⊃ Sing Y , thus we really care only about the
pull back of (B −BR)|YrZ which is defined.
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2. In (8.3.7) we could say that BR depends only on Rv, but in the singular case
this is not quite right since a log canonical centre may be created by a complicated
intersection between the vertical and the horizontal parts of R.

Proof. We start with several reduction steps and then we compare our situ-
ation with the Hodge theoretic construction of J(X/Y,R).

Step 1: Achieving normal crossing. Consider any base change diagram as in
(8.4.8) with X ′, Y ′ smooth and π, πX birational. Write KX′ +R′ ∼Q π∗X(KX +R)
such that 1

deg π (πX)∗R′ = R. If

KX′ +R′ ∼Q (f ′)∗
(
KY ′ + J(X ′/Y ′, R′) +B′

R′
)

then J(X/Y,R) := π∗J(X ′/Y ′, R′) and BR := π∗B
′
R′ have the right properties.

In particular, in order to prove (8.5.1), we may assume from now on that the
normal crossing assumptions (8.3.6) are satisfied.

Step 2: Reduction to BR = B. Since Y is smooth, B −BR is Q-Cartier. If we
replace R by R+ f∗(B−BR) and BR by BR + (B−BR) = B then we can assume
in addition that
(8.5.1.4) there is a codimension ≥ 2 subset Z ⊂ Y such that (X r f−1(Z), R) is lc,

and
(8.5.1.5) every irreducible component of B is dominated by a log canonical centre

of (X,R).
We then need to prove that

KX +R ∼Q f∗
(
KY + J(X/Y,R) +B

)
.

Note that there is a Q-divisor class L such that KX +R ∼Q f∗(KY + L+B), and
we only need to prove that L = J(X/Y,R).

Step 3: Creating unipotent monodromies and making L integral. We can further
improve the situation by using other ramified finite covers π : Y ′ → Y .

Assume that Y ′ is smooth and there is a divisor T ⊂ Y such that π is étale
over Y r T and both R+ f−1(B + T ) and π−1(B + T ) are snc divisors.

Let X ′ be a resolution of Y ′ ×Y X and πX : X ′ → X the projection. As in
(8.9.1.1) write

KX′ +R′ = π∗X(KX +R+ f−1T ) and KY ′ +B′ = π∗(KY +B + T ).

Set B′ := redπ∗(B). Note that the assumptions (8.5.1.4–5) need not hold for
f ′ : X ′ → Y ′ and R′. That is, if B′

i ⊂ B′ is π-exceptional, then (X ′, R′) need not
be lc over the generic point of B′

i and if it is, there may not be a log canonical
centre dominating B′

i. Both of these, however, are satisfied if we add ci(f ′)∗(B′
i)

to R′ for a suitable ci ∈ Q.
In view of the push forward formula (8.4.9.2), we see that if (8.5.1) holds for

f ′ : X ′ → Y ′ then it also holds for f : X → Y .
We use this to make 2 improvements.
First, we reduce to the case when L is an integral divisor. Since L is a Q-divisor,

mL is an integral divisor for some m > 0. By (8.9.5), we can choose π : Y ′ → Y
such that π∗(mL) ∼ mL′ for some integral divisor L′. Thus π∗L ∼Q L′ and, with
a slight shift in notation, we can assume in the sequel that L is a line bundle.

Again using (8.9.10) we reduce to the case when every possible RdimF f∗Vj con-
structed in (8.4.6) has unipotent monodromies around every irreducible component
of B. Since there are only finitely many possible Vj , this can be done.



8.6. SUBADJUNCTION 131

Step 4: Constructing the right cyclic cover. There is a unique way to write

R− f∗B = D + ∆−G+ E,

where ∆ is effective, b∆c = 0, the divisors D,E,G are integral, effective, without
common irreducible components, D is horizontal and E is vertical. Note that D = 0
if (F,R|F ) is klt.

Pick m > 0 such that m∆ is an integral divisor and there is a linear equivalence

m
(
f∗(KY + L+B)− (KX +D + E −G+ f∗B)

)
∼ m∆.

Next construct a degree m cyclic cover πX : (X ′,∆′) → (X,∆) as in (8.9.3). Let
X0 ⊂ X be as in (8.4.6). The restriction of πX to X0 gives one of the cyclic covers
used in the construction of the local systems RdimF f∗Vj in (8.4.6).

By (8.9.3.2), we see that

(πX)∗ωX′ =
m−1∑
i=0

OX
(
KX + i(f∗L−KX/Y −D − E +G)− bi∆/mc

)
.

Considering the i = 1 summand, and setting D′ := π−1
X (D), we conclude that

OX(f∗(KY + L) +G− E) is a direct summand of (πX)∗ωX′(D′). Thus

L⊗ f∗(OX(G− E)) ∼= f∗OX(f∗L+G− E)

is a direct summand of (f ′)∗ωX′/Y (D′).
If (F,R|F ) is klt then D′ = 0 hence (f ′)∗ωX′/Y (D′) = (f ′)∗ωX′/Y is the canon-

ical extension of the bottom piece of the Hodge filtration of RdimF f∗Vj by (8.9.7).
If (F,R|F ) is lc then (f ′)∗ωX′/Y (D′) is the canonical extension of the bottom piece
of the Hodge filtration of RdimF f∗Vj , but we need to rely on (8.9.12).

In any case, we conclude that L ⊗ f∗(OX(G − E)) = OY (J(X/Y,R)), which
implies that f∗(OX(G− E)) is a line bundle.

Thus it remains to show that tensoring with f∗(OX(G − E)) does not change
anything.

Step 5: Proving f∗(OX(G − E)) = OY Since f∗(OX(G − E)) is a line bundle
and G is effective, f∗(OX(G − E)) ⊃ OYrf(E) and the two can differ only along
B. Let Bi ⊂ B be an irreducible component. Then f∗OX(G − E) = OY near the
general point of Bi iff

i) multRij (G− E) ≥ 0 for every divisor Rij dominating Bi, and
ii) there is divisor Rij such that multRij (G− E) < multRij (f

∗Bi).
A log canonical centre dominating Bi is an irreducible divisor Rij which appears

in R with coefficient 1. Thus the coefficient of Rij in G − E is one less than the
coefficient of Rij in f∗(B). This proves part ii).

By (8.5.1.4), every Rij appears in R with coefficient ≤ 1 and hence in R− f∗B
with coefficient ≤ 0. This shows i).

Thus the two line bundles f∗OX(G− E) and OY agree outside a codimension
≥ 2 subset which implies that f∗OX(G−E) = OY and hence L = J(X/Y,R). �

8.6. Subadjunction

We are now ready to prove Kawamata’s subadjunction theorem.

Theorem 8.6.1. [Kaw98] Let (X,∆) be an lc pair, ∆ effective and W ⊂ X
an exceptional log canonical centre. Let H be an ample divisor on X and ε > 0 a
rational number.



132 8. KODAIRA’S FORMULA AND SUBADJUNCTION

Then W is normal and there is an effective Q-divisor ∆W on W such that

(1) (W,∆W ) is klt, and
(2)

(
KX + ∆ + εH

)
|W ∼Q KW + ∆W .

Remark 8.6.2. If J(X/Y,R) is semiample in (8.3.7), then the theorem can be
strengthened in two ways.

1. One could also allow ε = 0, so H would not be needed at all. Note, however,
that even in this case we would not have a unique and natural choice for ∆W .
Rather, ∆W is a sum of a part coming from BR (this part is unique) and of another
part coming from J(X/Y,R) which is a general divisor in a Q-linear equivalence
class.

2. The result would also apply to any log canonical centre with the weaker
conclusion that W is semi normal and (W,∆W ) is slc.

Proof. Choose a log resolution g : X ′ → X and write KX′ + E + ∆′ ∼Q
g∗(KX +∆) with g∗∆′ = ∆. Here E is the unique exceptional divisor with discrep-
ancy -1 whose image dominates W . Since W is an exceptional log canonical centre,
(E,R := ∆′|E) is klt. Let gE : E →W be the restriction and note that

KE +R ∼Q (gE)∗
(
(KX + ∆)|W

)
. (8.6.1.3)

We can further assume that there is a resolution π : W ′ → W and a divisor B′ on
W ′ such that gE : E →W factors through f : E →W ′ and R,B′ and f satisfy the
normal crossing assumptions (8.3.6).

X ′ ⊃ E
f→W ′

g ↓ gE ↓ ↙ π
X ⊃ W

Thus (8.3.7) gives a Q-divisor B′
R supported on B′ such that

KE +R ∼Q f∗
(
KW ′ + J(E/W ′, R) +B′

R

)
, (8.6.1.4)

J(E/W ′, R) is nef and (W ′, B′
R) is klt.

Since H|W is ample, J(E/W ′, R) + επ∗(H|W ) is nef and big. Any nef and
big divisor can be written as an ample divisor plus an arbitrary small effective
divisor (cf. [KM98, 2.61]). Thus there is an effective divisor Jε ∼Q J(E/W ′, R) +
επ∗(H|W ) such that (W ′, Jε +B′

R) is klt.
Furthermore, comparing (8.6.1.3) and (8.6.1.4), we conclude that

KW ′ + Jε +B′
R ∼Q π∗

(
(KX + ∆ + εH)|W

)
. (8.6.1.5)

By pushing it forward, we conclude that(
KX + ∆ + εH

)
|W ∼Q KW + π∗

(
Jε +B′

R

)
.

Set ∆W := π∗
(
Jε +B′

R

)
.

The only remaining step is to prove that W is normal and ∆W is effective. (In
general, Jε +B′

R is not effective.)
Since every prime divisor in ∆′ has coefficient < 1 and g∗∆′ = ∆, we can write

∆′ = ∆∗ − A where A is integral, effective, g-exceptional and ∆∗ is effective with
b∆∗c = 0. Pushing forward the sequence

0→ OX′(A− E)→ OX′(A)→ OE(A|E)→ 0
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we get that

OX ∼= g∗OX′(A)→ g∗OE(A|E)→ R1g∗OX′(A− E) = 0,

where the Kawamata-Viehweg vanishing applies since

A− E ∼Q KX′ + ∆∗ − g∗(KX + ∆).

Therefore, (gE)∗OE(A|E) is a quotient of OX . On the other hand, OE(A|E) ⊃ OE
thus (gE)∗OE(A|E) is an OW -sheaf which contains OWn where Wn → W is the
normalization. Thus (gE)∗OE(A|E) = OWn = OW .

Note that A|E = d−∆′|Ee = d−Re. Thus (gE)∗OE(d−Re) = OW hence ∆W is
effective by (8.3.7.5). �

8.7. Log canonical purity

Let f : X → Y be a dominant, projective morphism between normal varieties.
There is a subset Z ⊂ Y of codimension at least 2 such that f is flat over Y rZ. This
observation and other methods frequently make it easy to control f : X → Y over
Y rZ, but we have very little information about what happens over Z. Exceptional
divisors E ⊂ X, namely those that satisfy f(E) ⊂ Z, are particularly difficult to
study.

The next result says that sometimes these exceptional divisors automatically
behave the right way.

Theorem 8.7.1. Let f : X → Y be a dominant, projective morphism between
smooth varieties. Let R be a (not necessarily effective) snc divisor. Assume that:

(1) There is a simple normal crossing divisor B ⊂ Y such that f is smooth
over Y rB and R is a relative snc divisor over Y rB.

(2) KX +R ∼Q f∗L for some Q-divisor L on Y .
(3) There is a codimension ≥ 2 closed subset Z ⊂ Y such that (Xrf−1(Z), R)

is lc.
Then (X,R) is lc.

Proof. Since R is a snc divisor, (X,R) is lc iff all the coefficients in R are
≤ 1. By (3) this holds except possibly for some f -exceptional divisors. If F1 has
coefficient > 1 in R, then it also has coefficient > 1 in R − εf∗B for 0 < ε � 1.
Write

R− εf∗B = D + ∆ε + Eε −Gε,
where ∆ε is effective with b∆εc = 0, D,Eε, Gε are effective, integral and without
common irreducible components, D is horizontal and Eε is vertical. (D does not
depend on ε.)

All the non exceptional components in E0 have coefficient 1 by (3). Thus, for
0 < ε � 1, Eε contains only exceptional components, and F1 ∈ SuppEε. This
contradicts (8.7.2). �

Proposition 8.7.2. Let f : X → Y be a dominant, projective morphism be-
tween smooth varieties. Let D + ∆ be an effective, snc divisor with b∆b= 0, D
reduced, horizontal, and E,G effective divisors on X such that D + E and G have
no common irreducible components and E is vertical. Assume that:

(1) There is a simple normal crossing divisor B ⊂ Y such that f is smooth
over Y rB and D + ∆ is a relative snc divisor over Y rB.

(2) KX +D + ∆ ∼Q f∗L+G− E for some Q-divisor L on Y .
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Then f(E) ⊂ Y has pure codimension 1.

Proof. As in (8.5.1.Step.3) we reduce to the case when L is Cartier and set
L := OY (L).

Next, as in (8.9.5) and (8.9.11), there is a finite cyclic cover π : X ′ → X and
an snc divisor D′ ⊂ X ′ such that f∗L(G − E) is a direct summand of π∗ωX′(D′),
and f ◦ π : X ′ → Y satisfies the conditions of (8.9.12).

Thus we conclude that Rif∗
(
f∗L(G− E)

)
is locally free for every i. Consider

now the exact sequence

0→ f∗L(G− E)→ f∗L(G)→ f∗L(G)|E → 0,

and its direct image on Y

0→ f∗
(
f∗L(G− E)

)
→ f∗

(
f∗L(G)

)
→ f∗

(
f∗L(G)|E

) ∂→ R1f∗
(
f∗L(G− E)

)
.

Since Supp f∗
(
f∗L(G)|E

)
⊂ Supp(f(E)) ( Y and R1f∗

(
f∗L(G − E)

)
is torsion

free, we see that ∂ is zero, hence the following sequence is exact

0→ f∗
(
f∗L(G− E)

)
→ f∗

(
f∗L(G)

)
→ f∗

(
f∗L(G)|E

)
→ 0.

Note that f∗
(
f∗L(G)

)
is torsion free since it is a push forward of a torsion free

sheaf. We saw that f∗
(
f∗L(G−E)

)
is locally free, and in particular it is S2. Thus

it has no nontrivial extension with a sheaf whose support has codimension ≥ 2.
Thus Supp f∗

(
f∗L(G)|E

)
has pure codimension 1.

On the other hand, since E and G have no common irreducible components,
we have an injection

L ⊗ f∗OE ↪→ L⊗ f∗
(
OX(G)|E

)
= f∗

(
f∗L(G)|E

)
,

thus f(E) ⊂ Y also has pure codimension 1. �

8.8. Ambro’s seminormality theorem

In this section we prove Ambro’s theorem that nklt(X,∆) is seminormal. Note
that in general the irreducible components of nklt(X,∆) are not normal. As simple
examples one can consider the log canonical pairs (C2, (y2 = x3 +x2)) or (C3, (x2 =
zy2)).

As far as I can tell, the result does not imply that every irreducible component
of nklt(X,∆) is seminormal (cf. [Kol96, I.7.2.2.3]) but this follows from [Amb03].

The definition of seminormal schemes is recalled in (8.8.2) and their basic prop-
erties are proved in (8.8.3–8.8.6).

If (X,∆) is dlt, then every codimension 1 irreducible component of nklt(X,∆)
is normal [KM98, 2.52].

Theorem 8.8.1. [Amba] Let (X,∆) be an lc pair, ∆ effective. Then nklt(X,∆)
is seminormal.

Proof. The argument is similar to the end of the proof of (8.6.1). Let W :=
nklt(X,∆) and h : W sn →W its seminormalization. Take a log resolution f : Y →
X and write

f∗(KX + ∆) ∼Q KY + ∆Y +B −A,
where b∆′c = 0 and A,B ≥ 0 are integral without common irreducible components.
Note that B is reduced since (X,∆) is lc andW = f(B). B is seminormal by (8.8.5),
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thus f : B →W lifts to fsn : B →W sn by (8.8.6). Consider the exact sequence

0→ OY (A−B)→ OY (A)→ OB(A|B)→ 0,

and its push forward

f∗OY (A)→ f∗OB(A|B)→ R1f∗OY (A−B).

Note that f∗OY (A) = OX since A is f -exceptional and R1f∗OY (A−B) = 0 since

A−B ∼Q KY + ∆Y − f∗(KX + ∆).

Thus we have a surjection OX � f∗OB(A|B). Since B ⊂ f−1(W ), we see that
f∗OB(A|B) is an OW -sheaf. Therefore f∗OB(A|B) = OW .

On the other hand, we have containments of sheaves

OW = f∗OB(A|B) ⊃ f∗OB = h∗f
sn
∗ OB ⊃ h∗OW sn ⊃ OW .

Thus all these are equalities. In particular, h∗OW sn = OW thus W sn = W and so
W is seminormal. �

8.8.2 (seminormal schemes). A morphism of schemes f : Y → X is called a
partial seminormalization if

(1) Y is reduced,
(2) f is finite with irreducible fibers and
(3) for every point x ∈ X, the injection of the residue fields f∗ : k(x) ↪→

k(f−1(x)) is an isomorphism.
In characteristic zero this is equivalent to f being finite with geometrically ir-
reducible fibers, but in positive characteristic the latter condition allows purely
inseparable maps as well.

For this notion nilpotents do not matter, thus f : Y → X is a partial seminor-
malization iff the corresponding morphism between the reduced schemes fred : Y →
redX is.

For any scheme Z, the (fiber) product f : Y × Z → X × Z is also a partial
seminormalization. The composite (resp. fiber product) of two partial seminormal-
izations is again a partial seminormalization.

A scheme X over a field of characteristic 0 is called seminormal if X every
partial seminormalization f : Y → X is an isomorphism. Since redX → X is a
partial seminormalization, this implies that a seminormal scheme is reduced.

Lemma 8.8.3. Let X be a reduced scheme whose normalization Xn → X is
finite. Then Xn dominates every partial seminormalization Y → X. In particular,
a normal scheme is seminormal.

Proof. Let f : Y → X be a partial seminormalization. Then f is finite and
applying (8.8.2.3) to the generic points x ∈ X we see that f is birational over each
irreducible component. Thus the normalization Xn → X dominates Y . �

Definition–Lemma 8.8.4. Let X be a reduced scheme whose normalization
Xn → X is finite. Then there is a unique maximal partial seminormalization
Xsn → X such that

(1) Xsn is seminormal, and
(2) Xsn dominates every partial seminormalization Y → X.

For a scheme X, we call Xsn := (redX)sn → X the seminormalization of X.



136 8. KODAIRA’S FORMULA AND SUBADJUNCTION

Proof. Since Xn is finite over X, there is no infinite ascending chain of
schemes between Xn and X. Thus there is a (possibly non unique) maximal partial
seminormalization Xsn → X.

As we noted, partial seminormalizations are closed under composition and fiber
products. Thus Xsn is seminormal and it dominates every partial seminormaliza-
tion Y → X. �

It is not hard to see that if X is seminormal then every open subset of X is also
seminormal. It is, however, not true that an irreducible component of a seminormal
variety is also seminormal [Kol96, I.7.2.2.3].

Let 0 ∈ C be a reduced curve singularity over an algebraically closed field with
normalization n : Cn → C. Set n−1(0) = {p1, . . . , pm} ∈ Cn. Let Csn be the curve
obtained from Cn by identifying the points {p1, . . . , pm} while keeping the tangent
directions of the m branches linearly independent. It is easy to see that Csn → C
is the seminormalization of C. Thus the smooth points and the ordinary nodes are
the only seminormal planar curve singularities.

Lemma 8.8.5. Let Z be a smooth variety and X ⊂ Z a reduced hypersurface.
Then X is seminormal iff its codimension one singularities are ordinary nodes.

Proof. If the codimension one singularities are ordinary nodes, then X is
seminormal outside a codimension 2 subset. Thus the extension OX ↪→ OXsn is
an isomorphism outside a codimension 2 subset. But X is S2, thus every such
extension is an isomorphism. The converse is clear. �

seminormalization is much more functorial than normalization:

Lemma 8.8.6. Let f : Y → X be a partial seminormalization and gX : Z → X
any morphism with Z seminormal. Then there is a (unique) lifting gY : Z → Y
such that gX = f ◦ gY .

Proof. As we noted, fZ : Z ×X Y → Z ×X X = Z is also a partial seminor-
malization, hence an isomorphism since Z is seminormal. Set gY = (gX ×X f) ◦
(fZ)−1. �

8.9. Covering tricks and Semipositivity of f∗ωX/Y

In this section we gather various results on the semipositivity of f∗ωX/Y that
we needed earlier.

8.9.1 (Ramification and log canonical pairs). Let f : X → Y be a finite, domi-
nant morphism between normal varieties. Let

∑
Bi be a reduced divisor containing

the branch locus. Set red f−1(Bi) =
∑
j Rij . Let eij be the ramification index of

f along Rij . For any ai ∈ Q, the Hurwitz formula can be written as

f∗
(
KY +

∑
i

Bi −
∑
i

aiBi
)

= KX +
∑
ij

Rij −
∑
ij

eijaiRij . (8.9.1.1)

If
∑
Bi is a snc divisor, then (Y,

∑
(1 − ai)Bi) is lc (resp. klt) iff ai ≥ 0 (resp.

ai > 0) for every i. We see that these are equivalent to (X,
∑

(1− eijai)Rij) being
lc (resp. klt).

In general, we can use this formula for a log resolution of (Y,
∑
Bi) to conclude

the following (cf. [FA92, 20.3]):
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Lemma 8.9.2. Let f : X → Y be a finite, dominant morphism between normal
varieties. Let B be a Q-divisor on Y such that KY + B is Q-Cartier. Write
f∗(KY +B) = KX +R. Then (Y,B) is lc (resp. klt) iff (X,R) is lc (resp. klt). �

8.9.3 (Cyclic covers). (cf. [KM98, 2.49–53]) Let X be a smooth variety, L a
line bundle on X and D an integral (not necessarily effective) divisor. Assume that
Lm ∼= OX(D). Let s be any rational section of L and 1D the constant (rational)
section of OX(D). Then 1D/sm is a rational function which gives a well defined
element of the quotient group k(X)∗/(k(X)∗)m, thus a well defined degree m field
extension k(X)( m

√
1D/sm). Let π : X ′ → X denote the normalization of X in the

field k(X)( m
√

1D/sm). Then

(1) π∗OX′ =
∑m−1
i=0 L−i(biD/mc), and

(2) π∗ωX′ =
∑m−1
i=0 ωX ⊗ Li(−biD/mc).

In particular, if E is any integral divisor then the normalized cyclic cover ob-
tained from Lm ∼= OX(D) is the same as the normalized cyclic cover obtained from
(L(E))m ∼= OX(D +mE).

Note that we do not assume that X is proper, so the formulas apply to any
normal variety W by setting X := W r SingW .

8.9.4 (Ramified covering tricks). There are two very useful finite covers that
can be used to handle Q-divisors and other torsion problems. The first, introduced
by [BG71] relies on the observation that the map

mn : PN → PN : m∗
n(xi) = xni

satisfies m∗
nO(1) = O(n). For arbitrary X, take a general morphism g : X → PN

for some N and consider the fiber product with the coordinate projection

mX,n : Xn := X ×PN PN → X.

Then m∗
X,n(g

∗OPN (1)) becomes the nth tensor power of a line bundle. A general
position argument shows that Xn is smooth and one can assume that the preimage
of an snc divisor D ⊂ X is again an snc divisor Dn ⊂ Xn (cf. [KM98, 2.67]). In
this construction, the ramification divisor is in general position.

The method of [Kaw81] creates ramification along a given snc divisor. It starts
with a smooth divisor D ⊂ X and an natural number m. Pick any M such that
mM − D is very ample, and pick general Hi ∼ mM − D such that ∩Hi = ∅.
Although the cyclic covers obtained from mM ∼ D + Hi are all singular, their
composite is a smooth Abelian cover X ′ → X which has m-fold ramification along
the divisors D and all the Hi.

The end result of these methods is the following:

Proposition 8.9.5. Let X be a smooth variety,
∑
Bi +

∑
Dj an snc divisor,

Lk Cartier divisors and mi, ck positive integers. Then there is a smooth variety X ′

and a finite morphism π : X ′ → X such that

(1) π is an Abelian Galois map,
(2) π−1(

∑
Bi +

∑
Dj) is an snc divisor,

(3) π∗Bi = mi · redπ∗Bi,
(4) π∗D is reduced, and
(5) there are line bundles Mk such that π∗Lk ∼= M ck

k .
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8.9.6 (Variations of Hodge structures). (See [GS75] for a very clear introduc-
tion.) Let X,Y be smooth projective varieties and f : X → Y a morphism. Let
B ⊂ Y be a snc divisor, R := f−1(B) and assume that f : X r R → Y r B is
smooth.

The cohomology groups of the fibersXy := f−1(y) give local systemsRif∗CXrR
over Y rB, which are variations of Hodge structures.

Set n = dimX − dimY . The identifications

Hi(Xy, ωXy ) ∼= Hn,i(Xy) ⊂ Hn+i(Xy,C)

give subvectorbundles

Rif∗ωX/Y |YrB ↪→ OYrB ⊗C R
n+if∗CX |YrB .

The local system Rif∗CX |YrB has a natural metric, once we fix an ample divisor
H on X which gives a class [H] ∈ H2(Xy,C) for every y ∈ Y r B. Basically, for
i ≤ n we take α ∧ β ∧ [H]n−i and evaluate it on the fundamental class.

A power of
√
−1 must be thrown in to account for two problems:

(1) for i odd the above pairing is skew symmetric, and
(2) non primitive classes have extra sign problems.

We get a metric which is flat but the flat structure is not unitary. By the
computations of Griffiths (see [Gri70] or [Sch73, Sec.7]), this metric restricts to
a metric with semipositive curvature on Rif∗ωX/Y |YrB . The limiting behavior of
this metric near B is also understood, and one gets the first semipositivity result:

Theorem 8.9.7. [Fuj78, Kaw81, Kol86] Notation as above. Then
(1) OYrB ⊗C R

n+if∗CX |YrB has an (upper) canonical extension to a locally
free sheaf on Y .

(2) Rif∗ωX/Y coincides with the corresponding (upper) canonical extension
of the bottom piece of the Hodge filtration.

(3) Let g : C → Y be a map from a curve to Y whose image is not contained in
B. Then every quotient bundle of g∗(Rif∗ωX/Y ) has nonnegative degree.

The (upper) canonical extension does not commute with pull backs and the
property (8.9.7.3) can definitely fail if g(C) ⊂ B, but there is a well understood
remedy.

Let γj ⊂ Y rB be a small loop around an irreducible component Bj ⊂ B with
base point yj . It is known (Borel, cf. [Sch73, 4.5]) that as we move around γj ,
the resulting linear map, ρj ∈ GL(Hn+i(Xyj

,C)) is quasi-unipotent, that is, some
power of ρj is unipotent. ρj is called the monodromy around Bj .

Theorem 8.9.8. [Ste76, Kaw81, Kol86] Notation as above. Assume that
Rif∗CX |YrB has unipotent monodromies around every irreducible component of
B.

(1) The canonical extension commutes with pull backs.
(2) The locally free sheaf Rif∗ωX/Y is semi positive. That is, for every

g : C → Y , every quotient bundle of g∗(Rif∗ωX/Y ) has nonnegative de-
gree.

A key technical point is that as long as Y is smooth and B is a snc divisor, we
can ignore what happens over any codimension 2 subset Z ⊂ Y .
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Theorem 8.9.9. [Kat71] Notation as above. Assume that there is a codi-
mension 2 subset Z ⊂ Y such that f∗(B r Z) is a reduced snc divisor. Then
Rif∗CX |YrB has unipotent monodromies for every i.

If the monodromy ρj ∈ GL(Hi(Xyj
,C)) is not unipotent but ρmj

j is unipotent,
then we can create unipotent monodromies by a simple base change.

Proposition 8.9.10. Notation as above. Let Y ′ be a smooth variety and
τ : Y ′ → Y a finite Galois map such that mj divides the ramification order of
τ above Bj. Let X ′ → X ×Y Y ′ be any resolution. Then Rif∗CX′ |Y ′rτ−1(B) has
unipotent monodromies.

The semistable reduction theorem of Mumford [KKMSD73] says that the
assumptions of (8.9.9) can be satisfied after a suitable base change τ : Y ′ → Y ,
but in practice it is much harder to achieve semistability than to get unipotent
monodromies.

8.9.11 (Hodge theory and quotient singularities). The above results of Hodge
theory also hold if X,Y are not smooth but have quotient singularities. These were
established in [Ste76]. In our situation, however, everything can be reduced to the
smooth case as follows.

For us the singular varieties appear as cyclic covers X ′ → X of a smooth variety
X with snc ramification divisor. The covering trick (8.9.5) shows that each such
X ′ is dominated by a smooth Abelian cover X ′′ → X. Thus Hi(X ′,C) is a direct
summand of Hi(X ′′,C) and one can read off the Hodge theory of X ′ from the
Hodge theory of X ′′.

We also need to study sheaves of the form Rmf∗ωX/Y (D), which relate to
variations of mixed Hodge structures.

Theorem 8.9.12. Let X,Y be smooth projective varieties and f : X → Y a
morphism. Let {Di : i ∈ I} be an snc divisor on X and for every J ⊂ I set
DJ := ∩i∈JDi. Let B ⊂ Y be a snc divisor, R := f−1(B) and assume the following:

(1) For every J ⊂ I, f : DJ rR→ Y rB is smooth, and
(2) Rmf∗CDJ rR has unipotent monodromies for every m.

Then the sheaves Rmf∗ωX/Y (D) are locally free and semi positive for every m.

Proof. The right way to prove this is to relate the sheaves Rmf∗ωX/Y (D) to
the variations of mixed Hodge structures Rmf∗CXr(D∪R), but I do not know good
references.

It is easy, however, to reduce the study of Rmf∗ωX/Y (D) to the sheaves
Rmf∗ωDJ/Y . This is accomplished by repeatedly using exact sequences of the
form

0→ ωZ/Y → ωZ/Y (F )→ ωF/Y → 0,

where Zn, Y k are smooth and F is a smooth divisor on Z. If B ⊂ Y is a snc divisor
and Z → Y and F → Y are smooth over Y r B then by [Kol86, Thm.2.6], the
sheaves Rm+1f∗ωZ/Y (resp. Rmf∗ωF/Y ) are locally free and they are the canonical
extensions of the bottom pieces of the Hodge filtrations of Rm+1+n−kf∗CZrR (resp.
Rm+n−1−kf∗CFrR). The boundary maps

Rm+n−1−kf∗CFrR → Rm+1+n−kf∗CZrR
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are weight (1, 1) maps of variations of Hodge structures, hence the image is a direct
summand in both. This implies that the image of the boundary map

Rmf∗ωF/Y → Rm+1f∗ωZ/Y

is a direct summand in both sheaves. Therefore,

Rmf∗ωZ/Y (F )

has a 2 step filtration whose graded pieces are direct summands of

Rmf∗ωZ/Y and Rmf∗ωF/Y .

Applying this repeatedly, we obtain that the sheaves Rmf∗ωX/Y (D) have a filtra-
tion whose graded pieces are direct summands of sheaves Rjf∗ωDJ/Y . Thus the
sheaves Rmf∗ωX/Y (D) are locally free and semi positive for every m.

Note also that in the proof of (8.5.1) we are interested in a rank one sum-
mand of some Rmf∗ωX/Y (D), hence we end up with a direct summand of a single
Rjf∗ωDJ/Y for some j and J . �

8.10. Log Fano varieties

In this section we prove Zhang’s theorem that log Fano varieties are ratio-
nally connected. While this is not related to subadjunction, it gives another nice
application of the general Kodaira type formulas.

See [KM98] for a treatment of rationally connected varieties.

Theorem 8.10.1. [Zha] Let (X,∆) be a proper, klt pair such that ∆ ≥ 0 and
−(KX + ∆) is nef and big. Then X is rationally connected.

The key point is the following result, which is an application of (8.5.1).

Proposition 8.10.2. Let (X,∆) be a proper, klt pair such that ∆ ≥ 0 and
−(KX + ∆) is nef and big. Let f : X 99K Z be a dominant rational map to a
smooth variety Z with dimZ ≥ 1. Then Z is uniruled.

Proof. We can choose birational maps π : X ′ → X and τ : Z ′ → Z such that
X ′, Z ′ are smooth, projective, f lifts to a morphism f ′ : X ′ → Z ′ and there is a
snc divisor B′ ⊂ Z ′ such that f ′ is smooth over Z ′ rB′. We can also assume that
every f ′ exceptional divisor is also π exceptional.

X ′ f ′−→ Z ′

π ↓ ↓ τ
X

f
99K Z

−(KX′+∆1) ∼Q −π∗(KX+∆) is also nef and big, so we can write it as (ample)+∆2

where (X ′,∆1 + ∆2) is klt. By doing further blow ups if necessary, we can also
achieve that there is a snc strict subboundary ∆′ and an ample Q-divisor H ′ on X ′

such that KX′ + ∆′ +H ′ ∼Q 0 and π∗∆′ is effective.
Let H ′

Z be a small ample Q-divisor such that H ′′ ∼Q H ′ − (f ′)∗H ′
Z is ample,

effective and ∆′ +H ′′ + (f ′)−1(B′) is a snc divisor.
If F denotes the generic fiber of f ′ then p+

g (F, (∆′ +H ′′)|F ) = 1 since ∆′
≤0 is

f ′-exceptional. Thus we can apply (8.5.1) to

f ′ : (X ′,∆′ +H ′′)→ Z ′ and B′ ⊂ Z ′.
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We get a divisor R′ supported on (f ′)−1(B′) such that ∆′+H ′′+R′ is a subboundary
and

KX′ + ∆′ +H ′′ +R′ ∼Q (f ′)∗(KZ′ + L′ +B′),
which we rewrite as

KX′ + ∆′ +H ′ +R′ − (f ′)∗(B′) ∼Q (f ′)∗(KZ′ + L′ +H ′
Z). (8.10.2.6)

Let C ⊂ X be a general complete intersection curve. Then (C · (KX +∆)) < 0,
C 6⊂ Supp∆ and π−1 is defined along C. Set C ′ := π−1(C) ⊂ X ′. We claim that

(C ′ · (KX′ + ∆′ +H ′ +R′ − (f ′)∗(B′))) ≤ 0.

Indeed, (C ′ · (KX′ + ∆′ +H ′)) = 0, so the only question is what happens when we
add R′ − (f ′)∗(B′) =:

∑
diDi. There are 2 cases to consider.

If π(Di) is a divisor in X, then Di has a nonnegative coefficient in ∆′. Every
Di has coefficient ≤ 1 in ∆′ + R′, thus Di has coefficient ≤ 1 in R′. Since every
divisor in R′ has coefficient at least 1 in (f ′)−1(B′), we conclude that di ≤ 0. So
adding these diDi can only decrease the intersection number with C ′.

The other Dj are π-exceptional and so disjoint from C ′ since C is general. They
have no effect on the intersection number with C ′. Therefore

(f ′∗C
′ · (KZ′ + L′ +H ′

Z)) ≤ 0,

Here f ′∗C
′ is the image of a general complete intersection curve, and such images

cover an open subset of Z ′. By (8.5.1) L′ is pseudo-mobile, thus (f ′∗C
′ ·L′) ≥ 0 and

(f ′∗C
′ ·H ′

Z) > 0 since H ′
Z is ample. Hence (f ′∗C

′ ·KZ′) < 0 and thus Z ′ is uniruled
by [MM86]. �

Proof of (8.10.1). X is uniruled by [MM86]. Thus the MRC fibration
f : X 99K Z is not birational (see [Kol96, IV.5]) and it is enough to prove that
dimZ = 0. If dimZ ≥ 1 then Z is not uniruled by [GHS03], which contradicts
(8.10.2). �
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CHAPTER 9

Non-klt techniques

Florin Ambro

9.1. Introduction

In this note we present Shokurov’s finite generation of FGA algebras in dimen-
sion one and two, in the presence of singularities worse than Kawamata log terminal
(Theorem 9.3.1).

In the preliminary, we briefly recall the codimension one adjunction formula
for log pairs, which is used elsewhere in this volume. We also recall the notion of
discriminant of a log pair with respect to a fibration, which is used in the proof of
Theorem 9.3.1. The discriminant plays an important role in higher codimensional
adjunction [Kaw97, Kaw98].

9.2. Preliminary

We consider algebraic varieties defined over an algebraically closed field of char-
acteristic zero. A log pair (X,B) is a normal variety X endowed with a Q -Weil
divisor B, such that K + B is Q -Cartier. Note that B may have negative coef-
ficients. The locus where (X,B) has Kawamata log terminal singularities is an
open subset of X, whose complement, the non-klt locus, is denoted by nklt(X,B).
A fibration is a proper surjective morphism of normal varieties f : X → Y such
that OY = f∗OX . We assume the reader is familiar with Shokurov’s teminology of
b-divisors.

9.2.1. Codimension one adjunction. The adjunction formula (K+S)|S =
KS , where S is a nonsingular divisor in a nonsingular variety X, is a useful tool
in the study of algebraic varieties. Its singular version was introduced by Reid,
Kawamata and Shokurov. Below, we follow Shokurov [Sho93b].

Let (X,B) be a log pair, letW be a prime divisor onX such that multW (B) = 1
and let ν : W ν →W be the normalization.

Let µ : Y → X be a log resolution, write µ∗(K+B) = KY +BY . Note that BY
is a well defined Q -divisor, since we use the same top rational form in the definitions
of both K and KY . We denote by E the proper transform of W on Y . Since E
is nonsingular, the induced morphism E → W factors through the normalization
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W ν :

E //

µ|E

��

f

}}zz
zz

zz
zz

Y

µ

��

W ν

ν
!!D

DD
DD

DD
D

W // X

We can write BY = E + B′, where B′ is an Q -divisor which does not contain E
in its support. Define BE = B′|E . By the classical adjunction formula mentioned
above, we have

µ∗(K +B)|E = (KY + E +B′)|E = KE +BE .

Since the above diagram commutes, we obtain KE + BE = f∗ν∗(K + B). Since f
is birational, we infer KE +BE = f∗(KW ν +BW ν ), where

BW ν = f∗(BE).

The Q -Weil divisor BW ν is called the different of (X,B) on W ν . It is well defined,
the above construction being independent of the choice of the log resolution.

Proposition 9.2.1. The following properties hold:

(1) (W ν , BW ν ) is a log pair and the following adjunction formula holds

(K +B)|W ν = KW ν +BW ν .

(2) BW ν is effective if B is effective in a neighborhood of W .
(3) If (X,B) has log canonical singularities near W , then (W ν , BW ν ) has log

canonical singularities.
(4) Let D be a Q -Cartier divisor on X such that multW (D) = 0. Then

(X,B +D) is a log pair, multW (B +D) = 0 and

(B +D)W ν = BW ν +D|W ν .

9.2.2. The discriminant of a log pair. Let f : X → Y be a fibration and let
(X,B) be a log pair structure on X such that (X,B) has log canonical singularities
over the generic point of Y . The singularities of the log pair (X,B) over the codi-
mension one points of Y define a Q -Weil divisor BY on Y , called the discriminant
of (X,B) on Y .

Let P ⊂ Y be a prime divisor. Since Y is normal, there exists an open set
U ⊂ Y such that U ∩P 6= ∅ and P|U is a Cartier divisor. Let aP be the largest real
number t such that the log pair (f−1(U), B|f−1(U) + tf∗(P|U )) has log canonical
singularities over the generic point of P . It is clear that aP = 1 for all but finitely
many prime divisors P of Y . The discriminant is defined by the following formula

BY =
∑
P

(1− aP )P.

Let µ : Y ′ → Y be a birational contraction. Letting X ′ be the normalization of the
graph of the rational map µ−1 ◦ f : X 99K Y ′, we obtain a birational contraction
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µX and a fiber space f ′ making the following diagram commute.

X

f

��

X ′

f ′

��

µXoo

Y Y ′µoo

Let (X ′, BX′) be the induced log-crepant log pair structure on X ′, that is µ∗X(K +
B) = KX′ + BX′ . Then (X ′, BX′) has log canonical singularities over the generic
point of Y ′, and the discriminant of (X ′, BX′) on Y ′ is a well defined R-Weil divisor
BY ′ . We have

BY = µ∗(BY ′).
Thus, the family of Q -Weil divisors B = (BY ′)Y ′ is a Q -b-divisor of Y , called the
discriminant Q -b-divisor induced by (X,B) via f . By construction, B depends
only on the discrepancy Q -b-divisor A(X,B).

Lemma 9.2.2. Let f : X → Y be a fibration and let (X,B) be a log pair having
Kawamata log terminal singularities over the generic point of Y . Let B be the
induced discriminant Q -b-divisor of Y . Then

OY (d−Be) ⊆ f∗OX(dA(X,B)e).

Proof. Clearly this is a local statement on the base. Thus it is enough to
show the above inclusion at the level of global sections. Fix a nonzero rational
function a ∈ k(Y )× such that (a) + d−Be ≥ 0. We claim that

(f∗a) + dA(X,B)e ≥ 0.

Let E be a prime b-divisor of X. If f(cX(E)) = Y , then multE(f∗a) = 0 and
multE(dA(X,B)e) ≥ 0 by assumption. If f(cX(E)) 6= Y , there exists a commuta-
tive diagram

(X,B)

f

��

(X ′, BX′)

f ′

��

µXoo

Y Y ′µoo

with the following properties:
(i) µ and µX are birational contractions, µX : (X ′, BX′) → (X,B) is log

crepant, and f ′ is a fiber space.
(ii) f ′(cX′(E)) is a prime divisor P on Y ′.
(iii) There exists an open set U in Y ′ such that P ∩ U 6= ∅, P|U is non-

singular, f ′−1(U) is nonsingular and contains a simple normal crossings
divisor

∑
lQl on f ′−1(U) such that BX′|f ′−1(U) =

∑
l blQl and f ′∗(P|U ) =∑

lmlQl.
(iv) There exists l0 such that cX′(E) = Ql0 .

The multiplicity bP = multP (B) is computed as follows

1− bP = min
f ′(Ql)=P

1− bl
ml

.

By assumption, multP (a) + d−bP e ≥ 0, so that multP (a) + 1 − bP > 0. The
above formula implies that vQl0

(f∗a) + 1− bl0 > 0, which means that the b-divisor
(f∗a) + dA(X,B)e has non-negative multiplicity at E. �
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Proposition 9.2.3. Let f : X → Y be a fiber space and let (X,B) be a log
pair having Kawamata log terminal singularities over the generic point of Y . Let
B be the induced discriminant R-b-divisor of Y . Let π : Y → S be a proper mor-
phism. Let (Di)i≥1 be a sequence of R-b-Cartier R-b-divisors of Y such that the se-
quence (f∗Di)i≥1 is asymptotically A(X,B)-saturated, relative to S. Then (Di)i≥1

is asymptotically saturated with respect to −B, relative to S.

Proof. We claim that the following inclusion

OY (d−B + De) ⊆ f∗OX(dA(X,B) + f∗De)

holds for every R-b-Cartier R-b-divisor D of Y . Indeed, we may replace f : (X,B)→
Y birationally, so that D = D, where D is an R-Cartier R-divisor on Y . Then
(X,B − f∗D) is a log pair having Kawamata log terminal singularities over the
generic point of Y , with discriminant R-b-divisor B −D, and A(X,B − f∗D) =
A(X,B)+f∗D. The claim follows from Lemma 9.2.2 applied to f : (X,B−f∗D)→
Y .

Let ν = π ◦ f . By assumption, there exists a positive integer I such that the
following inclusion holds for every I|i, j:

ν∗OX(dA(X,B) + jf∗Die) ⊆ ν∗OX(jf∗Dj).

We have ν∗OX(jf∗Dj) = π∗OY (jDj), and from above we obtain

π∗OY (d−B + jDie) ⊆ ν∗OX(dA(X,B) + jf∗Die).

Therefore π∗OY (d−B + jDie) ⊆ π∗OY (jDj). �

9.3. Non-klt FGA

We present in this section Shokurov’s finite generation of FGA algebras in
dimension one and two, in the presence of singularities worse than Kawamata log
terminal [Sho03, Conjecture 5.26, Example 4.41, Corollary 6.42]. Compared to
the original statement, Theorem 9.3.1 contains two simplifications: we no longer
assume that the boundary is effective, or that the algebra is ample on the non-klt
locus.

Theorem 9.3.1. Let (X,B) be a log pair, let π : X → S be a proper surjective
morphism, and let (Di)i≥1 be a sequence of Q -b-divisors of X such that

(i) iDi is mobile/S, for every i.
(ii) Di ≤ Dj for i|j.
(iii) The limit limi→∞Di = D is an R-b-divisor of X.

Assume moreover that the following properties hold:
(1) −(K +B) is π-nef and π-big.
(2) D• is asymptotically A(X,B)-saturated over S; equivalently, there exists

a positive integer I such that for every I|i, j, the following inclusion holds:

π∗OX(dA(X,B) + jDie) ⊆ π∗OX(jDj).

(3) There exists an open neighborhood U ⊆ X of nklt(X,B) such that Di|U =
D|U for every i ≥ 1.

If dim(X) ≤ 2, then Di = D for i sufficiently large and divisible.

Remark 9.3.2. Assumption (1) is redundant if dim(X) = 1.
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Proof. We may assume that S is affine. Since D1 is mobile/S, there exists a
rational function a ∈ k(X)× such that (a)+D1 ≥ 0. By (ii), we obtain (a)+Di ≥ 0
for every i ≥ 1. The two sequences (Di)i and ((a)+Di)i satisfy the same properties
with respect to (X,B), and their stabilization is equivalent. Therefore we assume
from now on that Di ≥ 0 for every i. After a truncation, we may also assume that
I = 1 in (2).

(I) Assume dim(X) = dim(S) = 1. The problem is local, so we may assume
that X = S is the germ of a nonsingular curve at a point P . We have B = b · P ,
Di = di · P and D = d · P . We have di ≤ d and limi→∞ di = d. If b ≥ 1,
then P ∈ nklt(X,B), hence Di = D for every i, by (3). Assume now that b < 1.
Asymptotic saturation is equivalent to

d−b+ jdie ≤ jdj ,∀ i, j.
Letting i converge to infinity, we obtain

d−b+ jde ≤ jdj ,∀ j.
In particular, d−b+ jde ≤ jd, which is equivalent to

sup
j
{jd} ≤ b.

If d /∈ Q, Diophantine Approximation implies 1 ≤ b, contradicting our assumption.
Therefore d is rational. Let I ′ be a positive integer such that I ′d ∈ Z. We infer
from the above that j(d − dj) ≤ bbc ≤ 0 for I ′|j. Therefore b ≥ 0 and di = d for
I ′|i.

(II) Assume dim(X) = 1,dim(S) = 0. Thus, each Di is an effective Q -divisor
Di of the nonsingular proper curve X. Let D = limi→∞Di. If D = 0, then Di = 0
for every i. Otherwise, D is an ample R-divisor. In particular, there exists a positive
integer I ′ such that deg(I ′D−K −B) > 1. Asymptotic saturation means that for
every i, j, the following inclusion holds

H0(X, d−B + jDie) ⊆ H0(X, jDj).

For fixed j, the divisor d−B+ jDie coincides with d−B+ jDe for some sufficiently
large integer i. Therefore for every j we have

H0(X, d−B + jDe) ⊆ H0(X, jDj).

We have d−B+ jDe = K+ djD−K−Be and degdjD−K−Be ≥ 2 for every I ′|j.
Therefore the linear system |d−B + jDe| is base point free for I ′|j. In particular,
asymptotic saturation becomes

d−B + jDe ≤ jDj ,∀ I ′|j.
A pointwise argument as in (I) implies that Di = D for i sufficiently large and
divisible.

(III) Assume dim(X) = 2 and Di is big/S for some i; passing to a truncation,
we may assume that bDi is big/S for every i.

First of all, if dim(S) = 0, we may also assume that −(K + B) · (iDi)X > 1
for every i. Indeed, each Q -b-divisor Di is b-big, and −(K + B) is nef and big.
Therefore −(K +B) ·Di,X > 0. Since Di,X ≤ DX , we obtain

−(K +B) ·DX > 0.

In particular, limi→∞−(K+B)·(iDi)X = +∞, so we may assume after a truncation
that −(K +B) · (iDi)X > 1 for every i.
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The log pair (X,B) has Kawamata log terminal singularities on the open set
V = X r nklt(X,B). Therefore there exist only finitely many geometric valuations
E of k(X) such that cX(E) ∩ V 6= ∅ and multE A(X,B) ≤ 0. We consider a log
crepant resolution µ : (Y,BY )→ (X,B) with the following properties:

(a) Y is nonsingular and BY and Di,Y , for every i, are supported by a simple
normal crossings divisor on Y .

(b) D1 = D1,Y .
(c) Every valuation E of X, for which cX(E)∩V 6= ∅ and multE A(X,B) ≤ 0,

has a centre of codimension one on Y .

Let M = iDi for some i. If dim(S) = 0, then

−(KY +BY ) ·MY = −(K +B) · (iDi)X > 1.

Proposition 9.3.3 applies for M and (Y,BY ), hence the linear system |M|Y is base
point free/S on µ−1(V ). Equivalently, the restriction of the Q -b-divisor EY (Di) =
Di,Y − Di to µ−1(V ) is zero. On the other hand, Di|U = D1|U by assumption,
hence the support of the Q -divisor Di,Y −D1,Y does not intersect µ−1(U). We infer
by (b) that the restriction of the Q -b-divisor EY (Di) to µ−1(U) is zero. The open
sets µ−1(U), µ−1(V ) cover Y , hence EY (Di) = 0. This holds for every i, hence we
obtain

Di = Di,Y for all i ≥ 1.

In particular, DY is a π-nef R-divisor and DY − (KY + BY ) is π-nef and big.
Furthermore, µ−1(U) is an open neighborhood of nklt(Y,BY ) and Di|µ−1(U) =
D|µ−1(U) for every i. We infer by [Amb05b], Theorem 3.3 that Di = D for i
sufficiently large and divisible. Note that [Amb05b], Theorem 3.3 is stated only
for characteristic sequences of functional algebras, but its proof is valid in our
setting.

(IV) Assume dim(X) = 2 and, for all i, Di is not big/S. After a truncation,
there exists a rational map with connected fibers f : X 99K Y , defined over S, such
that dim(Y ) = 1 and there exists effective Q -divisors Di on Y such that Di = f∗Di

for every i ≥ 1. It is clear that the sequence (Di)i≥1 and its limit D = limi→∞Di

satisfy the properties (i)-(iii) in the statement of the theorem.
If µ : X ′ → X is a resolution of singularities and µ∗(K + B) = KX′ + BX′ is

the induced crepant log pair structure on X ′, then the sequence (Di)i satisfies the
same properties (1)-(3) with respect to (X ′, BX′) and µ−1(U). Therefore we may
assume that f is a morphism.

The sequence (Di)i is constant in a neighborhood of f(nklt(X,B)). If f(nklt(X,B)) =
Y , we are done. Otherwise f(nklt(X,B)) 6= Y, that is (X,B) has Kawamata log
terminal singularities over the generic point of Y . In this case, the discriminant BY
of (X,B) on Y is well defined. Since (Di)i is A(X,B)-asymptotically saturated,
we infer by Proposition 9.2.3 that the sequence (Di)i is asymptotically saturated
with respect to A(Y,BY ) = −BY .

It is clear that (Y,BY ) is a log pair structure on Y . Furthermore, the inclu-
sion nklt(Y,BY ) ⊂ f(nklt(X,B)) implies that Di = D over a neighborhood of
nklt(Y,BY ). Therefore the sequence (Di)i and (Y,BY )→ S satisfy the hypothesis
of the theorem, possibly except property (1). We have not used the assumption
(1) in the proof of (I) and (II), hence Di = D for i sufficiently large and divisible.
Therefore Di = D for i sufficiently large and divisible. �
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Proposition 9.3.3. Let (X,B) be a 2-dimensional log pair and let π : X → S
be a proper surjective morphism such that −(K +B) is π-nef and π-big. Let M be
a mobile/S and b-big/S b-divisor of X such that

π∗OX(dA(X,B) + Me) ⊆ π∗OX(M).

If dim(S) = 0, assume moreover that −(K + B) ·MX > 1. Then the relative base
locus of the linear system |M|X is included in the set of points of X where the log
pair (X,B) does not have terminal singularities.

Proof. We may assume that S is affine. Let µ : Y → X be a resolution of
singularities such that M = MY and Supp(BY ) is a simple normal crossings divisor,
where µ∗(K + B) = KY + BY . The general member C ∈ |M|Y is a nonsingular
curve, intersecting Supp(BY ) transversely. By saturation, we have

H0(Y, d−BY e+ C) ⊆ H0(Y,C).

(1) The restriction mapH0(Y, d−BY +Ce)→ H0(C, d−BY +Ce|C) is surjective.
Indeed, the cokernel is included in

H1(Y, d−BY e) = H1(Y,KY + d−µ∗(K +B)e).
Since −µ∗(K + B) is µ-nef and µ-big, we infer by Kawamata-Viehweg vanishing
that H1(Y, d−BY e) = 0, hence the claim holds.

(2) The linear system |d−BY + Ce|C | is base point free. Indeed, assume that
dim(S) > 0. Then C is an affine curve, hence OC(d−BY + Ce|C) is generated by
global sections. If dim(S) = 0, then C is a nonsingular projective curve and the
following identity holds by adjunction:

d−BY + Ce|C = KC + d−µ∗(K +B)|Ce.
By assumption, we have deg(d−µ∗(K +B)|Ce) ≥ 2. The claim follows now from a
standard argument.

(3) BY is effective in a neighborhood of C. Indeed, it follows from (1) and (2)
that the sheaf OY (d−BY + Ce) is generated by global sections in a neighborhood
of C. Therefore the above saturation implies that d−BY + Ce ≤ C in an open
neighborhood of C, which is equivalent to BY ≥ 0 near C.

It is clear that (3) implies that |M|X is base point free at the terminal points
of (X,B). �





CHAPTER 10

Glossary

Alessio Corti

If X is a normal variety, I denote by KX the canonical class of X.
If D is a Q-divisor, then dDe, bDc, {D} denote the round up, round down,

fractional part of D.
Adjunction: See inversion of adjunction.
Ample divisor: A divisor D on a proper normal variety X is ample if the

global sections of OX(nD) define an embedding of X in projective space.
The Kleiman criterion states that, if X is Q-factorial, then D is ample
if and only if D · a > 0 for all a ∈ NEX, the Mori cone of X. Because
of this, when we say for instance “let D be an ample divisor”, we often
have in mind the picture of a divisor which satisfies the condition of the
Kleiman criterion, not the usual definition of an ample divisor. Thus, it
makes sense to speak of an ample R-divisor.

The Kleiman criterion implies that, if X is Q-factorial, then X is
projective if and only if the Mori cone NEX ⊂ N1(X,R) is nondegenerate,
that is, it contains no vector subspace of N1(X,R) other than (0).

Base locus: If D is a linear system of Weil divisors on a variety X, the base
locus, or fixed locus BsD is the intersection of all the divisors in D; the
fixed part is the largest Weil divisor contained in BsD.

Base Point Free Theorem: Let (X,B) be a pair with klt singularities
and L a nef Cartier divisor on X. If L− ε(KX +B) is nef and big on X
for some ε > 0, then L is eventually free, that is, |mL| is base point free
for some positive integer m > 0.

By the Zariski counterexample, the Theorem as stated does not
hold for a pair (X,B) with dlt singularities.

This is a crucial bottleneck of the theory. There are various ways
to strengthen the assumptions to make the conclusion valid for dlt pairs.
For example one can: require that L− ε(KX +B) is ample; introduce a
special notion of “log big” divisor; use Shokurov’s LSEPD trick; etc.

B-divisor: Let X be a normal variety. A (integral) b-divisor (that is, a
“birational divisor”) on X is a formal (integral) linear combination

D =
∑

mEE

where the sum runs over all the geometric valuations with centre on
X. If Y → X is a model, then the trace of D on Y is the ordinary divisor
on Y :

trY D = DY =
∑

cY E a divisor

mEE.
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The group of b-divisors on X is denoted by DivX.
The Q-Cartier closure of a Q-Cartier Q-divisorD onX is the b-divisor

D on X with trace
trY D = f∗D

on all models f : Y → X.
A b-divisor M on X is mobile if there is a model f : Y → X such

that
• MY is a base point free divisor on Y ; in particular, MY is integral

and Cartier.
• M = MY (that is, M “descends” to Y ). Strictly speaking, the Q-

Cartier closure MY is a b-divisor on Y ; however

f∗ : Div Y
∼=−→ DivX

is a canonical isomorphism by which we always implicitly identify
b-divisors on Y with b-divisors on X.

Big divisor: A divisor D on a normal variety X is big if for some positive
integer m, H0(X,mD) defines a rational map which is birational onto its
image. Usually one works with divisors that are nef and big. If D is nef
and X is proper of dimension n, then D is big if and only if Dn > 0.

Boundary: A boundary on a normal variety X is a divisor B =
∑
biBi on

X where the Bi are distinct prime divisors and

0 < bi ≤ 1

Usually the coefficients bi are rational; sometimes they are real. A divisor
B =

∑
biBi is a sub-boundary if bi ≤ 1. We never really use sub-

boundaries in this book. Sub-boundaries appear naturally in Shokurov’s
proof of the nonvanishing Theorem. Some features of the minimal
model program work for sub-boundaries; however, the precise details
have never been worked out and one has to be very careful when working
with sub-boundaries.

Bounded: A class or set A of algebraic varieties

{Xa | a ∈ A}
is bounded if there is a morphism f : X → T of algebraic varieties such
that every Xa is isomorpic to a fibre of the morphism f . For example,
the set of isomorphism classes of Fano manifolds of a given dimension n
is boundend in this sense. It is easy to make variant of this notion where
A can be a class of various types of object of algebraic geometry.

Canonical class: The canonical divisor class of a normal variety X is the
linear equivalence class of a canonical divisor, that is the divisor of a
rational differential form, that is, a rational section of the pre-dualizing
sheaf ωX . The pre-dualizing sheaf is the sheaf which Hartshorne denotes
ω0
X and which is defined there by means of a universal property involving

a trace map
t : HnX → k

and the induced pairing

Hom(F , ωX)×Hn(X,F)→ k

assumed to be perfect for all coherent sheaves F on X.
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Cone Theorem: Let X be a proper normal algebraic variety. Denote by
N1(X,R), resp. N1(X,R), the real vector spaces of Cartier divisors on
X, resp. cycles of dimension 1 on X, modulo numerical equivalence. The
Mori cone NEX is the closure, in the real topology, of the convex cone

NE(X) =
∑

C curve on X

R+[C] ⊂ N1(X,R).

NEX is a very subtle object; in particular the process of taking the clo-
sure of NEX is highly nontrivial and generates a huge number of pages in
technical manuals. Mori’s cone Theorem is an amazing general result on
the structure of the Mori cone: If X is projective and it has terminal sin-
gularities, NEX is locally finitely generated in the half-space {KX < 0}.
Moreover, if R is a extremal ray with KX · R < 0, then R = R+[C] for
a rational curve C ⊂ X. The cone Theorem is the cornerstone of higher
dimensional algebraic geometry. The statement has been generalised in
many ways; there is a version where X is replaced with a pair (X,B)
with log terminal singularities and KX with KX + B; there is a rel-
ative version for projective morphisms f : X → Z; there are even several
versions where (X,B) has non-log canonical singularities.

Contraction Theorem: If X is projective and has terminal singulari-
ties, then all extremal rays R ⊂ NEX with K ·R < 0 of the Mori cone
can be contracted, that is, there is a contraction morphism fR : X → Y
characterized by the two properties: (a) fR contracts a curve C ⊂ X to
a point y ∈ Y if and only if [C] ∈ R, and (b) fR∗OX = OY . If X is
Q-factorial, the contraction is of one of three types:
• fR is a divisorial contraction if it is birational and the exceptional

set contains a divisor. In this case the exceptional set Exc fR ⊂ X is
a prime divisor.

• fR is a small, or flipping, contraction if it is birational and the ex-
ceptional set is small (i.e., it has codimension ≥ 2).

• fR is a Mori fibre space if it is not birational, that is, dimY < dimX.
Divisorial contractions and flips of small contractions are the steps of the
minimal model program.

The contraction of an extremal ray R ⊂ NEX with KX · R < 0 is
sometimes just called an extremal contraction.

As for the cone Theorem, the statement can be generalized in var-
ious ways; to pairs (X,B) with klt singularities; to projective mor-
phisms X → Z; to pairs with non-log canonical singularities.

Crepant: A synonym of “nondiscrepant”. A birational morphism f : X →
Y is crepant if it has zero discrepancy, that is

KX = f∗KY .

A morphism f : X → Y of pairs (X,BX) and (Y,BY ) is crepant if KX +
BX = f∗(KY +BY ).

Different: If X is a variety and S ⊂ X a codimension 1 subvariety, it is
natural to try to compare KS with (KX + S)|S or, more generally, the
predualizing sheaf ωS with ωX(S)|S (however the “restriction” may be
defined). In good cases, for a Q-divisor B one can define a “different”
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Q-divisor DiffS B such that the formula

KS + DiffS B = (KX + S +B)|S

holds.
Discrepancy: Let (X,B) be a pair of a normal variety X and a divisor B.

Let ν be an geometric valuation with centre on X; by definition, this
means that there is a uniformization f : E ⊂ Y → X such that ν = multE
where E ⊂ Y is a divisor. By restricting Y without throwing away E, I
may write

KY = f∗(KX +B) + aE

and then a = a(ν,B) is the discrepancy of ν (or E). Indeed, a(ν,B)
depends only on ν and the pair (X,B), not on the uniformization E ⊂
Y → X. If B =

∑
biBi where the Bi are distinct prime divisors, then the

definition implies that a(Bi, B) = −bi.
The discrepancy b-divisor of the pair (X,B) is the b-divisor A =

A(X,B) such that, on any model f : Y → X,

KY = f∗(KX +B) + A(X,B)Y

Dlt model: Divisorial log terminal model. See model.
Dlt singularities: Divisorially log terminal singularities. See log terminal

singularities.
Extremal contraction: See contraction Theorem.
Extremal ray: Let N be a finite dimensional real vector space and C ⊂ N

a convex cone. Usually C is a closed cone; often C is nondegenerate, i.e.,
it contains no vector subspaces other than (0). A half-line

R = R+[v] ⊂ C

is an extremal ray if:

v1,v2 ∈ C and v1 + v2 ∈ R =⇒ v1,v2 ∈ R.

Fano variety: See relative weak Fano klt pair
Finite generation: If a graded algebra R is finitely generated, then X =

ProjR makes sense. Therefore it is natural to ask for natural conditions
implying that a graded algebra is finitely generated.

Geometric valuation: Let X be a normal variety. A discrete valuation
ν : k(X) → Z of the function field of X is an geometric valuation with
centre on X if

ν = multE , where E ⊂ Y f→ X

is a prime divisor on a normal variety Y , and f : Y → X is a morphism.
The morphism E ⊂ Y → X is sometimes called a uniformization of ν.
The centre of E on X is the scheme-theoretic point

cXν = f(generic point of E)

In this book we often denote by cXν the Zariski closure of cXν. It is
common practice to abuse notation and identify the valuation ν and the
divisor E.
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Inversion of Adjunction: Let X be a normal algebraic variety, S ⊂ X a
prime divisor, and B ⊂ X a boundary. Assume that it makes sense to
write

(K + S +B)S = KS + DiffS B

(see different). This is a generalization of the adjunction formula. In
this context direct adjunction or simply adjunction is the statement: If
(X,S+B) has plt singularities, resp. dlt singularities, then (S,DiffS B)
has klt singularities, resp. dlt singularities. The converse to these state-
ments is also true and it is called inversion of adjunction; it is much harder
to show.

Kleiman criterion: See ample divisor
Klt singularities: Kawamata log terminal singularities. See log terminal

singularities.
Kodaira trick: Let M be a big divisor on a normal variety X; then for

every divisor D on X, |nM −D| 6= ∅ for all large enough integers n.
LMMP: See minimal model program.
Log canonical centre: See non-klt locus.
Log canonical model: See model.
Log canonical singularities: See log terminal singularities.
Log resolution: Let X be a normal variety and let D be a divisor on X.

A log resolution is a proper birational morphism f : Y → X, such that Y
is smooth, the exceptional locus of f is a divisor and the inverse image of
D union the exceptional locus has simple normal crossings.

Log Terminal Singularities: Let (X,B) be a pair of a normal variety X
and a boundary divisor B.

The pair (X,B) has klt (Kawamata log terminal) singularities if a(E,B) >
−1 for every geometric valuation E with centre onX (see also discrep-
ancy). In particular this implies that if B =

∑
biBi, then all bi < 1.

The pair (X,B) has plt (purely log terminal) singularities if a(E,B) >
−1 for every geometric valuation E with small centre on X. This allows
some of the bi = 1; however the definition implies for example that every
connected component of bBc is normal.

The pair (X,B) has dlt (divisorially log terminal) singularities if the
pair has a log resolution f : Y → X such that a(E,B) > −1 for every
geometric valuation E with centre an f -exceptional divisor.

The pair (X,B) has lc (log canonical) singularities if a(E,B) ≥ −1
for every geometric valuation E with centre on X.

Sometimes one says that the divisor KX+B is klt, etc., or that (X,B)
is a klt pair, etc., to mean that the pair (X,B) has klt singularities, etc.

These definitions are not easy to digest. Note that the syntax in the
dlt case is much more subtle than in the other cases; dlt is a very delicate
notion and special care must always be exercised when dealing with dlt
singularities. For example, dlt is a local property in the Zariski topology
but not in the étale (or analytic) topology; by contrast, all other notions
are local in the étale and analytic topology.

LSEPD: An acronym for “Locally the Support of an Effective Principal
D ivisor”. Let X be a normal variety and f : X → Z a morphism. An
effective divisorD onX is LSEPD over Z if, for all z ∈ Z, there is a regular
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function ϕ ∈ OZ,z such that SuppD = Suppdivϕ ◦ f in a neighbourhood
of f−1{z}. When Z = X, we simply say that D is LSEPD.

LSEPD divisors can sometimes be used to show that the conclusion
of the base point free Theorem holds on a given variety or pair with
dlt singularities.

Minimal model: A projective Q-factorial variety X with terminal singu-
larities and KX nef.

Minimal Model Program: The algorithm which starts with a nonsingu-
lar projective variety X and, after finitely many steps, terminates with
a minimal model or Mori fibre space. (One can also start with a
projective Q-factorial variety with terminal singularities.) Each step is
either a divisorial contraction or the flip of a small contraction of an ex-
tremal ray R ⊂ NEX with KX · R < 0 (see contraction Theorem).
One sometimes meets the acronym “MMP” or the equivalent appellation
“Mori program”.

There are variants and generalizations to non-Q-factorial varieties;
varieties with worse kinds of singularities; pairs; and a relative version for
varieties over a base.

The minimal model program for pairs is called the log minimal model
program (LMMP, log Mori program, logarithmic Mori program,...).

MMP: See minimal model program.
Mobile b-divisor: See b-divisor.
Model: A model of a variety X is a normal variety Y which is birational to
X. Models are usually assumed to be proper over a specified or implicitly
agreed on base. Often Y is proper over X, that is, it comes with a proper
birational morphism Y → X.
• A pair (X,B) is a dlt model (divisorially log terminal model) if X

is proper, (X,B) has dlt singularities, and KX +B is nef.
• (X,B) is a lc model (log canonical model) if X is proper, (X,B) has

log canonical singularities, and KX +B is ample.
• (X,B) is a wlc model (weakly log canonical model) if X is proper,

(X,B) has log canonical singularities, and KX +B is nef.
We also have the following more subtle notion: (X,B) is a lt (lc, wlc)
model of (Y,D) if (X,B) is a lt (lc, wlc) model and there is a birational
map t : Y 99K X and a(E,D) ≤ a(E,B) for all geometric valuations E
with centre on Y (because X is proper, E always has a centre on X; see
also discrepancy).

The point of this definition is that it implies thatH0(X,n(KX+B)) =
H0(Y, n(KY +D)) for all positive integers n.

Mori cone: See cone Theorem.
Mori fibre space: A contraction fR : X → Y of an extremal ray R ⊂ NEX

with KX ·R < 0 which is not birational, i.e., where dimY < dimX
Mori Theory: A collection of results on the Mori cone NE and its ex-

tremal rays.
Morphism: A rational map which is everywhere defined.
Multiplier ideal: Let (X,B) be a pair of a smooth variety X and an effec-

tive Q-divisor 0 ≤ B ⊂ X. The multiplier ideal sheaf J (B) = J (X,B)
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associated to B is defined to be

J (B) = OX(dA(X,B)e)

where A(X,B) is the discrepancy b-divisor.
Nef divisor: A divisor D on a normal variety X is nef—an acronym for

“numerically eventually f ree”—if D·C ≥ 0 for every proper curve C ⊂ X.
Negativity Lemma: Let f : Y → X be a proper birational morphism with

exceptional divisors Ei ⊂ Y . A divisor D on Y is f -effective is D is
effective and no Ei appears inD. The negativity Lemma states: If A+D ≡∑
aiEi where A is f -ample and D is f -effective, then all ai ≤ 0 (there is

also a refined version stating ai < 0 unless something precise happens).
The negativity lemma implies the following statement: If (X,B) is a

pair with klt (dlt, lc, terminal, canonical, etc.) singularities, X
is projective, and t : X 99K Y is a divisorial contraction or flip of a small
contraction of an extremal ray R ⊂ NE(X) with (KX + B) · R < 0, then
a(E,B) ≤ a(E, t∗B) for all geometric valuations E with centre on X
(see also discrepancy). It follows that the pair (Y, t∗B) has klt (dlt, lc,
terminal, canonical, etc.) singularities (the dlt case is much harder).

Morally, the higher the discrepancies, the better the singularity; there-
fore a step of the Mori program “improves singularities”. This is literally
true of flips and morally true even of divisorial contractions; indeed, if
f : (E ⊂ X) → Y is the divisorial contraction of an extremal ray R and
(KX +B) ·R < 0, discrepancies of all valuations other than E increase.

Non-klt locus: Let (X,B) be a pair of a normal variety X and a Q-divisor
B ⊂ X. The non-klt locus nklt(X,B) of the pair (X,B) is the complement
of the largest Zariski open set U ⊂ X such that (U,B|U ) has klt singu-
larities. In the literature, this is sometimes called the “log canonical set”
of the pair (X,B) and denoted LCS(X,B); we find this terminology and
notation misleading and we consistently avoid it in this book,

When the pair (X,B) has log canonical singularities, a scheme
theoretic point P ∈ X is a log canonical centre, or LC centre, if P = cXν
where ν is a geometric valuation with centre on X and discrepancy
a(X,B) = −1.

Nonvanishing: Any result where the conclusion isH0(X,D) 6= (0). Shokurov’s
nonvanishing Theorem states: Let X be proper and nonsingular, B =∑
biBi a sub-boundary on X with all bi < 1 and such that

∑
Bi is

simple normal crossing; and let L be a nef Cartier divisor on X. If
L−ε(KX+B) is nef and big for some ε > 0, thenH0(X,mL+d−Be) 6= (0)
for all sufficiently large integers m.

Pair: A pair (X,B) of a normal variety X and a Q-divisor B on X such
that KX +B is Q-Cartier.

In this book B is almost always a boundary.
Pl flips: The title of Shokurov’s paper on flips. Here “pl” is an acronym for

“pre limiting”.
Plt singularities: Purely log terminal singularities. See log terminal sin-

gularities.
Q-factorial: A normal variety X is Q-factorial if for every Weil divisor D

on X, there is a positive integer m such that mD is Cartier.
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Being Q-factorial is a local property in the Zariski topology but not
in the étale (or analytic) topology.

It is customary to run the minimal model program with Q-factorial
varieties only. This is fine, but there are situations where non-Q-factorial
varieties crop up, even when one’s primary interest lies in Q-factorial
varieties. For example if f : (X,S + B) → Z is a 4-fold (say) pl flipping
contraction, then the 3-fols S is not, in general, Q-factorial.

There is a version of the minimal model program that runs with non-
Q-factorial varieties; it has unexpected features, for instance it is some-
times necessary to “flip” divisorial contractions.

Relative weak Fano klt pair: A pair (X,B) with klt singularities, to-
gether with a projective morphism X → Z such that −(KX + B) is rel-
atively nef and big over Z. The notion generalizes, for example, a Fano
manifold and a flipping contraction.

Semiample divisor: Traditionally a divisor D on a proper normal variety
X is semiample if D = f∗A is the pull-back of an ample divisor A under
a morphism f : X → Y . In the more modern terminology adopted in this
book, a semiample divisor is an element of of the convex cone of N1(X,R)
generated by semiample divisors (in the traditional sense).

Shokurov algebra: A bounded and asymptotically saturated pbd-algebra.
Shokurov’s Conjecture states that a Shokurov algebra on a relative weak
Fano klt pair is finitely generated. This conjecture for varieties of dimen-
sion n− 1 and the minimal model program for varieties of dimension
n− 1 implies the existence of pl flips in dimension n.

Simple normal crossing: A reduced divisor D on a nonsingular variety
X is a simple normal crossing divisor if for each closed point x ∈ X, a
local defining equation of D at x can be written as f = t1 · · · tj(x) where
t1,...,tj(x) is part of a regular system of parameters in the local ring OX,x.
You must be aware of the fact that this property is local in the Zariski
topology but not in the étale or locally Euclidean topology.

Small: Anything that exists in codimension ≥ 2. A birational morphism
f : Y → X is small if the exceptional set is small. A birational map
f : X 99K Y is small if there are small Zariski closed subsets E ⊂ X and
F ⊂ Y such that f is an isomorphism of X r E and Y r F .

Sub-boundary: See boundary.
Sub-klt pair: Let (X,B) be a pair of a normal variety X and a sub-

boundary divisor B. Then (X,B) has sub-klt singularities if a(E,KX +
B) > −1 for all geometric valuations E with centre on X.

Terminal and Canonical Singularities: Let X be a normal variety; as-
sume that KX is Q-Cartier, that is, there is a positive integer m such that
mKX is a Cartier divisor.

X has terminal, resp. canonical, singularities if a(E) > 0, resp. a(E, ) ≥
0 for every geometric valuation E with small centre on X (see also dis-
crepancy).

If (X,B) is a pair, then (X,B) has terminal, resp. canonical, singu-
larities if a(E,B) > 0, resp. a(E,B) ≥ 0 for every geometric valua-
tion E with small centre on X. (Rather idiosincratically, this property
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is sometimes called “terminal, resp. canonical, in codimension 2” in the
literature.)

For example, a surface pair (X,B) is terminal if and only if X is
nonsingular and

multxB =
∑

bi multxBi < 1

for all x ∈ X.
Termination: An algorithm terminates if it stops in finite time. To show

that the minimal model program terminates, we are quickly led to
show that there is no infinite sequence of flips starting with a given variety
X. This statement is called “termination of flips”. Terminal singular-
ities are so called because they are the singularities that appear at the
termination point of the minimal model program.

Vanishing: The vanishing Theorem of Kawamata and Viehweg is the fol-
lowing generalization of the vanishing Theorem of Kodaira: If X is non-
singular, L is a nef and big Q-divisor on X and the fractional part of L
has normal crossing support, then Hi(X,KX + dLe) = (0) for all i > 0.

There are very many variants and generalizations of this result; but
this is a very long story.

Weak log canonical model: See model.
X-method: The method introduced by Kawamanta and used by him to

prove the foundational results of Mori theory. (The terminology was
created by the students in Kawamata’s seminar at the University of Tokyo;
it is meant to reflect the reputation of the method as a “black art”.) In
a nutshell, the method can be described by the following principle: If,
for some n, the linear system nM contains a member D which is very
singular at x (for example, KX + (1/n)D) is not log canonical), then x 6∈
Bs |KX +M |. Shokurov’s saturation property is a sort of contrapositive
to the X-method: M is saturated if

MobdKX +Me ≤M.

When S ⊂ X is a prime divisor satisfying suitable conditions, Shokurov’s
and the statement thatM exceptionally saturated impliesM|S canonically
saturated is another way to say the X-method.

Zariski counterexample: A nonsingular rational surface S, an elliptic curve
E ∼ −KS with E2 = −1, and a nef and big divisor class L on S such
that L · E = 0, but L|E is a nontorsion divisor of degree 0; then |mL|
has scheme theoretic base locus E for all integers m > 0. Thus the base
point free Theorem does not hold on the pair (S,E).
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