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DESINGULARIZATION OF IDEALS AND VARIETIES

HERWIG HAUSER

Singular mobiles were introduced by Encinas and Hauser in order to conceptualize the information which is necessary

to prove strong resolution of singularities in characteristic zero. It turns out that after Hironaka’s Annals paper from

1964 essentially all proofs rely – either implicitly or explicitly – on the data collected in a mobile, often with only

small technical variations. The present text explains why mobiles are the appropriate resolution datum and how they

are used to build up the induction argument of the proof.

CLASS 0: EXAMPLES ETC.

The Cylinder X1 : x2 + y2 = 1 in A3 contracts under (x, y, z) → (xz, yz, z) to the Cone X2 : x2 + y2 = z2. The
linear change (x, y, z) → (x, 2y, z + y) transforms this equation into X2 : x2 +(y− z)z = 0. This Cone contracts
under (x, y, z) → (xy, y, yz) to the Calypso X3 : x2 + y2z = z2. From there, we get via (x, y, z) → (xz, y, z)
the Calyx of equation X4 : x2 + y2z3 = z4. In this way, the Calyx is represented as the image of a smooth scheme
under a rational map. We have parametrized a singular surface by a regular one (see fig. 1 - 4).

Figures 1 - 4: Resolution of Calyx by three successive blowups.

Start now with the Calyx. We propose in this course to describe methods which allow to reconstruct from its
equation the above or some other paramatrization.

Setting: X reduced singular scheme of finite type over a field K, mostly affine, X = SpecA, with A a nilpotent-free
finitely generated K-algebra. Choose a presentation K[x1, . . . , xn] → A = K[x1, . . . , xn]/I for some ideal I of
K[x] = K[x1, . . . , xn]. This corresponds to an embedding X ⊂ An = An

K with X = V (I). We may also choose
generators I = (g1, . . . , gk). The singular locus Sing X of X is a closed reduced subscheme of X .

Example: The Spitz of equation (z3 −x2 − y2)3 = x2y2z3 in A3 (fig. 5). The singular locus consists of two cusps
(one in xz-plane, one in yz-plane) with the same tangent at 0. Isomorphic to the cartesian product of plain cusp
with itself.

Figure 5: The singular locus of the Spitz consists of two cusps.
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Resolution of singularities: Surjective morphism X̃ → X with X̃ regular. Also: Desingularization, parametriza-
tion, projection, shadow.

Embedded resolution: Given X in a regular W , a proper birational morphism Π : W̃ → W and a regular X̃ ⊂ W̃

which maps under Π onto X and is transversal to exceptional divisor E = π−1Z, where Z ⊂ W is the locus above
which π is not an isomorphism (usually: Z = Sing X).

Strong resolution of X ⊂ W : Embedded resolution π : X̃ → X induced by Π : W̃ → W such that:
π isomorphism outside SingX (economy);
π independent of embedding X ⊂ W (excision);
π commutes with smooth morphisms (equivariance), in particular

with open immersions, localization, completion,
with taking cartesian product with regular scheme, field extensions,
group actions on X lift to action on X̃;

π is composition of blowups in regular centers (explicitness);
centers of blowup are the top locus of a local upper semicontinuous invariant (effectiveness).

Exercises: (1) Prove that the maps given at the very beginning yield indeed a resolution of the Calyx. Show that
all properties of an embedded resolution are fulfilled. Determine the centers of blowup as well as all exceptional
components.

(2) Find for the Kolibri of equation x2 = y2z2 + z3 a resolution (fig. 6). Determine first the geometry and the
singular locus. Try as first centers both the origin and the singular locus.

Figure 6: The Kolibri.

(3) Show that the map A2 → A3 given by (s, t) → (st, s, t2) parametrizes the Whitney-umbrella X : x2 = y2z

(fig. 7). Is it a resolution? Check if all required properties hold.

Figure 7: The Whitney-umbrella.
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(4) Show that the blowup of the Whitney-umbrella with center the origin yields a surface which has one cone-like
isolated singularity and at another point the singularity of the Whitney-umbrella (fig. 7’). Conclude from this that
the singularities need not improve if the centers are too small.

Figure 7’: The blowup of the Whitney-umbrella in the origin.

(5) Determine all finite symmetries of the Spitz. Then show that it is isomorphic to the cartesian product of the
cusp x2 = y3 in the plane A2 with itself. Find other embeddings of this product into A3.
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CLASS I: BLOWUPS

For convenience, we restrict to blowups of affine space An whose centers are regular closed subschemes Z of An.
All constructions extend naturally to arbitrary regular ambient schemes and centers therein.

The center Z is defined in An by an ideal IZ of K[x1, . . . , xn], for which we may choose generators g1, . . . , gk ∈
K[x]. Consider then the map

γ : An \ Z → Pk−1 : a → (g1(a) : . . . : gk(a))

where (u1 : . . . : uk) denote projective coordinates in Pk−1. The graph Γ of γ lives in (An \Z)×Pk−1. We define
Ãn, the blowup of An in Z, as the Zariski closure of this graph

Ãn = Γ ⊂ An × Pk−1.

It comes with a natural projection Π : Ãn → An, the blowup map, induced from the projection An × Pk−1 → An

on the first n components (cf. fig. 8) . Different choices of the generators of IZ yield isomorphic blowups. The
preimage Y ′ = Π−1(Z) is a hypersurface in W̃ called the exceptional divisor. Letting (u1 : . . . : uk) denote
projective coordinates in Pk−1, the equations of Ãn in An × Pk−1 are

uigj(g) − ujgi(x) = 0 for all i and j.

We may cover projective space Pk−1 by k affine charts isomorphic to Ak−1 and given by uj �= 0 for j = 1, . . . , k.
This, in turn, yields a covering of Ãn by k affine charts isomorphic to An, so that the chart expressions of Π can
be read off as polynomial maps from An to An. It will always be this description we use to carry out computations
and proofs.

If Z is a coordinate subspace, defined by, say, xj , j ∈ J , for some subset J of {1, . . . , n} (this can always be
achieved locally after passing to completions), the chart expression in the j-th chart is

Πj : An → An : xi → xi for i �∈ J \ j,

xi → xixj for i ∈ J \ j.

There are several other ways to define blowups, e.g. by a universal property or as the Proj of the Rees algebra
associated to the ideal of Z. See the lectures [Ha 5] or the book of Eisenbud and Harris [EiH] for more details.

Figure 8: The blowup of A2 in the origin.

Properties of blowups:

• They are proper birational maps.

• They induce an isomorphism over the complement of the center.

• Blowups commute with localization, completion, restriction to (open or closed) subschemes containing the center
(make precise what is meant here – you will have to take the strict transform of the subscheme).
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• If W1 = W × L with L regular, the blowup of W1 in Z1 = Z × L is the cartesian product of the blowup of W

in Z with the identity on L.

• Compositions of blowups are again blowups. There is a procedure by G. Bodnár to determine an appropriate
center whose blowup yields the composition; it is defined by a non-reduced ideal.

• Local blowups (W̃ , a′) → (W,a) (specify what shall mean “local”) admit coordinates in W at a which make the
map monomial. (What happens if a′ moves along Y ′, how must the coordinates change?)

• If Z is regular and transversal to X ⊂ W regular or normal crossings (in the sense of the exercises below) then
the total transform X∗ is a scheme with at most normal crossings. If X is regular, the strict transform Xs is again
regular (and transversal to Y ′).

• The ideal I∗ of the total transform X∗ = Π−1(X) of X in W̃ factors into I∗ = Io
Y ′ · I� for a certain ideal I� in

W̃ (the weak transform of I) where o denotes the order of X along Z in W (see the next section). Here, o is the
maximal power with which IY ′ can be factored from I∗.

Remarks. Blowups with regular centers provide a simple algebraic modification of regular schemes W and their
singular subschemes X , being just a monomial substitution of the variables. Heuristically speaking, the blowup
reveals the shape of X along Z up to the first available order of the Taylor expansion. By this we mean the
following:

Example. Consider the line L : y = 0 in A2 and the tangent k-th order parabola P : y = xk. Both meet at
the origin with multiplicity k (i.e., the intersection is a k-fold zero). Blowing up the origin, the y-chart with map
(x, y) → (xy, x) is the relevant one (explain why). There, the strict transforms of L and P have equations y = 0
and y = xk−1, so the order of tangency has decreased by 1.

This shows that blowups in regular centers are a very rough device to resolve singularities. They take into account
only a small portion of the geometry of X . There exist other modifications, for instance the Nash modification or
normalization, which are somewhat more sophisticated procedures. However, they lack some of the basic algebraic
features blowups have and which make them so useful.

Exercises: (1) Show that if Z is a regular hypersurface, the blowup map Π is an isomorphism.

(2) Show that for regular centers Z in An, the blowup Ãn is again regular and of dimension n.

(3) Determine explicitly the covering of Ãn by affine charts and the corresponding chart expressions of the blowup
map. Then express it in terms of the respective coordinate rings as a certain ring extension.

(4) Show that if W is a cartesian product W1 × Z and a a point in Z, the blowup W̃ → W of W in Z is the
cartesian product of the blowup W̃1 → W1 of W1 in Z1 = {a} with the identity on Z. Then make the explicit
local computations of the blowup of a circle in A3.

(5) Two (or several) schemes are called transversal at a point a if the product of their ideals is a monomial ideal
(locally at a, with respect to suitable formal coordinates). Take three regular surfaces in A3 so that each two meet
transversally. Show that all three need not meet transversally. What happens if you require in addition that all
possible intersections of two of the schemes meet transversally?

(6) Consider the blowups W̃ and Ũ of W = U = A3 in the two centers Z and Z1 of ideals (xy, z), respectively
(xy, z)(x, z)(y, z). What do you observe? Then apply a second blowup (with center a point of your choice) to W̃

and show that the composition equals the blowup Ũ → U (provided that you have chosen the correct point on W̃ ).

(7) Define and compute the strict transform of a plane vector field under the blowup of A2 in a point. Do you
always get a vector field on Ã2?

(8) Blow up the Fanfare x2 + y2 = z3 in A3 once with center the origin and once with center the z-axis. Compute
the orders of the respective strict transforms.

(9) Show that the blowup of A2 with center the non-reduced origin of ideal (x, yk)(x, yk−1) · · · (x, y) gives a
regular scheme Ã2 and separates the two components of x(x− yk) = 0. Interpret this blowup as a composition of
blowups in regular (reduced) centers.

(10) What are the total and strict transforms of a regular hypersurface X in W if the center equals X?
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CLASS II: TRANSFORMS

Throughout, π : W ′ → W denotes the blowup of a scheme W in a regular center Z with exceptional divisor
Y ′ = π−1(Z) ⊂ W ′. We shall describe various ways how to lift schemes and ideals in W to schemes and ideals in
W ′. Again, we shall stick to an affine scheme W = An with coordinate ring K[x] = K[x1, . . . , xn] and even work
locally at a chosen point a of W – taken to be the origin of An, so that we may argue in the formal power series ring
K[[x]] = K[[x1, . . . , xn]]. By a′ we shall always denote a point in Y ′ mapping under π to a. Choosing the local
coordinates x1, . . . , xn suitably at a we may assume that a′ is the origin of one of the affine charts on W ′ = Ãn

and the respective chart expression of the blowup map is given by an algebra-homomorphism ϕ : K[x] → K[x]
sending xi to either xi or xixj as specified earlier (and certainly proven by you in the exercises).

Let X be closed in W and given by the ideal J of K[x] (X need not be reduced, but we assume that X is rare in
W , i.e., not equal to one or several components of W ). The total transform X∗ of X is the pullback π−1(X) of X

in W ′ under π. Thus, locally at a′, its ideal equals J∗ = ϕ(J) = (f ◦π, f ∈ J). If Z ⊂ X then X∗ contains Y ′ as
a component (because X � W locally at all points). As Y ′ is a hypersurface, we get a factorization J∗ = M ′ · I ′,
where M ′ is a suitable power of the principal ideal IY ′ defining Y ′ in W ′, say M ′ = Io

Y ′ for some o > 0. The
maximal power o of IY ′ which can be factored from J∗ is given by the behaviour of X along Z. More precisely:

The order ordZX of X along Z is defined as the maximal integer k so that J ⊂ Ik
Z . In particular, if Z = {a} is a

(reduced) point and X is a hypersurface f = 0, say J = (f), then ordaX is just the order of vanishing of f at a,
i.e., the order of the Taylor expansion of f at a. If X is not a hypersurface, the order equals the minimum of the
orders at a of a generator system of the defining ideal of X . Of course, it depends only on the stalk of J at a, and
the order remains the same when passing to completions. Note that the order depends on the embedding of X in
W at a. If X is not minimally embedded locally at a, (i.e., the dimension of W at a is not minimal among all local
embeddings of X at a in a regular ambient scheme) the order of X at a is 1. In this case, the order is not significant
for describing the complexity of the singularity of X at a.

For c ∈ N, we let top(X, c) be the locus of points where the order of X in W is at least c. By the upper
semicontinuity of the order, the top locus is a closed (reduced) subscheme. We let top(X) be the locus of points
where the order of X in W is maximal. Of course, we can also define top(X) locally at a point a, as the local
subscheme where the order of X equals ordaX .

With these definitions we get the factorization of the total transform J∗ = M ′ · I ′, where M ′ = Io
Y ′ for

o = ordZX = ordZI . This order is the maximal power with which IY ′ can be factored from J∗. We call X�

and J� = I−o
Y ′ · J∗ the weak transform of X and J under the blowup π : W ′ → W . If X is a hypersurface, it

coincides with the strict transform Xs of X .

One of the basic facts for allowing resolution in the spirit of Hironaka is the following: If the center Z is contained
in the top locus of X , the order of the weak transform X� at points of Y ′ is less or equal the order of X along Z,

orda′X� ≤ ordaX .

This holds also for the strict transform (as a consequence of the inequality), and for the Hilbert-Samuel function of
X at points a, requiring that it is constant along Z and taking a natural ordering among all Hilbert-Samuel functions
(see Bennett’s paper [Bn] or [Hi 36], [Ha 3]).

Properties: As blowups did, passing to the weak transform commutes with restriction to open subschemes,
localization and completion. Also, if X and Z are invariant under a group action, the group action lifts to X�.
There are three algebraic properties of weak transforms which we will use repeatedly.

If P and Q are ideals in W , we have (P ·Q)� = P� ·Q�. However, (P +Q)� �= P�+Q� in general, it suffices to
take two principal ideals of different order along Z. If ordZP = ordZQ, the the weak transform is distributive, say
(P +Q)� = P�+Q�. There is a nice trick to achieve this equality also in case p = ordZP �= ordZQ = q. Replace
P + Q by the weighted sum P q + Qp and get (P q + Qp)� = (P q)� + (Qp)�. As we have ordaP q = q · ordaP ,
we do not lose information on the order when passing to powers of ideals.

The third commutation property of weak transforms is with respect to coefficient ideals. These play a decisive role
in the induction on the dimension as they allow to pass to ideals in less variables. Their definition is somewhat
cumbersome. Let W = An with local coordinates (xn, . . . , x1) at a. For simplicity, we take a = 0. Let V be
the hypersurface in W defined by xn = 0. Let I be an ideal in W at a of order o = ordaI . The coefficient
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ideal of I at a in V is defined as the ideal in V generated by certain powers of the coefficients of the elements
of I when expanding these with respect to xn. More precisely, write f =

∑
i≥0 ai,f (x′)xi

n for f ∈ I and with
x′ = (xn−1, . . . , x1). Then

coeffV (I) = ((ai,f , f ∈ I)
o

o−i , i < o).

For example, if f(x) = xo
n + g(x′) has no mixed terms, we get coeffV (f) = (g). You will object that, in general,

the exponents o
o−i are rational numbers. This can be remedied by taking instead as exponents o!

o−i , producing for

f(x) = xo
n +g(x′) the ideal (g(o−1)!). Taking factorials loadens the notation without improving the understanding,

so we will allow rational exponents and leave it to the reader to define the correct equivalence relation on rational
powers of ideals in order to circumvent any traps. As the order of ideals is just multiplied with a constant when
passing to powers of ideal, there is no harm in having rational exponents (once you got used to it).

Let Z ⊂ top(I) be the center of the blowup π : W ′ → W , with weak transform I�. Let a ∈ Z be a point, V ⊂ W

a local hypersurface of W at a (i.e., defined in a neighborhood of a), let a′ ∈ Y ′ be a point in Y ′ so that a′ lies above
a and in the strict (= weak) transform V ′ of V . We already know that orda′I� ≤ ordaI . If orda′I� < ordaI we
are happy because something has improved. If equality holds (we then say that a′ is an equiconstant point for I),
we have at least the following commutativity relation

The coefficient ideal of I� at a′ in V ′ is the transform of the coefficient ideal of I at a in V ,

coeffV ′I� = (coeffV I)!.

This equality does not hold if the order has dropped, and it neither holds if we take on the right hand side the weak
transform (coeffV I)� of coeffV I . Instead, we have to take a new transform, the so called controlled transform.
Let c = ordZI and define (coeffV I)! = I−c

Y ′∩V ′ · (coeffV I)∗ (the number c is called the control). This is not hard
to prove after passing to local coordinates, using that we always have ordacoeffV I ≥ ordaI . The magic formula
with the controlled transform of the coefficient ideal allows to compare ideals in smaller dimension precisely in
the case where the order of the original ideal I could not tell us that the singularities improved under blowup. This
output recompenses by far the lack of elegance we had to accept in the definition of coefficient ideals.

Be careful: The coefficient ideal nor its order are intrinsic objects. We will have to make an effort to extract
coordinate independent information from them.

Exercises: (1) Show that ordZX = mina∈ZordaX and that ordaX defines an upper semicontinuous function on
W . Look up in Hironaka’s or Bennett’s Annals papers [Hi 1, Bn] why it does not increase under localization. (This
holds also for the Hilbert-Samuel function of X at a.)

(2) Compute for several schemes X in W the order of X along a subscheme Z of W . Then determine for each X

the stratification of X by the strata of constant order (with respect to points).

(3) If X is not locally minimally embedded in W at a point a ∈ X , the order of X at a equals 1.

(4) Try to find (natural) equations for the top locus top(X, c), first in characteristic 0 (easy), then in arbitrary
characteristic. In the first case, show that top(X) lies locally in a regular hypersurface of W .

(5) In J∗ = M ′ · I ′ the order o = ordZX = ordZI is the maximal power with which IY ′ can be factored from J∗.

(6) Let X be a subscheme of W of codimension at least 2, with strict and weak transforms Xs and X� under the
blowup π : W ′ → W . Figure out in three examples which components of X� do not show up in Xs.

(7) (Mandatory) Show that the order of an ideal I in W does not increase when passing to its weak transform,
provided the center is included in top(I). Hint: You may work locally in the completion, rectifying thus the center
to a coordinate subspace, and then choose coordinates for which the local blowup (W ′, a′) → (W,a) is monomial.
(In exceptional cases you are allowed to consult [Ha 4] to convince you that it would have been easy.)

(8) Determine in three examples the equiconstant points of an ideal I under blowup, i.e., the points a′ ∈ Y ′ where
the order of I� has remained constant.

(9) Compute the coefficient ideals of f = x3 + yz2 and f = x(y7 − z8) at 0 with respect to the three coordinate
hypersurfaces. Compare the respective orders of the resulting ideals.

(10) Compute the coefficient ideals of the polynomials of (9) after blowing up the origin and compare them with the
controlled transforms of the coefficient ideals below. Then prove the commutativity of the passage to coefficient
ideals with blowups at equiconstant points.
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CLASS III: CONSTRUCTION OF MOBILES

In this section we wish to guide you towards the correct definition of mobiles. They shall be intrinsic, globally
defined objects at a certain stage of the resolution process containing all information we need in order to define the
local resolution invariant and to choose the center of the next blowup. In the last section we shall give the precise
definition of mobiles and show how they transform under the blowup with the chosen center. This, in turn, will be
used to compute the local invariant after blowup and to show that it decreases at each point of the new exceptional
component.

So let us start with an ideal sheaf J on our regular ambient scheme W . We choose a point a ∈ W and let J

denote the stalk of J at a. Taking an affine neighborhood of a in W we may simply assume that J is an ideal of
polynomials in n variables with coefficients in the ground field K.

Mobiles control two features of the resolution process: The factorization of ideals into a monomial and a singular
part (the exceptional and the not yet resolved portion of the ideal), and the transversality of the chosen centers with
the respective exceptional locus. The first task is accomplished by the combinatorial handicap D of the mobile, the
second by the transversal handicap E. It is appropriate to introduce them in separate sections.

The combinatorial handicap

We have already seen that after blowup powers of the exceptional components will be factored from the total
transform of the ideals, so in order to keep things systematic (which is not very original but helpful) we write
J = M · I with M = 1 the trivial ideal (the whole local ring) and I = J .

Here is a nice idea: We proceed as we would know what the center of the first blowup is (you remember: often
uniqueness is proven before existence, because then you already know how your object has to look like when you
try to construct it). So let Z be a closed regular subscheme of W with induced blowup π : W ′ → W of W along
Z and exceptional divisor Y ′ ⊂ W ′. We denote by IY ′ = IW ′(Y ′) the ideal defining Y ′ in W ′. We let J ′ = J∗

be the total transform (inverse image) of J under π. Its order will have increased, so that’s not a good number to
look at. Much more interesting is the weak transform, and, to keep things straight, we denote it by I ′ = I�. Thus
J ′ = M ′ · I ′ with M ′ = IordZI

Y ′ a normal crossings divisor (even regular for we have blown up only once). Locally,
M ′ is just a power of a variable (the variable defining Y ′ in W ′).

Set now o = ordZI , let a be a point in Z (outside of Z nothing will happen since π is an isomorphism there), and
let a′ be any point in Y ′ above a, say π(a′) = a. Set o′ = orda′I ′. The next thing to do is to compare o′ with o.
Here we remember the key inequality from earlier sections: If the order of I along Z is constant, in particular if
Z ⊂ top(I), and hence o′ = ordaI for all a ∈ Z, we have o′ ≤ o, because I ′ is the weak transform of I . In view
of this pleasant event (“the order does not increase”) we immediately agree to allow only centers inside top(I).
“Ah”, you respond, “maybe we even have o′ < o for all a′ above a.” Then we would be done. – Sorry, this is too
optimistic, the equlity o′ = o may occur and the points where this happens form a closed subscheme of Y ′ (but
prove that o′ < o if n = 1 and o > 0). These are the equiconstant points of I in Y ′.

Before confronting this situation, we do some book-keeping. We will call Dn and D′
n the (non-reduced) divisors

defined by M and M ′ in W and W ′ (of course, Dn = ∅). They are globally defined and tell us how to factorize
the ideals J and J ′. That is information we will need later on. As we shall soon perform the descent in dimension,
we write Jn = Mn · In for J = M · I and similarly J ′

n = J ′.

So what shall we do at an equiconstant point a′ above a where the order of I ′n has remainded constant? Now,
generically along Y ′, the order drops. Only a few points admit constant order. We suspect that at an equiconstant
point a′ the ideal I ′ must have a special shape. Possibly we can profit of it. Let us therefore observe what happens
in two variables, say plane curves. It is immediately seen that xp + yq with q ≥ p has weak transform xp + yq−p

(in the relevant chart). If q < 2p, the order drops and we are done. If q ≥ 2p, the order remains constant. However,
the degree of the monomial yq has dropped to q − p.

This strongly suggests to associate to In an ideal in one variable less and to look at its order. This is done via
coefficient ideals. Choose locally at a a regular hypersurface V . You harshly protest because we agreed to choose
never an object ad hoc, everything has to be natural. I respond that we are not interested in V , neither in the
resulting coefficient ideal, but only in its order. It suffices to make this order independent of the choice of V . There
are two options: either the minimum of all possible orders, over all choices of V , or the maximum.
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You will have to convince yourself that the minimum is not significant, it just equals o. Therefore we take V so
that the order of the coefficient ideal is maximized. Such V ’s are called hypersurfaces of weak maximal contact
with In at a. They exist, and only in case that I is bold regular, i.e., a power of a variable, the resulting order is
infinite. In this case we redefine the coefficient ideal to be the trivial ideal 1.

We stop briefly for book-keeping, setting Wn−1 = V and Jn−1 = coeffWn−1In. The letter J is taken instead of
I because, as we saw in class II, coefficient ideals do not pass to the weak transform under blowup (the letter I

is reserved for ideals which pass to weak transforms). For accurateness, we factorize Jn−1 = Mn−1 · In−1 with
Mn−1 = 1 and In−1 = Jn−1, and set on−1 = ordaIn−1.

Let’s go to W ′ at a′ and J ′
n = M ′

n · I ′n. Denote by J ′
n−1 the coefficient ideal of I ′n with respect to a local

hypersurface W ′
n−1 which maximizes its order. The curve case suggests that J ′

n−1 has something to do with Jn−1.
We are now curious to explore this connection between the coefficient ideals of In and I ′n (we have seen portion
of it in class II). Remember that J ′

n−1 equals the controlled transform of Jn−1 if W ′
n−1 is the strict transform of

Wn−1 (in particular, a′ must be included in W ′
n−1).

At this point, where things seem to become more and more involved, there pop up a few very favourable coincidences.
They will make everything work marvellously – provided we are in characteristic 0. Such lucky strokes are rare
in mathematics, and I see no substantial reason why they occur precisely here and now. Once Abhyankar and
Hironaka discovered them in the fifties (stories tell that the latter was visiting the former and insisted for four days
until he had completely clarified the former’s vision of using Tschirnhaus’ transformation for resolution purposes),
the rest was only technique (as other stories tell).

In positive characteristic these coincidences do not occur – and nobody has found a working substitute for them.
At least for the arguments and constructions to follow, the characteristic p case is much less accessible, if at all.

Stroke 1: If Wn−1 maximizes the order of Jn−1 = coeffWn−1In at a (everything is local), it contains locally the
top locus top(In) of In. False in characteristic p > 0, see [Na 1, Na 2, Mu, Ha 1].

Stroke 2: There is a simple procedure to construct such hypersurfaces of weak maximal contact (not all), via
osculating hypersurfaces, see [EH] or [Ha 4]. Look up the definition there or see the exercises. This construction
appears in various forms in most of the resolution papers. Hypersurfaces of weak maximal contact can also be
constructed (by different means) in positive characteristic, but do not enjoy the same nice properties.

Stroke 3: If Wn−1 maximizes the order of Jn−1 = coeffWn−1In at a, its strict transform W ′
n−1 contains all

equiconstant points of In in Y ′. First observed by Zariski. Proof: Computation in local coordinates. Also ok in
positive characteristic.

Stroke 4: If Wn−1 is osculating for In, in particular, maximizes the order of Jn−1 = coeffWn−1In at a, and if the
order has remained constant, o′n = on at a′, its strict transform W ′

n−1 is osculating for I ′n, in particular, maximizes
the order of J ′

n−1 = coeffW ′
n−1

I ′n at a′. Proof: Computation in local coordinates. False in positive characteristic,
see [Ha 6].

With this gambling things become easy. Fix a ∈ Z and a′ ∈ Y ′ above a. Choose Wn−1 osculating at a for
In, let Jn−1 be the corresponding coefficient ideal of In in Wn−1. Then, at each equiconstant point a′ above
a, W ′

n−1 = W s
n−1 is osculating for the weak transform I ′n = I�

n . This ideal has as coefficient ideal J ′
n−1 the

controlled transform (Jn−1)! = I−ordaIn

Y ′
n−1

· J∗
n−1 of Jn−1 in W ′

n−1, where IY ′
n−1

= IW ′
n−1

(Y ′ ∩ W ′
n−1) denotes

the ideal defining in W ′
n−1 the exceptional divisor Y ′ ∩ W ′

n−1 of the blowup W ′
n−1 → Wn−1. Recall here that,

locally at a, Z is contained in Wn−1, so that Y ′ ∩ W ′
n−1 is regular.

In particular, we may factorize J ′
n−1 = M ′

n−1 · I ′n−1 with I ′n−1 = I�
n−1 the weak transform of In−1 and M ′

n−1

a normal crossings divisor in W ′
n−1 supported by the exceptional component Y ′ ∩ W ′

n−1. Hence the divisor
D′

n−1 = (ordaIn−1 − ordaIn) · Y ′ of W ′ has normal crossings at a′ and defines the principal monomial ideal
IW ′

n−1
(D′

n−1 ∩ W ′
n−1) = M ′

n−1 locally at a′.

This looks a little bit complicated. And indeed, it is complicated, especially, if you are not yet used to this type of
constructions. But always keep in mind the corresponding commutative diagram, with vertical arrows the blowups
in Wn and Wn−1, and horizontal arrows the descent in dimension. If you draw it for yourself on a sheet of paper
things will clarify immediately (after having done one explicit computation for, say, a surface singularity). And
you will realize that, again, everything is absolutely systematic.
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Let us collect our data at the point a and at the equiconstant point a′ above a:

Jn = Mn · In in Wn,

J ′
n = M ′

n · I ′n in W ′
n,

Jn−1 = Mn−1 · In−1 in Wn−1,

J ′
n−1 = M ′

n−1 · I ′n−1 in W ′
n−1, and

I ′n and I ′n−1 are the weak transforms of In and In−1.

Moreover,

D′
n = ordaIn · Y ′ and D′

n−1 = (ordaIn−1 − ordaIn) · Y ′.

By the way, what are these data at a point a′ where the order of I ′n has dropped? Either we refuse to define them,
since our induction on the order already works, or, as we shall do, we choose any (new) osculating hypersurface
W ′

n−1 for I ′n at a′, set J ′
n−1 = coeffW ′

n−1
(I ′n) with trivial factorization J ′

n−1 = 1 · I ′n−1 (no other factorization
need hold). Of course, I ′n−1 is no longer the weak transform of In−1, so that its order may be quite arbitrary, but
we don’t care, since – lexicographically – the pair (o′n, o′n−1) < (on, on−1) has dropped at a′. You may notice that
D′

n−1, though globally defined on W ′, is only a stratified divisor, since the multiplicity of Y ′ depends on the point
a′. Specify what are the strata along which D′

n−1 is coherent?

At this point, you may wish to see a concrete example. Here it is: Let J = J2 be the principal ideal in
W = W2 = A2 generated by f = xp + yq with 0 < p ≤ q. We place ourselves at the origin a = 0 of A2, which
is the only singular point of the plane curve X defined by f . As no blowup has occured so far, J2 = M2 · I2 with
M2 = 1 and I2 = J2. The order o2 = ordaI2 equals 2. In characteristic 0, the hypersurface W1 defined by x = 0
in W2 maximizes the order of the coefficient ideal J1 = coeffW1(I2) = (yq). (If the characteristic equals p, this is
not true if q is a multiple of p.) We get J1 = M1 · I1 with M1 = 1 and I1 = J1. Clearly, o1 = ordaI1 = q ≥ p.

The invariant is the pair (o2, o1) = (ordaI2, ordaI1) and attains at a = 0 its maximal value (p, q). This will
therefore be our first center of blowup, Z = {0} in A2 with blowup π : W ′

2 → W2 and exceptional divisor
Y ′ ⊂ W ′

2. Let a′ be a point of Y ′. If a′ is the origin of the x-chart, the order of I ′2 = I�
2 = (1+xqpq) has dropped

to 0, so that there J ′
2 = Ip

Y ′ · 1 and W ′
1 can be chosen arbitrarily, with J ′

1 = 1 (by definition of the coefficient
ideal of the trivial ideal). Hence M ′

1 = I ′1 = 1 and the orders are (o′2, o
′
1) = (0, 0) < (o2, o1) = (p, q). The same

phenomenon occurs at all point a′ of Y ′ outside the origin of the y-chart.

So let us look at this origin. It is the most interesting point. There, the order o′2 of I ′2 = is q − p if q < 2p and p

if q ≥ 2p. In the first case, the order has dropped, I ′2 = (yq−p + xp) and our local hypersurface W ′
1 will now be

chosen as y = 0 with coefficient ideal J ′
1 = (xp). The factorization is J ′

1 = M ′
1 · I ′1 with M ′

1 = 1 and I ′1 = J ′
1.

You see that I ′1 is not the weak transform of I ′1, which does not matter because o′2 has dropped so that the pair of
orders (o′2, o

′
1) = (q − p, p) has dropped lexicographically.

We are left with the case q ≥ 2p. The order of I ′2 = (xp + yq−p) at a′ (the origin of the y-chart) has remained
constant equal to p. Therefore we will really need the descent in dimension here. The local hypersurface W ′

1 can
be chosen equal to the strict transform W s

1 of W1. It has equation x = 0 in this chart. The coefficient ideal J ′
1

is generated by yq−p and factorizes into J ′
1 = M ′

1 · I ′1 with I ′1 = 1 the weak transform of I1 = (yq) under the
blowup of W1 in Z = {0}. Hence M ′

1 = J ′
1 = (yq−p). As for the orders at a′, we get (o′2, o

′
1) = (p, 0) which is

lexicogaphically smaller than (o2, o1) = (p, q). Our induction is thus completed at all points a′ of Y ′.

To make things more explicit, we write down the two combinatorial handicaps before and after blowup. In W = W2

we have D = (D2, D1) = (∅, ∅) everywhere. If q < 2p, the combinatorial handicap D′ in W ′ = W ′
2 equals

everywhere (D′
2, D

′
1) = (p · Y ′, ∅). If q ≥ 2p, we stratify W ′

2 into S = W ′
2 \ {0y−chart} and T = {0y−chart}. At

all points of S we have D′
2 = p · Y ′ and D′

1 = ∅. In contrast, at the origin of the y-chart we have D′
2 = p · Y ′ and

D′
1 = (q − p) · Y ′, so that indeed M ′

2 = (yp) in W ′
2 and M ′

1 = (yq−p) in W ′
1. Notice here that W ′

1 defined by
x = 0 is transversal to Y ′.

Exercises: (1) Prove that o′ < o if n = 1 and o > 0, for o = ordaI and o′ = orda′I ′, taking I ′ = I� the weak
transform. Hint: Determine first the center Z.

(2) Figure out why the four lucky strokes hold in characteristic 0? Look up the counterexamples in positive
characteristic.
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(3) Show that in characteristic 0, the local top locus of an ideal is contained in a regular hypersurface whose
weak transform contains all equiconstant points (this hypersurface will be defined by a suitable derivative of the
generators of the ideal). Then look up the example of Narasimhan in positive characteristic (see [Ha 4]).

(4) Assume that q ≥ 3p and compute the combinatorial handicap for the plane curve xp + yq = 0 after the second
blowup. What would happen in characteristic p for q = 3p?

(5) Resolve the Whitney-umbrella x2 +yz2 = 0 by taking as center the top locus of the triple of orders (o3, o2, o1).
If you got tired of the computations, write a program which computes all data.

(6) Do the same for the surface x2 + y3 + z4 = 0. Then find out why we really need the combinatorial handicap
D at all stages of the resolution process and what its transformation rule is.

The transversal handicap

Assume that we are at a certain stage of our resolution process and wish to make the next blowup. In this section
we adress the question how to ensure that our chosen center is transversal to the already existing exceptional
components which were produced by the preceding blowups. Recall that this transversality is necessary to get after
the blowup a new exceptional locus having again normal crossings.

Let us denote W our present ambient scheme, J the ideal sheaf we wish to resolve, a a point of W and J the
stalk of J at a. Let F be the exceptional locus in W produced by the prior blowups. By induction on the number
of blowups we may assume that F has normal crossings. As transversality of two schemes is a local property
compatible with completion, we may stick to a neighborhood of a in W and pass, if necessary, to the completion
of the local rings. Thus we may suppose that W = An and that J is a polynomial ideal.

In order to know how to factorize J and the subsequent local coefficient ideals at a into a product of a principal
monomial ideal and a remaining factor, we have introduced and constructed in the last section the combinatorial
handicap D in W . It consists of normal crossings divisors Dn, . . . , D1 in W so that Ji = Mi · Ii for all n ≥ i ≥ 1,
where Mi = IWi

(Di ∩Wi) are the ideals associated to a local flag of regular schemes W = Wn ⊃ Wn−1 ⊃ . . . ⊃
W1 at a.

Neglecting transversality problems, the center of blowup would be, locally at a, the scheme Wd−1 with d minimal
so that Id �= 1 (then Wd−1 = top(Id) is just the support of Id). Despite the fact that the flag Wn ⊃ . . . ⊃ W1 is
not intrinsic (there are many possible choices), we saw that the so defined center does not depend on these choices
and gives a global closed and regular subscheme of W . Let us call it the virtual center Zvirt. Virtual, because, in
practice, the actual center Z = Zactu of the next blowup will mostly be different from Zvirt (it will be contained
in Zvirt), precisely for transversality reasons with the exceptional locus F .

So let us investigate the precise constellation of Zvirt and F . Again, the question is local. We may assume that
the point a lies in the intersection of both, otherwise Zvirt and F are trivially transversal at a. At an intersection
point a, several things may happen. Recall here that we consider two schemes to be transversal at a if the product
of their ideals in W defines a normal crossings scheme (i.e., if the ideal generated by the product in the completion
of the local ring of W at a can be generated by monomials).

If Zvirt is contained in all components of F passing through a (the intersection of these components is just the
local top locus of F at a), it is certainly transversal to F . If it is not contained, it may be transversal to some
components of F and not transversal to others. In this case, we will have to choose a smaller center Z inside Zvirt.
But which one? Taking simply for Z the intersection of Zvirt with all components of F to which it fails to be
transversal does not work because this intersection will in general be singular scheme-theoretically.

Sticking to our philosophy from earlier sections, we proceed again upside down and assume that we already know
how to choose the actual center Zactu transversal to F . This is not a bad idea, but once in a while we will have to
stop waving hands and to start making Nägel mit Köpfen. In any case, let’s see what happens.

If Zactu = Zvirt, everything is fine, our invariant introduced (vaguely) in the section on the combinatorial handicap
will drop (this will be explicited more carefully in the last section) and (vertical) induction applies. By transversality
of Z with F , the new exceptional divisor F ′ in W ′ will have again normal crossings. Fine!

So let us look at the case Zactu � Zvirt. Something surprising is happening (in retrospection, it won’t be such
a surprise): The resolution invariant remains constant, the situation seems not to improve. Why is this the case?
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The clue is the upper semicontinuity of the invariant: By construction, it is constant along Zvirt and attains its
maximal value there (Zvirt is the top locus of the invariant). Along the open subscheme U = Zvirt \ Zactu of
Zvirt the blowup is a local isomorphism, so at points of the strict transform Us the invariant will remain constant.
By upper semicontinuity, it has the same value on the closure U in W ′. As this closure meets the new exceptional
component Y ′ = π−1(Zactu), there will be points of Y ′ where the invariant has not dropped. We are stuck.

We suggest that you digest briefly this last paragraph by taking for X in A3 the cartesian product of the plane cusp
z3 = y2 with the x-axis and for F the the cartesian product of the parabola y = x2 with the z-axis (see fig. 9).
The virtual center Zvirt will be the x-axis (make sure that no other choice makes sense), which is tangent to F

and hence not allowed as center. Instead, we have to take Zactu = {0} the origin, and the transform X ′ of X in

W ′ = Ã3 looks quite the same.

Figure 9: Tangency of the virtual center with the exceptional locus.

Doing mathematics is – aside genuine Geistesblitze – a Wechselspiel of computing examples; observing; pointing
out obstructions; finding the reasons for the obstructions; observing again; trying to isolate the obstruction so
as to see clearly its Ursprung; computing once more, etc. Looking carefully at phenomena and complicated
configurations is one of the most delicate jobs for mathematicians. Often we just do not see what is there, and of
what we could profit of. And only afterwards the solution to the problem seems so natural, so evident. If we had
just seen it earlier.

In view of these “profound” philosophical and pedagogical contemplations, we look once again at our situation.

By transversality, we are forced to choose a center smaller than the one we would like to take and which would
make the invariant drop. Being too small, the invariant remains the same (at least at some points of the new
exceptional component) and our induction breaks down. The invariant is not able to detect any improvement of the
singularites.

At this point we will ask ourselves why we blow up at all if it does not help to advance the induction. We could as
well do nothing and resignate. This question is precisely the correct one, so we repeat it: Why blowing up at all if
the virtual center is not transversal to the exceptional locus.

The question contains, at least in this case, also the answer. We blow up because we wish to improve our resolution
problem, which consists in making an ideal a monomial ideal. But our non-transversality problem we encounter
on the way is precisely of the same nature as our original problem: An ideal (in this case the product of the ideal
of Zvirt and of F ) is not a monomial ideal.

After all this much-talking-and-little-saying it should have become clear what to do: We interpret the non-
transversality problem as a separate resolution problem and try to resolve it first in order to be able afterwards –
once it is solved – to choose indeed the virtual center as the actual center. Therefore our present blowup with center
Zactu � Zvirt has the intention to help to make Zvirt transversal to F . This is the true purpose of the blowup, and
obviously the invariant associated to the ideal J won’t recognize that.

Looking back at the example from before, we see that the blowup does improve the transversality problem, after
the blowup the virtual center is again the x-axis, but the transform F ′ of F is now transversal to the x-axis.
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This is encouraging and we immediately start to build up the data for our secondary (= transversality) resolution
problem. The approach indeed works, though it burdens considerably the whole setting and constructions. Just
imagine that along the solution of the subproblem new exceptional components will pop up, and while solving the
transversality issue we may confront another transversality problem, which we have to solve first before we are
allowed to attack the original one. And so on. This is technically (very) frightening.

There is an elegant solution to this annoying superposition of subordinate resolution problems suggested by
Villamayor in [Vi 1]. In each step of the descent in dimension via local flags Wn ⊃ . . . ⊃ W1 take care in advance
of the transversality problem by modifying the ideals Ii so that the resulting center is already contained in all
exceptional components to which the virtual center may not be transversal. Just multiply Ii by the ideal Qi of
dangerous components, i.e., those to which the next local hypersurface Wi−1 may not be transversal. Then the top
locus of Ki = Ii · Qi is contained in Wi−1 locally at a.

The dangerous exceptional components are collected in the transversal handicap E = (En, . . . , E1). Here, Ei

is the normal crossings divisor formed by those exceptional components to which Wi−1 may not be transversal.
Even though Wi−1 is not intrinsic, Ei will not depend on any choices and will obey a precise law of transformation
under blowup. We will specify this law in the next section.

Meanwhile, let us see the impact of the construction. First, the components oi = ordaIi of the invariant will be
replaced by pairs (oi, qi) where qi = ordaQi measures the advance of the transversality problem in dimension
i − 1 (the shift by 1 has notational reasons). If the components (on, qn, on−1, . . . , oi) have remained constant
under blowup, the transformation law for E says that Qi passes to its weak transform Q�

i . As the center will lie in
top(Ki) = top(Ii)∩ top(Qi) (here, the top loci have to be considered locally at a), the order of Qi won’t increase.
This immediately implies the fabulous inequality

(o′n, q′n, o′n−1, . . . , o
′
i, q

′
i) ≤ (on, qn, on−1, . . . , oi, qi),

where the two vectors are compared lexicographically. And by exhaustion of the dimensions, when looking at the
whole new invariant (on, qn, . . . , o1, q1), it must have decreased.

There are some technical details which still have to be filled in. For instance, the local hypersurface Wi−1 at a will
be chosen to be osculating for Ii (and not, as one may think, for Ki). Also, one has to take care for establishing the
necessary inclusions of the various top loci, for expliciting the transformation laws for all the ideals Ji, Mi, Ii, Qi,
Ki, and for ensuring that the resulting center is indeed transversal to the current exceptional locus F . All this can
be done. Due to the systematic approach, it is even not as breathtaking as one might expect. We will see portion
of it in the next section.

The determination of the dangerous exceptional components has a computational drawback. For each i, we have
to take all possibly non-transversal components of F with respect to Wi−1, and many of these could already be
transversal, but we just don’t see it, because our invariant is unable to check it out. This inconvenience increases
considerably the complexity of the algorithm. However, concerning the theoretical part of the construction of
the resolution, it is quite useful because it follows in each dimension the same pattern and uses only information
prescribed by the local invariant. Thus it is automatically intrinsic (i.e., independent of the local choices of
hypersurfaces, hence global), and allows a systematic treatment via inductions on the dimensions.

If you look up the paper [EH] you will realize that the hardest part is to become familiar with all the constructions
and definitions collected in the section Concepts. The purpose of these lecture notes and [Ha 4, Ha 5] is precisely
to motivate these constructions and to give you some feeling for them. But then, the actual proofs are rather short
and almost routine. See the sections Transversality or Top loci in [EH].

Exercises. (1) Two regular subschemes U and V of W meet transversally (in the sense defined above), if and only
if their intersection U ∩V is a regular scheme. Does this hold also for three regular subschemes, taking all pairwise
intersections? (You may remember an earlier exercise.)

(2) Let F be a normal crossings scheme. Show that all possible intersections of components of F meet transversally.
Does the converse hold?

(3) If, locally at a point a in W , a regular scheme Z is contained in all components of a normal crossings divisor
F passing through a, then Z is transversal to F at a.
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(4) Assume that a regular scheme Z meets all intersections of the components of a normal crossings scheme F in
W transversally. Determine the cases when Z meets F transversally and when not.

(5) In the situation of exercise (4), consider the blowup W ′ → W of W with center Z, and let F ∗ be the total
transform of F in W ′. Is F ∗ again a normal crossings scheme in W ′?

(6) Start at zero, i.e., with empty exceptional locus, and blow up once W = A3 at 0. Figure out whether in W ′

there can already occur a transversality problem, and if yes, determine the dimensions where it becomes virulent.
Then indicate the transversal handicap E′ = (E′

3, E
′
2, E

′
1) in W ′. Hint: E′ will again consist of stratified divisors,

the strata being given by the values of the invariant along the new exceptional component Y ′.

(7) If you have done all the exercises up to now you are allowed to take a break. Otherwise return to the last
exercise you did not do and give it a new try.
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CLASS IV: RESOLUTION OF MOBILES

Here is now the precise definition of mobiles. A singular mobile on a regular n-dimensional ambient scheme W

is a quadruple M = (J , c, D, E) where J is a coherent ideal sheaf on W (one could also allow J to live on a
regular, locally closed subscheme V of W , cf. [EH]), c is a positive integer, the control, and D = (Dn, . . . , D1)
and E = (En, . . . , E1) are strings of stratified normal crossings divisors Di and Ei on W . Stratified means that
there is a finite stratification of W by locally closed subschemes such that each Di and Ei is coherent along the
strata.

We call D, respectively E, the combinatorial and transversal handicap of M. The divisors Di are in general not
reduced; they carry a small additional information, their label, which allows to order the components of Di, but
which shall not bother us here (for details, see [EH]). The divisors Ei are reduced, have no components in common,
and their union |E| will equal the exceptional locus in W at the current stage of the resolution process.

You should think of a mobile as follows (cf. the last chapter): The ideal J is the ideal defining the singular scheme
X in W we wish to resolve. It passes under blowup to its controlled transform J ! = I(Y ′)−c ·J∗ with respect to c.
At the beginning, the handicaps are trivial, Di = Ei = ∅. Under blowup, they obey a precise law of transformation,
which we shall describe later on. This will allow to associate to any mobile M in W and blowup W ′ → W the
transformed mobile M′ in W ′. We say that the mobile M is resolved, if the order of J at all points of W is less
than c. Notice here that for c = 2 and J a principal ideal, this signifies that J defines a regular scheme. However,
as the order is not so significant for non-hypersurfaces (order 1 at a point just means that the scheme is locally not
minimally embedded in the ambient scheme), it is more convenient to take the control c = 1, in which case the
mobile is resolved if J is the structure sheaf of W . This, in turn, signifies that the scheme we started with has as
total transform a normal crossings divisor.

Mobiles are not as complicated as one might think. They are globally defined objects which do not depend on any
ad hoc or local choices. The delicate part is to associate to them a local invariant and to define the transformation
law. These two things are strongly related to each other. In the course of their definition we will have to consider
objects which are not intrinsic and only locally defined. But we don’t care as long as the final output is intrinsic.

For a mobile M and a point a in W , the local invariant ia(M) of M at a will be a vector of integers, and these
integers are the orders of certain ideals defined locally at a. Thus we have perfect control on them under blowup
as long as the ideal in question passes to its weak transform. Namely, in this case, the order of the ideal won’t
increase. As we have already seen in earlier sections, the respective ideals will indeed pass to their weak transforms
provided that the earlier components of our invariant have remained constant. This suggests to consider ia(M)
with respect to the lexicographic ordering.

Let us now see the details. We shall associate to M and a ideals Jn, . . . , J1, In, . . . , I1 and Kn, . . . ,K1 defined
in local flags Wn ⊃ . . . ⊃ W1 at a. The Wi are regular hypersurfaces in Wi+1 defined in a neighborhood of a,
where Wn = W is the ambient scheme. There will be a certain rule how to choose them, but in any case they are
not unique nor intrinsic. The ideals Ji, Ii and Ki are defined in Wi, and are neither intrinsic. We denote them by
roman letters, because we think of them as the stalks at a of ideal sheaves. Our invariant is then simply the vector

ia(M) = (on, kn, on−1, . . . , o1, k1)

where oi = ordaIi and ki = ordaKi. Again, this is not too complicated. The motivation for doing so was given in
the last chapter. The point is that the components oi and ki do not depend on our choice of the flag Wn ⊃ . . . ⊃ W1

and of the ideals Ji, Ii and Ki (which, of course, are subject to certain conditions). So it is justified to call ia(M)
an invariant of the mobile M at a.

We cheat here a little bit, because in reality, ia(M) has some more components, the combinatorial components
mi which are squeezed in between ki and oi−1. But all of them are zero except one, and this non-zero component
is only used in a very special case in which the mobile is already almost resolved (the so called monomial or
combinatorial case, see below and [EH]). We do not wish to discuss it in these notes.

We now describe the rules which relate all the local ideals between each other and with the mobile. The problem
here is that everything is motivated only a posteriori when you see how the rules make the induction argument
work. So we ask you a little patience.

The relation between Ji and Ii is simple, and prescribed by the i-th component Di of the combinatorial handicap.
We have Ji = Mi · Ii where Mi = IWi(Di ∩ Wi) denotes the ideal defining Di ∩ Wi in Wi. By the law of
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transformation for Di and the restrictions on the choice of Wi, both will intersect transversally so that the factor
IWi(Di ∩ Wi) is indeed a principal monomial ideal. It is the exceptional portion we wish to factor from Ji, and
Ii is the interesting part of Ji which is not yet resolved. Observe here that Jn is just the stalk of J at a, and that
at the beginning when all Di are still empty the factorizations trivially exist. After some blowups, it will have to
be proven that the factorizations exist, but this will follow directly from the definition of the Di. Actually, the
transformation law for Di is precisely chosen so as to allow the factorization of Ji and moreover so that the factor
Ii is the weak transform of the respective factor before blowup. It also shows that the component oi = ordaIi

captures interesting information, namely how far Ji is from being a principal monomial ideal.

The ideal Ki equals, up to a small technical detail which we omit, the product of Ii with the transversality ideal
Qi = IWi

(Ei ∩ Wi) of the mobile M in dimension i. Its order ki (or, equivalently, the difference qi = ki − oi)
measures how far Ei and Wi are from being separated at a. In any case, and this is the important thing, the local
top locus of Qi at a will be contained in all components of Ei which pass through a. This ensures that also the
center of blowup will be contained in these components. Recall here that Ei collects the dangerous components,
i.e., those to which otherwise the chosen virtual center may fail to be transversal.

To repeat: oi tells us how far we are with the resolution of Ji, and ki how far we are with our transversality problem.

We are left to indicate how we choose the local flag Wn ⊃ . . . ⊃ W1 and how the ideals in different dimensions
relate. As for the flag, Wi is a local hypersurface of Wi+1 at a which is chosen so as to maximize the order at a of
the coefficient ideal coeffWi

Ki+1 of Ki+1 in Wi. There are several ways how to construct such hypersurfaces, and
in characteristic 0 these constructions are particularly nice and behave well. But what is clear and crucial is that the
order of coeffWi

Ki+1 does not depend on the choice of Wi. We then impose our last correlation rule among the
various local ideals. It is Ji = coeffWiKi+1. Again, there is a slight technical complication which we only sketch.
It occurs when Ii is already bold regular, i.e., generated by a power of one variable. In this case, the coefficient
ideal would be 0, which is unpleasant for notational regards. Therefore one then sets Ji = 1.

With these settings, it can be shown that the resulting invariant ia(M) is well defined, upper semicontinuous and
has all the properties required. In particular, its top locus Z is regular and transversal to the exceptional locus. So
Z can be chosen as the center of the next blowup.

It is time that you perform the construction of the local invariant in a concrete example. Only then you will get a
feeling for it. Take a principal ideal J in three variables where you are still able to compute the coefficient ideal
by hand. You start with trivial handicaps. You get an invariant, and you let Z be its top locus. Then blow up the
ambient three-space in this center and consider the transformed mobile above, with new local invariants.

Ah, we have not defined the transform of mobiles yet. Right! Here is the transformation law. Let a′ be a point of
W ′ above a ∈ Z. We only define the transformed mobile M′ locally at a′, and leave it as exercise to show that
this also makes sense globally. And we assume that the center Z is the top locus of ia(M) in W . This ensures that
Z lies in all top loci of the ideals Ii and Ki.

We already said that J passes to its controlled transform J ′ = J !. The control c′ remains the same c′ = c, except
if the order of J ′ has dropped everywhere below c, in which case we are done. The formulas for the combinatorial
and transversal handicaps depend on the behaviour of the invariant under blowup. The definition is recursive and
a bit involved. So please sharpen your pencil.

We set D′
n = D∗

n + (on − c) · Y ′ so that J ′
n = IW ′

n
(D′

n ∩ W ′
n) · I ′n with I ′n = I�

n the weak transform of In. We
thus dispose of o′n = orda′I ′n. If o′n < on we set E′

n = ∅, if o′n = on we set E′
n = E∗

n (pullback). Now assume
that we have already defined D′

n, E′
n, . . . , D′

i+1, E
′
i+1 in W ′. We thus dispose of the truncated invariant

(o′n, k′
n, . . . , o′i+1, k

′
i+1)

at a′. If (o′n, k′
n, . . . , o′i+1, k

′
i+1) <lex (on, kn, . . . , oi+1, ki+1) we set D′

i = ∅, if (o′n, k′
n, . . . , o′i+1, k

′
i+1) =

(on, kn, . . . , oi+1, ki+1) we set D′
i = D∗

i + (oi − ki+1) · Y ′. We have thus defined also the component o′i of
our invariant. If (o′n, k′

n, . . . , k′
i+1, o

′
i) <lex (on, kn, . . . , ki+1, oi) we set E′

i = ∅, if (o′n, k′
n, . . . , k′

i+1, o
′
i) =

(on, kn, . . . , ki+1, oi) we set E′
i = E∗

i . So the definition of D′
i and E′

i depends on whether the earlier components
of the invariant have dropped or not.

The transformation formulas look complicated, but they are precisely chosen so that the ideals J ′
i , I ′i , Q′

i and K ′
i

satisfy the same rules as their sisters below. This is a computation in local coordinates which is not too difficult.
Moreover, whenever (o′n, k′

n, . . . , o′i+1, k
′
i+1) has not dropped lexicographically, the ideal I ′i is the weak transform

16



of Ii and hence o′i ≤ oi. Similarly, whenever (o′n, k′
n, . . . , k′

i+1, o
′
i) has not dropped lexicographically, the ideal

K ′
i is the weak transform of Ki and hence k′

i ≤ ki. This shows that the invariant never increases.

To show that it actually decreases, we have to distinguish two circumstances. We place ourselves at the point a.
Let d be the smallest index so that od > 0. We have seen earlier that the center Z then equals Wd−1. In case that
the ideal Kd is bold regular (i.e., a power of a variable) and the truncated invariant (o′n, k′

n, . . . , k′
d+1, o

′
d) has not

dropped, the transform K ′
d equals the weak transform K�

d = 1 and hence k′
d = 0 < kd. Note here that in this case

Jd−1 = 1 by definition and the further components of the invariant are all zero.

The second case is when Kd is not bold regular and hence Jd−1 �= 1. By the choice of d we have Id−1 = 1, so
that Jd−1 = IWd−1(Dd−1 ∩ Wd−1) is a principal monomial ideal. This is the monomial or combinatorial case, in
which the hidden components mi of the invariant come into play. To give you a feeling, just think of the polynomial
z4 + xayb with a + b ≥ 4. You should have no problems in figuring out how to choose the center Z (according to
the values of a and b) so that after finitely many blowups the order has dropped below 4. And in the general case,
with Jd−1 a principal monomial ideal the choice of the center and the reasoning are quite the same.

It looks strange, but we are finished – modulo some breadcrumbs. We have defined the transform M′ in W ′ of
our mobile M and given some hints why the local ideals J ′

i , I ′i , Q′
i and K ′

i exist again and satisfy the required
relations. Actually, the members W ′

i of the local flag W ′
n, . . . ,W ′

1 at a′ coincide with the strict = weak transform
of Wi if the truncated invariant (o′n, k′

n, . . . , k′
d+1, o

′
d+1) has not dropped at a′, the remaining members have to be

chosen from scratch (which does not matter since the later components of the invariant are irrelevant).

The author of these lines is well aware that the above indications cannot please a critical reader – there is too
much hand waving and too little substance, say proof. But precisely this shortcome may motivate you to look
at the complete argument as given in the paper [EH], and you will realize that there is not so much to add. The
constructions are the same (including one or the other additional detail) and they are so systematic that (all) the
proofs are really short. No one takes more than half a page, or at most one page.

So how to conclude these notes? One question is whether there is really a need for the non-expert to understand the
proof of resolution of singularities in characteristic zero, aside curiosity. There are two answers: First, Hironaka’s
proposal for the inductive argument – remember that the above is nothing but a conceptualization of the original
proof (with the help of the techniques developed by the successors of Hironaka) – is a paradigm of mathematical
organisation. While reading these notes you should have observed that the clue to everything is the systematic
definition of mobiles and their transforms, the rest are almost routine verifications.

Secondly, the problem of resolution is still wide open in positive characteristic and in the arithmetic case. Either
somebody invents a completely new approach for these cases (which should not be discarded) or we succeed to
understand the characteristic zero proof so much better that we get an idea how to tackle the other cases. Along
the lines of Hironaka’s proof, when translated to positive characteristic, funny things tend to happen. The invariant
may increase, but only in quite special cases which can be pinned down explicitly. And if it increases, the increase
is very small, namely at most one (at least in the relevant examples). So you immediately think that if it increases
only by one, maybe in the next blowup it drops by two and we have won again. This is almost the case, but only
almost. If you are curious to know what type of phenomena may happen, you may look at the article [Ha 6]. See
you then!

Figure 10: Schneeflocke x2 + y2z3 + yz4 = 0
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