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THE HIRONAKA THEOREM ON RESOLUTION OF SINGULARITIES

�Or� A proof we always wanted to understand�

HERWIG HAUSER

ABSTRACT� This paper is a handyman�s manual for learning

how to resolve the singularities of algebraic varieties de�ned over

a �eld of characteristic zero by sequences of blowups�

Three objectives� Pleasant writing� easy reading� good understanding�

One topic� How to prove resolution of singularities in characteristic zero�

Statement to be proven �No�Tech�� The solutions of a system of polynomial equa�

tions can be parametrized by the points of a manifold�

Statement to be proven �Low�Tech�� The zero�set X of �nitely many real or com�

plex polynomials in n variables admits a resolution of its singularities �we under�

stand by singularities the points where X fails to be smooth�� The resolution is

a surjective di�erentiable map � from a manifold 	X to X which is almost every�

where a di�eomorphism� and which has in addition some nice properties �e�g�� it

is a composition of especially simple maps which can be explicitly constructed��

Said di�erently� � parametrizes the zero�set X�

Singular surface Ding�dong� The zero�set of the equation x�
y� � ���z�z� in
R� can be parametrized by R� via �s� t�� �s���s���cos t� s���s���sin t� ��s���
The picture shows the intersection of the Ding�dong with a ball of radius 
�

You will agree that such a parametrization is particularly useful� either to pro�

duce pictures of X �at least in small dimensions�� or to determine geometric and

topological properties of X� The huge number of places where resolutions are
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applied to prove theorems about all types of objects �algebraic varieties� com�

pacti�cations� diophantine equations� cohomology groups� foliations� separatrices�

di�erential equations� D�modules� distributions� dynamical systems� etc�� shows

that the existence of resolutions is really basic to many questions� But it is by no

means an easy matter to construct a resolution for a given X�

Puzzle� Here is an elementary problem in combinatorics � the polyhedral game

of Hironaka� Finding a winning startegy for it is instrumental for the way singu�

larities will be resolved� Each solution to the game can yield a di�erent method

of resolution� The formulation is simple�

Given are a �nite set of points A in Nn� with positive convex hull N in Rn�

N � conv�A� 
 Rn
���

(0,0)

x

x1

2

(0,0)

x

x1

2

A �

N

There are two players� P� and P�� They compete in the following game� Player

P� starts by choosing a non�empty subset J of f�� � � � � ng� Player P� then picks a

number j in J �

After these �moves�� the set A is replaced by the set A� obtained from A by

substituting the j�th component of vectors � in A by the sum of the components

�i with index i in J � say �j � ��j �
P

i�J �i� The other components remain

untouched� ��k � �k for k �� j� Then set N � � conv�A�� 
 Rn
���

x

x1

2

α α'

�(α  , α )       1  2 (α  +      , α  )       1 2α 2

The next round starts over again� with N replaced by N �� P� chooses a subset

J � of f�� � � � � ng� and player P� picks j� in J � as before� The polyhedron N � is
replaced by the corresponding polyhedron N ��� In this way� the game continues�

Player P� wins if� after �nitely many moves� the polyhedron N has become an

orthant� N � �
 Rn
��� for some � � Nn� If this never occurs� player P� has won�

Problem� Show that player P� always possesses a winning strategy� no matter how

P� chooses his moves�

�



To get a feeling for the problem� let us check what happens in two variables� n � ��

If P� always chooses J � f�g or f�g� the transformation on vectors � � N� is the

identity� the polyhedron N � equals N and she loses� So she is forced to eventually

choose J � f�� �g� and P� may hence choose j � � or j � � at his taste� Here is the

evolution of N in the case P� chooses �rst j � � �the dotted segments correspond

to vertices of N which move under the transformation to the interior of N ���

x2

N

x

x2

N N'

x11

If P� chooses in the next move again j � �� we get a polyhedron N �� with just one

�small� compact edge�
x2

N' N''

x1

Let then P� choose j � �� The vertices move vertically and yield a polyhedron

N ��� which is already a quadrant�

x2

N''
x1

�N'''

From this sequence of pictures it seems clear that N always gets sharper and

sharper until all but one vertices have become interior� in which case N is an

orthant� So we ask you� Can you prove this rigorously�

Should be easy� isn�t it� So why not try the case n � 
� Surprisingly enough� this

case is already a real challenge � though maybe not for you� Note that P� has

now four options how to choose the set J in f�� �� 
g� and not all of them will work

in all situations�






What is all this about�

Take a polynomial in seven variables of degree twenty three� for example

P �
p
� � x�� 
 y�z � cos � � u��v�w� 
 ��

p
�i

� � xt�� 
 �� �� � � yuvt
 �ee�

If you wish to locate the zeroes of a polynomial equation you will have� aside from a

few cases� a pretty hard time �and also computers and their graphics programs will

have trouble�� If� at one zero you know already �by chance or by experimentation��

a partial derivative of the polynomial does not vanish� you may solve the equation�

at least approximately� nearby this zero by the implicit function theorem� getting

an expression of the respective variable in terms of the others� Otherwise� if all

derivatives vanish� the geometric description of the zeroes will be di�cult�

The best you can hope for is to construct a �possibly only local� parametrization of

the zero�set of the polynomial by the points of a manifold of the same dimension�

The obstruction for �nding such a parametrization sits in the points where the

zero�set is not smooth� its singular points� There� the geometric situation can be

quite mysterious�

Suppose you have a hopeless tangle of wool � in any case you will know that

originally this was a smooth and well educated string � and that pulling now at

one of its end will only increase the disaster� You have learned to try to loosen

the knot� pulling gently here and there� until you see some hope coming up�

Why not do the same here with our zero�set� Let us try to loosen its singularities�

If we believe that they admit a parametrization �and we will�� we may also believe

that the singularities arose by squeezing the zero�set into a too narrow ambient

space� or by fooling carelessly around with them� So will try to pull the zero�set

apart� and possibly the singularities become more lucid�

Here is an example �too simple to be a serious candidate� but instructive�� Take

the curve in R� of equation x� � y�� the famous cusp� Its singularity sits at the

origin� and we will have no e�ort to �nd a parametrization� t � �t�� t��� But

remember that� in general� it won�t be possible to guess a parametrization� so we

better rely on a systematic method to construct it� What happens if we start to

drag the two branches of the cusp� As we need space to move freely we pull them

vertically into three�space rather than staying in the plane� Here is the comic

strip�

The cusp x� � y�� It can be resolved by vertical dragging�
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At the beginning� the curve will persist to have a singularity at �� but as the

vertical slopes of the branches increase� the singularity may suddenly stretch and

become smooth� In this case� we have obtained a space curve� which maps to our

original curve in the plane �by vertical projection�� There appears an interesting

feature� Above the origin� the space curve will be tangent to the direction of the

projection �and this� in turn� is necessary to produce the singularity below�� We

end up with an almost philosophical speculation�

Any singular curve is the shadow of a smooth curve in a higher dimensional space�

Of course� the preceding reasoning is purely geometric and thus heuristic �it would

certainly have pleased the ancient greeks�� To give it a more solid foundation� let�s

work algebraically� The problem is to reconstruct the space curve from its shadow

in the plane� There is a standard procedure for doing this� Interpret it as a graph�

In our case� take the graph �over the plane curve� of the function �x� y�� x�y �to

take precisely this function and not another one will only be justi�ed a posteriori��

For simplicity� we discard here the problem which arises at �� Any point �x� y� of

the plane curve is lifted to the point �x� y� z� � �x� y� x�y� in three�space� yielding

a space curve with parametrization �t�� t�� t��t�� � �t�� t�� t�� As its derivative is

nowhere zero� this is a smooth curve� And indeed� it is the curve appearing at the

right end of our comic strip�

You will protest � and you are right do so� Nobody told us why to choose the

function �x� y�� x�y which made the vehicle run� Instead of looking for reasons�

let�s try it out on another �still trivial� example� the cone x�
y� � z�� Now we are

already in three�space� which limits somewhat our graphics facilities for presenting

higher dimensions� So let�s get started from the algebraic side� Take the graph over

the cone of the map �x� y� z�� �x�z� y�z�� It lives in �ve�space� and the equations

will be x� 
 y� � z�� u � x�z� v � y�z �you will accept that we retain from any

illustration�� Now� reminding our classes of di�erential geometry� we may visualize

this surface by elimination of variables �which corresponds to the projection to the

�z� u� v��space�� We get the surface �uz�� 
 �vz�� � z�� Factoring z�� it follows

that it has two components� the plane z � � and the cylinder u� 
 v� � � in

three�space� which� of course� is smooth� Here is the picture�

The cone parametrized by the cylinder�

Composing the graph with this last projection �and throwing away the plane z �

�� we have found a smooth surface which parametrizes the cone� via the map

�z� u� v�� �uz� vz� z�� Isn�t this convincing�
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The two examples were very simple� and the parametrizing manifold was found

in one step� In reality� for more serious examples� it takes many steps� but �

suprise� � the technique always works �at least in characteristic zero� in positive

characteristic� there is still a big question mark��

Showing that one �nds by the method of �iterated� graphs a parametrization of the

zero�set of polynomials constitutes the theme of the paper�

Here is the semantic upshot of our �virtual� dialogue� Associating to the zero�set

of the polynomial the graph of a function of the above type �ratios of the variables�

conceptualizes in what is called the blowup of a manifold in smooth centers� the

resulting parametrization of the zero�set through a manifold is expressed by saying

that we resolve the singularities of X by a �nite sequence of blowups�

We conclude this appetizer with a zero�set for which a parametrization cannot be

guessed o�hand�

The Cu	� The surface x� � z��z�y�� has its singularities along the y�axis fx �

z � �g� Outside �� we perceive� locally along the y�axis� two planes meeting

transversally� At the origin� two contracting hoppers meet from opposite sides�

This is truly a rather singular point�

IQ� Can you make out which blowups produce a resolution of this surface�

Straight into High�Tech

There is no way to describe �uently resolutions without appropriate language�

The most natural context to communicate here are schemes� with the unavoidable

drawback that many interested readers get discouraged� We are aware of this

common behaviour � and the next but one paragraph will for sure succeed in

producing annoyance outside the algebraic geometers world� But outside� resolu�

tion of singularities is also used and recognized� far beyond algebraic geometry�

Mathematicians may wish to learn about it�

We propose a compromise� In the section 
High�Tech � Low�Tech�� we will list

down�to�earth interpretations of the main objects we are using� This dictionary

shall show �as well as the example section towards the end of the paper� that the

central problems in this �eld are not problems on abstract schemes but problems
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on concrete polynomials� namely their behaviour under certain well�speci�ed coor�

dinate changes � a topic which is familiar to all of us� So don�t be shocked by the

next dozen lines or so� it is just a fancy �though very concise� way to talk about

polynomials� Relief is to come afterwards�

Statement to be proven � High�Tech� Any reduced singular scheme X of �nite

type over a �eld of characteristic zero admits a strong resolution of its singularities�

This is� for every closed embedding ofX into a regular ambient schemeW � a proper

birational morphism � from a regular scheme W � onto W subject to the following

conditions�

Explicitness� � is a composition of blowups of W in regular closed centers Z

transversal to the exceptional loci�

Embeddedness� The strict transform X � of X is regular and transversal to the

exceptional locus in W ��
Excision� The morphism X � � X does not depend on the embedding of X in

W �

Equivariance� � commutes with smooth morphisms W� � W � embeddings

W �W�� and �eld extensions�

E	ectiveness �optional�� The centers of blowup are given as the top locus of a

local upper semicontinuous invariant of X�

The induced morphism � � X � � X is called a strong desingularization of X�

Credits� Existence with E� and E� proven by Hironaka �Hi ��� Constructive proofs

satisfying E� to E� given by Villamayor �Vi �� Vi ��� Bierstone�Milman �BM ���

Encinas�Villamayor �EV �� EV ��� Encinas�Hauser �EH�� Bravo�Villamayor �BV

��� Further references in the �rst part of the bibliography� Implementation by

Bodn ar�Schicho �BS ��� Existence of weak resolutions by Abramovich�de Jong�

Abramovich�Wang and Bogomolov�Pantev �AJ� AW� BP�� based on the work of de

Jong on alterations �dJ��

Avertissement

We shall follow the opposite d emarche of a usual mathematical research paper�

Instead of formulating a theorem and then giving its proof in the shortest and

clearest possible fashion� the reader will be concerned with �nding and developing

the proof of the result on her!his own� Thus we will �rst try to localize and

extract the key problem which has to be cracked� Starting from this problem we

shall make various attempts and re�ections how to solve it� In the course of this

inquiry� we will be able to make many observations on phenomena and properties

related to the problem� This in turn will allow to specify even more the main

di�culties� and to get a list of possible ways of attack�

In a next step we shall try out these approaches in reality� Some of them may

fail� others will look more prospective� The job of the author of this article will

be to prevent the reader from falling into traps or pursuing paths which lead to

nowhereland�

In this way� the reader will learn peu "a peu the rules of the game� and get a

feeling for the relevant constructions and reasonings� Altogether� the proof shall
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be natural� and follow from a good understanding of the di�culties� rather than

to fall like a shooting star from the sky�

Occasionally� some help will be needed� Accepting �or neglecting� certain technical

complications the reader will see that there is a rather canonical approach for

proving resolution of singularities in characteristic zero� Only at a few places one

really needs a trick� and the author is willing to provide these gently and tacitly�

For the convenience of the reader
 the precise de�nitions of all concepts appearing in

the text are given in appendix D at the end of the paper
 a table of notations appears

in appendix E� Nevertheless
 a certain familiarity with blowups will be supposed� A

very instructive exercise for getting acquainted is to compute the blowup of the Whitney

umbrella x� � y�z � � in A� with center once the origin and once the z�axis
 cf� the

section on blowups in the appendix�

Our exposition follows the proof given in the recent paper �EH� of Santiago Encinas

and the author� where many more details and speci�cations can be found �cf� also

the paper �BS �� of Bodn ar and Schicho�� Here we are more interested in motiva�

ting the various constructions� The paper �EH�� in turn� relies on the techniques

of �Hi �� Vi �� Vi �� BM �� EV ��� see the appendix of �EH� for many precise

references to these articles� Basic to all of them are the ideas and concepts proposed

and developed by Hironaka� It should not be forgotten that also Abhyankar has

strongly in�uenced the research in this �eld� contributing many substantial ideas

and constructions� And� of course� Zariski has to be considered as the grandfather

of resolution of singularities�

La d�emonstration se fait par une r�ecurrence subtile�

�J� Giraud� Math� Reviews �#���

Le rapporteur avoue n
en avoir pas fait enti�erement le tour�

�A� Grothendieck� ICM �#���

The article has accomplished its destination if the reader starts to suspect � after

having gone through the complex and beautiful building Hironaka proposes �

that he himself could have proven the result� if he only had known that he was

capable of it� This intention is possibly too optimistic� nevertheless� It�s time to

start understanding the proof of a result which is one of the most widely used in

algebraic geometry�

Caveat� The proof we shall go through is by no means simple� and trying to capture

its �avour requires patience and stamina��

Thanks� To Orlando Villamayor� for introducing the author to the subject and

sharing many insights� To Santiago Encinas� for providing substantial information

on the tricky technical machinery� To Ana Bravo� G abor Bodn ar and Hironobu

Maeda for many valuable comments on an earlier draft of the article� To Sebastian

Gann from the graphics department �the pictures were created with Adobe Illu�

strator and POV�Ray�� To an anonymous referee for her!his precise suggestions

for improving the readability of the paper� To the authors mentioned above for


Der Bergsteiger�
 op� nasc�

$



transmitting in their papers and conferences fascinating features of resolution of

singularities� To many other mathematicians for discussing the subject with the

author�

The present manuscript is an extended version of lectures delivered at the Research

Institute for Mathematical Sciences of the University of Kyoto� and the Mathe�

matics Department of the University of Michigan at Ann Arbor� The author is

grateful for the kind hospitality o�ered by the people at these institutions�
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CHAPTER �� OVERVIEW

��� High�Tech � Low�Tech

Some readers may not be so familiar with the language of modern algebraic geo�

metry� The concepts of schemes� sheaves and ideals are useful to handle zero�sets of

polynomials which are de�ned locally in a�ne space and which are glued together

to produce global objects similar to abstract di�erentiable manifolds� If the reader

con�nes her!himself to a�ne or local geometry� there is no harm to communicate

in more concrete terms� For this translation� we provide below a �very rough�

dictionary from technical termini to everyday concepts and examples �the expert

reader may excuse the clumsiness�� But let us �rst say two words about blowups�

Blowups are the basic device for constructing resolutions of singularities� They

constitute a certain type of transformations of a regular scheme �manifold� W

yielding a new regular scheme W � above W � the blowup of W � together with a

projection map � � W � � W � the blowup map� The role of blowups is to untie

the singularities of a given zero�set X in W by looking at its inverse image X �

in W �� The scheme W � o�ers X � more �space� to spread out than W �despite

the fact that W and W � are of the same dimension�� because W � sits �in a funny

way� inside a higher dimensional ambient scheme� The process is repeated until�

after �nitely many blowups� the �nal inverse image 	X of X has been resolved �in

a sense which will be laid down with precision��

Each blowup is completely speci�ed by its center Z� This is a regular closed

subscheme �submanifold� of W which is chosen according to a prescribed rule

�depending on the zero�set X we wish to resolve�� The center is the locus of

points of W above which the map � is not an isomorphism� The construction of

� � W � � W from the knowledge of Z as a subscheme of W is best described

locally� So let us restrict to a neighborhood of a point a in Z� There� we may

view W as a�ne space An with a � � the origin� The center Z can be interpreted�

locally at a� as a coordinate subspace of An� for example� as the d�dimensional

subspace Ad � �n�d � An de�ned by xd�� � � � � � xn � ��

Let U be a submanifold of W at a� transversal to Z and of complementary dimen�

sion n�d� For convenience� we take for U the coordinate subspace U � �d�An�d

and �x the local product decomposition W � Z � U of W � Write points w � W

as pairs w � �w�� w�� with w� � Z and w� � U � The projectivization P�U� of

U � �d � An�d is the �n � d � ���dimensional projective space Pn�d�� of lines

through � in U � These ingredients already su�ce to describe the blowup of W

with center Z�

Namely� consider the graph of the map � � W n Z � Pn�d�� sending a point

w � �w�� w�� of W n Z � Z � �U n �� to the line 	w in Pn�d�� passing through

w and its projection w� in Z� The graph of � is a closed regular subscheme

�submanifold� % of �W n Z�� Pn�d��� say % � f�w� 	w�� w � W n Zg� With this

setting� the blowup W � of W is de�ned as the closure of % in W � Pn�d���

W � � f�w� 	w�� w �W n Zg �W � Pn�d���

��



It is easy to see that W � is again a regular scheme� The standard a�ne charts of

Pn�d�� induce a covering ofW � by a�ne schemes� The blowup map � � W � �W is

given as the restriction toW � of the projectionW�Pn�d�� �W on the �rst factor�

The exceptional locus of the blowup is the inverse image Y � � ����Z� � Z�Pn�d��

of the center Z� It is the locus of points of W � where � fails to be an isomorphism�

Along the exceptional locus� � contracts the second factor Pn�d�� of Y � to a point�

This resumes the geometric description of blowups locally at a point of Z� The

algebraic formulae and more details can be found in appendix C and in the section


Examples�� The papers �BS �� BS 
� of Bodn ar and Schicho exhibit how to

implement the computation of blowups e�ciently� illustrated nicely by the blowup

of W � A� with center Z a circle�

Blowup� The picture shows �part of� the surface W � � fxz � y � �g in R��

which can be identi�ed with the a�ne portion of the graph of the map R� � P�

sending �x� y� to �x � y�� This surface is the blowup of the real plane W � R�

with center Z � f�g the origin� Inside W � we see the transforms V � and X � of
the circle V � fx� 
 y� � �g and of the singular plane curve X � fx� � y�g�
The surface W � has to be glued along the dotted lines�

�

ambient

     blowup�
scheme W'

singular

exceptional 

 birational �
      proper �
morphism

�

X'  

  locus Y'

exceptional 
 locus Y'

scheme W

scheme

�

V'

V'

X'  

�
V

�Z

�

X

    smooth
transformed 
scheme
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Here is now the promised brief guide how to translate some notions from algebraic

geometry to commonplace mathematical language�

Algebraic geometry Intuition � examples

a�ne scheme zero�set given by an ideal of polynomials


global� scheme zero�sets glued together suitably

hypersurface � divisor zero�set of one single polynomial

regular point point where zero�set is manifold

singular point the remaining points

reduced scheme zero�set given by a radical ideal of polynomials

excellent scheme scheme which behaves well under passage to formal power series

ambient scheme a�ne space Rn or Cn where zero�set lives

embedded scheme zero�set considered as a subset of Rn or Cn

blowup of scheme modi�cation of scheme by pulling apart certain portions

example of blowup vertical projection from the corkscrew to the plane

blowup of ambient scheme higher dimensional analog of the corkscrew

center of blowup locus above which the blowup is not an isomorphism

exceptional locus of blowup locus where blowup morphism is not isomorphism

total transform of scheme inverse image under ambient blowup morphism

strict transform of scheme 
closure of� total transform minus exceptional locus

transversal schemes manifolds whose tangent spaces meet transversally

normal crossings scheme transversal manifolds meeting like coordinate subspaces

morphism polynomial map

birational morphism map which is almost everywhere an isomorphism

proper morphism map with compact inverse images of compacta

top locus points where a given function has its maxima

order of polynomial at point order of Taylor expansion at point

��� Explanation of the result

The properties required in the de�nition of a strong resolution of a singular scheme

deserve some further speci�cations� First some general remarks�

Observe that the singular scheme X may not possess a global embedding X �W

into a regular ambient scheme W � In this case� one can cover X by a�ne pieces�

embed these� and construct local morphisms � there� By the excision property�

their restrictions to the pullback of X patch and give a birational proper morphism

X � � X with X � regular� Of course� embeddedness can then be asked only locally�

The result holds for reduced excellent schemes whose residue �elds are of char�

acteristic zero� The main property needed is that the singular locus of X is a

proper closed subscheme of X �which would not hold for non�reduced schemes��

��



and that several constructions extend to the completions of the local rings� The

proof gives also a certain resolution for non�reduced schemes �expressed as the

monomialization of ideals��

It should be emphasized that strong resolutions of schemes are by no means unique�

and many birational morphisms � will ful�ll the required properties� The some�

times misinterpreted notion of canonical resolution appearing in the literature does

not refer to uniqueness but rather to equivariance�

In the �rst chapter of Hironaka�s paper �Hi ��� several further speci�cations and

variations of the result are described� We are not going to discuss these here�

Neither we plan to list the many di�erences between Hironaka�s proof and the

subsequent ones� We restrict here to as simple a proof as available at the current

stage of the �eld�

Let us now comment more speci�cally on the �ve properties of a strong resolution�

The �rst two properties explicitness and embeddedness where proven by Hironaka�

equivariance appears for the �rst time in �Vi ��� excision in �BM �� and �EV 
��

Explicitness� The morphism � � W � �W is given as a composition W � � W 	r
 �
W 	r��
 � � � � � W 	�
 � W 	�
 � W where each W 	i��
 � W 	i
 is the blowup

of W 	i
 in a closed regular center Z	i
 in W 	i
� Transversality of Z	i
 with the

exceptional locus Y 	i
 in W 	i
 shall mean here that the union Z	i
 � Y 	i
 is a

normal crossings scheme� where Y 	i
 denotes the inverse image in W 	i
 of the

�rst i centers Z	�
� � � � � Z	i��
 under the preceding blowups� By induction� we can

assume that Z	j
 is transversal to Y 	j
 for j 
 i� This implies that Y 	i
 is again a

normal crossings divisor� hence it makes sense to demand from Z	i
 � Y 	i
 to be a

normal crossings scheme�

By the general properties of blowups� � is a proper birational morphism W � �W �

and induces an isomorphism W � n Y � �W n Y outside the �nal exceptional locus

Y � � W �� where Y � W denotes the image of Y � under �� i�e�� the image of all

intermediate centers Z	i
�

Embeddedness� The strict transform of X is de�ned as follows� The restriction

	� of � to W � n Y � being an isomorphism� consider the pullback 	X of X under 	�

in W � n Y �� It coincides with the pullback of X n Y in W � under �� The strict

transform X � of X is de�ned as the Zariski�closure of 	X in W �� If Z is contained

in X� it coincides with the blowup of X with center Z� In terms of ideals� the

strict transform is de�ned locally in the following way� If J de�nes X in W and

has pullback J� in W �� let J � be the ideal generated by all I�Y ���kf f�� where f�

ranges in J� and I�Y ��kf is the maximal power of the �monomial� ideal de�ning

Y � in W � which can be factored from f��

The strict transform J � of J can also be calculated in terms of generator systems

f�� � � � � fm of J 
 but not any system will do the job� But if the tangent cones of

fi 
i�e�
 the homogeneous forms of lowest degree� generate the tangent cone of J 
 the

transforms f �i � I�Y ���kif�i with ki � kfi will generate J ��

�




Such generator systems were called by Hironaka standard bases �Hi �
 chap� III�
 and

are nowadays also known by the name of Macaulay bases� In order to compute and control

invariants associated to J 
 Hironaka was led to introduce reduced standard bases 
in the

sense of reduced Gr�obner bases�� Only later �Hi ��
 Hironaka considered monomial orders

on Nn with the corresponding standard bases
 initial monomials and division theorems�

Embeddedness requires two properties to hold� First� the strict transform X �

has to be regular� and� secondly� it should meet the exceptional locus Y � in W �

transversally �in fact� it is even stipulated that X � � Y � be a normal crossings

scheme�� In general� regularity of X � will be achieved earlier in the resolution

process� and transversality requires some additional blowups� Example� Blowing

up the origin in A� desingularizes the curveX � fx� � y�g� but its strict transform
is tangent to the exceptional locus �see the picture in section ���� One further

blowup yields transversality �i�e�� transversal tangents�� and a third blowup normal

crossings �i�e�� no three curves meet in a point��

Excision� If X � W and X � 	W are two closed embeddings with resolutions

� � W � � W and 	� � 	W � � 	W it could happen that the restrictions � and 	�

to X � and 	X � are di�erent� Excision says that this is not the case� There is an

algorithm which constructs for any embedding X � W the sequence of blowups

� � W � � W � and for two di�erent embeddings of X the algorithm produces the

same restrictions over X�

Of course� one could choose many other proper birational morphisms W � � W

inducing a desingularization of X� We will see in later sections what is meant

by algorithm here� Essentially it is the construction of a center Z � X at each

stage of the resolution process� and it will be shown that this construction can be

realized independently of the choice of the embedding of X�

Equivariance� This is a property with many facets� The commutativity of �

with smooth morphisms W� � W means that for any embedding X � W � the

morphism �� � �W��� � W� induced by � � W � � W �as a �ber product� is a

strong resolution of the pull back X� of X in W��

Equivariance contains as special cases the following assertions� � commutes with

the restriction to open subschemes of W � and hence induces also local resolutions�

It commutes with automorphisms of W which stabilize X� Any symmetry of X

will be preserved by the desingularization� i�e�� X � will have the same symmetry�

This is often expressed by saying that group actions on X lift to a group action on

X � �equivariance of operation of groups�� As this holds also for local symmetries�

it follows that X � � X is an isomorphism outside the singular points of X� In

particular� all centers will lie over Sing�X� � and their images in X must �ll

up Sing�X� since X � is regular and hence any singular point of X must belong

at least once to a center� The property that X � � X is an isomorphism outside

Sing�X� is called the economy of the desingularization �and is not ful�lled for weak

resolutions by alterations as proposed by de Jong�� Regular points of X are not

touched by the resolution process�

Another consequence of equivariance is that the desingularization of X commutes

with passing to a cartesian productX�L with L a regular scheme� Said di�erently�
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if X is trivial along a regular stratum S in X �locally or globally�� then the

desingularization � of X is a �local or global� cartesian product along S �you may

consult the literature on equiresolution problems for this topic��

Commutativity with smooth morphisms also implies that the desingularization �

commutes with passage to completions� The proof shows that the result holds for

formal schemes as well as for real or complex analytic spaces �with some natural

�niteness conditions with respect to coverings to be imposed�� In �Hi ��� resolution

was proven for schemes of �nite type over a �eld and real analytic spaces� The

case of complex analytic spaces was done in �AHV�� AHV���

Commutativity with embeddings W � W� simply means that the morphism

�� � �W��� � W� restricts to � over W � the assertion for �eld extensions is

similar�

All equivariance properties are deduced from the respective properties of the reso�

lution invariant de�ning the centers of blowup� This is a vector of integers whose

components are essentially orders of certain ideals in regular ambient schemes� As

long as these ideals behave well with respect to the operations listed in equivari�

ance� also their orders will do�

E	ectiveness� This is a property which refers more to the actual construction of

�� and which need not be imposed on a strong resolution� For implementations it

is essential to have the centers given as the top locus of an invariant� i�e�� as the

locus of points where the invariant takes its maximal value� Prerequisite is that

the invariant and the induced strati�cation of W can actually be computed �cf�

the papers of Bodn ar and Schicho�� There appears a serious complexity problem�

since the number of charts tends to explode when iterating blowups� and the

chart transformation maps and the local coordinate changes quickly exceed the

available capacities� Moreover� the strati�cations de�ned by the invariant have

to be computed �up to now� via Gr&obner bases� causing the well known troubles

when the number of variables increases�

For the future it can be expected �or hoped� that the centers of blowup allow

a direct description from the singular scheme� Optimal would be the explicit

construction of a non�reduced structure on the singular locus of X which yields�

when taken as center of blowup� the desingularization of X in one blowup� At

the moment� it seems that nobody has the slightest idea how this structure should

look like �but cf� �Bo �� for a �rst step in this context��

The �ve properties discussed here are the most natural and relevant conditions to

impose on a desingularization ofX� There exist further properties one may ask for�

either concerning the monomialization of the de�ning ideal J of X in W � �see e�g�

�BV �� BV ���� or minimality conditions on the resolution �as can be completely

established for surfaces� and is developed for three�folds in Mori�s minimal model

program�� Other conditions as well as generalizations can be found in the articles of

the �rst list of references� In any case� the most intricate question seems to be the

existence of strong resolution for positive characteristics or for arithmetic schemes�

both in arbitrary dimension� We shall have a glance at positive characteristic

towards the end of the paper�
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�� Quick info on proof

For readers in a hurry we quickly describe the rough outline of Hironaka�s argu�

ment� This� of course� contradicts the strategy of presentation agreed on at the

beginning� In addition� several relevant details will have to be skipped� But as not

everybody wants to know these� though still wishes to get a general impression on

how the proof goes� we annul for a short while our agreement and sketch the main

steps�

The patient reader who wishes to explore and develop the proof on her!his own

and in chronological order is advised to skip this section and to go directly to

section � for meeting the travel guide�

The question is�

How can I understand in one hour the main aspects of a proof which originally

covered two hundred pages�

Here is an attempt for this� You will �have to� believe that resolving a singular

scheme is more or less equivalent to monomializing a polynomial ideal by a se�

quence of blowups� So let us �x an ideal J in a regular scheme W � for simplicity

a principal ideal J � �f��

Your personal favorite could be the polynomial f � x�� z��z�y�� inW � R�� The

zero�set X of f looks as follows�

The two �components� of the surface meet tangentially at the origin of the y�axis� This

point is the only singularity of the upper component� The lower component looks like a

cylinder 
along the y�axis� over the cusp given by its section with the plane y � const�

Blow up a �still to be speci�ed� center Z in W and consider the pullback J � of J
under the induced blowup morphism � � W � �W � Let Y � � ����Z� �W � be the

exceptional component�

The singular locus of X in the example is the y�axis fx � z � �g� If we take it

as the center Z of the blowup
 the pullback f � of f under � equals the polynomial

f � � x�z� � z��z � y�� 
the computation is done in the z�chart of W �
 which is

the chart where the interesting things happen�� The pullback in this chart is given by

replacing in f the variable x by xz�
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De�ne the order of f at a point of W as the order of the Taylor expansion of f at

this point� If the order of f at all points of Z was the same� an exercise shows that

J � factorizes into J � � M � � I � where M � is a power of the exceptional component

Y � �and thus a monomial� and where I � � �g�� is an ideal which has at each point

of Y � order less or equal the order of J along Z �you may either do the exercise or

trust that it is easy�� The ideal I � is called the weak transform of J �

In the example
 the order of f � x��z��z�y�� at the points of Z � fx � z � �g is

everywhere equal to �� The pullback f � of f factorizes into f � � z� ��x��z�z�y��� �
z� � g� with exceptional factor z� and weak transform g� � x� � z�z� y�� of f � Note

that g� has at all points order 	 �
 so the order did not increase� The zero�set of g�

looks as follows�

The factorization J � � M � � I � is necessary because the order of J � � in contrast

to that of I � � will in general increase� As M � is just a monomial� the interesting

information lies in I �� For symmetry reasons we shall write J � M � I with

M � � and I � J � so that the factorization J � � M � � I � can be interpreted as the

transform of the factorization J � M � I� with certain transformation rules for M

and I �they are not the same for M and for I�� With this notation� I � becomes

the weak transform of I�

In the example
 we factorize f � � � �x� � z��z � y��� � � � g and f � � z� � �x� �
z�z � y��� � z� � g�
 with g� the weak transform of g�

If we succeed to lower stepwise the order of I until it reaches �� the monomial

factor M of J will take over more and more of J until it coincides with J � At this

�nal stage� J will have been monomialized� J � M � ��
If the order of I � has dropped at each point ofW � we are done� because by induction

we may assume to know how to resolve singularities of smaller order� Here we

are leaving aside that we cannot specify the center yet �and omitting also some

transversality questions which will appear in the further blowups�� If the order

has remained constant at a point a� of W � we have a problem� because there we

have no measure which tells us that the singularity has improved�

For the transform g� � x� � z�z � y��
 there is only one point a� of the same order


namely the origin of the z�chart� There
 the order of g� is again �� In all other points


the order of g� is � or ��
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The points where the order has remained constant are rare� since it can be shown

that they live in a �regular� hypersurface inside the exceptional component� They

will be called equiconstant points� We may choose a regular hypersurface V � in
W � whose intersection with the exceptional component Y � contains all the points

where the order of I � has remained constant� This is always possible �at least

locally�� and not hard to prove�

It turns out that � by a �uke � appropriate choices of V � stem from regular

hypersurfaces below� The image V of V � in W is a regular hypersurface containing

Z �again locally�� So V � can be considered as the transform of V under the blowup

W � �W � In the neighborhood of points a of Z we get the following diagram

J � � M � � I � in W � 
 V � 
 V � � Y � � a�


 
 

J � M � I in W 
 V 
 Z � a

By construction� all equiconstant points a� above a point a of Z lie inside V ��

Let us resume these objects in the situation of the example
 where we can pick V � �
fx � �g in W � with image V � fx � �g in W �

f � � z� � �x� � z�z � y��� in �R��� 
 fx � �g 
 fx � z � �g � �


 
 

f � � � �x� � z��z � y��� in R� 
 fx � �g 
 fx � z � �g � �

Now comes the decisive idea�

��� In order to measure at equiconstant points of W � the improvement of the singu�

larities when passing from J to J �� descend to lower dimension and compare the

singularities in V and V �� ���

To this end� associate to the ideal J � M �I inW an ideal J� in V �this is hence an

ideal in less variables�� and in the same manner associate to J � � M � � I � an ideal

�J ��� in V �� These subordinate ideals shall then re�ect a possible improvement of

the singularities between W and W �� Such an improvement can only be detected

if it is possible to relate J� and �J ��� and to �nd a numerical invariant associated

to J� and �J ��� which drops� This condition restricts our choices of J��

How could we compare the two �still unknown� ideals J� and �J ���� We have

already observed that the hypersurface V of W can be chosen to contain �at least

locally� the center Z of the blowup W � �W � Therefore� Z de�nes also a blowup

of V � and by the commutativity of blowups with restriction to subschemes� the

blowup of V with center Z coincides with our hypersurface V �� We thus obtain a

blowup map also in smaller dimension� namely V � � V � To compare the ideals

J� in V and �J ��� in V � it is natural to expect �or postulate� that �J ��� is some

transform of J� under this blowup� This is indeed possible� but will require a

well�adjusted de�nition of the ideal J�� In addition� the type of transformation

which occurs when passing from J� to �J ��� has to be speci�ed�
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Our procedure here is typical for our ongoing search of a resolution proof� We �rst

collect properties which our objects have to satisfy
 thus reducing the number of possible

candidates� Then we indicate one type of construction for the object � often there are

several options � so that all these requirements are met�

We recapitulate the sine�qua�non for the construction of J�� At any equiconstant

point a� of Y � a certain transform �J��� of the ideal J� in V � associated to J shall

coincide with the ideal �J ��� associated to the transform J � of J � This is nothing
else but saying that two operations on ideals commute� i�e�� to have the following

commutative diagram

J � � �J ��� � �J���


 

J � J�

Expressis verbis� The descent in dimension before and after blowup commutes at

all equiconstant points with the blowup in the actual and in the smaller dimension�

The descent in dimension has spectacular implications for it allows to apply induc�

tion on the dimension to the entire resolution problem de�ned by J� in V � Once

we have de�ned J� in V � we may assume that we know how to associate to J� a

suitable center of blowup Z� and an invariant ia�J�� so that blowing up V in Z�
and passing to the transform �J ��� � �J��� of J� makes this invariant drop�

It remains to construct for J the subordinate ideal J� in V with the appropriate

properties� This works only locally� Choose a local equation x � � for V in W

and expand the elements f of I with respect to x� say f �
P

k fkx
k� Note here

that we take elements from I� not of J � this does not matter at the beginning

where J � I� but after the �rst blowup it does �the reason for doing so is rather

of technical nature and need not interest us at the moment�� The coe�cients fk
of this expansion will be polynomials on V � Those with index k smaller the order

of I generate an ideal in V � which will be the correct choice for the ideal J�� It is
called the coe�cient ideal of J � M � I in V �

Let us look what this means for our example f � x� � z��z � y��� At the origin
 we

may choose for V the hypersurface fx � �g 
for reasons to be explained later�� The

expansion of f with respect to x has only one coe�cient with index k 
 � � ord�f 
 viz

�z��z � y��
 the coe�cient of � � x�� So J� � �z��z � y��� 
it is only accidental

here that J� is the restriction of J to x � ���

The transform �J��� of J� is de�ned by a suitable transformation rule for J�
under the blowup V � � V �the usual pullback would be too rude�� The clue is

that if J� has constant order along Z� its pullback in V � will factorize similarly as

J � factorized in W �� and deleting a suitable exceptional factor from this pullback

gives the correct transform of J� �i�e�� the controlled transform of J���

The transform f � of f was f � � z��x� � z�z � y��� Throwing away the exceptional

factor z� we get the coe�cient ideal �J ��� � �z�z � y��� in V � � fx � �g� It is

checked that it is an appropriate transform of J� under the blowup V � � V of V with

center Z �

�#



So let us assume that with our de�nitions� the commutativity relation �J��� �
�J ��� holds� We may therefore write without ambiguity J �� for this ideal �only

at equiconstant points of W ��� As happened for J and J �� the ideals J� and J ��
admit again factorizations J� � M� � I� and J �� � M �

� � I ��� where M� and M �
�

are exceptional factors in V and V � �at the beginning� M� will again be trivial

equal to ��� So the correlation between the ideals in W and W � repeats in smaller

dimension for their coe�cient ideals in V and V ��

Once all this is settled we are almost done�

The center Z is de�ned by induction on the dimension by setting Z � Z�� with
Z� the center associated to J�� The improvement from J to J � is measured at the

equiconstant points by comparing J� with J ��� As before� the relevant invariant is
not the order of J� or J �� �which may increase�� but the order of the factors I� or

I ��� It turns out that I
�
� is the weak transform of I� whose order never increases�

Either the order of I �� has dropped� and induction applies� or it remained constant�

in which case the whole argument of choosing local hypersurfaces can be repeated�

producing a second descent in dimension�

In this way� aligning the orders of the various ideals I� I�� � � � obtained by successive

descent to a vector ia�J� � �ordaI� ordaI�� � � �� of non�negative integers we obtain
a local invariant� the resolution invariant of J � M � I at a� The preceding

observations show that it satis�es under blowup the inequality ia��J
�� 	 ia�J� for

points a� above a with respect to the lexicographic ordering� The �rst component

of ia�J�� the order of I� does not increase� because I � is the weak transform of I�

In the case where it remains constant� the second component of ia�J�� the order

of I�� does not increase� because we are at an equiconstant point in W � where
commutativity holds� in particular� where I �� is the weak transform of I� and has

order 	 the order of I�� If this order remains constant� the argument repeats in

the next smaller dimension� This establishes ia��J
�� 	 ia�J�� But in dimension ��

it can be shown that the order of I always drops to � �if not some earlier component

has dropped�� so that the inequality is in fact a strict inequality�

ia��J
�� 
 ia�J��

for all points a � Z and a� � Y � above a� So our resolution invariant has dropped�

This establishes the necessary induction�

Again
 we test what was said in the concrete situation of the example
 looking at the

origins a � � � W � R� and a� � � in the z�chart of W � � �R���� We have

J � �f� � � � I with f � g � x� � z��z � y�� and ord�I � ord�g � � in

R�� The coe�cient ideal is J� � �f�� � � � I� with f� � g� � z��z � y�� and

ord�I� � ord�g� � � in R�� Blowing up Z � fx � z � �g in R� we get trans�

forms J � � �f �� � M � � I � with f � � z��x�� z�z� y���
 g� � x�� z�z� y�� and

ord�I
� � ord�g

� � � in �R���� The coe�cient ideal of I � is J �� � �f ��� � M �
� � I ��

with f �� � z�z� y��
 g�� � z� y� and ord�I
�
� � ord�g

�
� � � in V � � �R���� We

see that the �rst component of ia�J� has remained constant equal to � at a� � � �W �

and that the second component has dropped from � to �� Therefore ia��J

�� 
 ia�J�

at these points�

��



Of course� there are many technical complications we have omitted �and which

will be discussed in the sequel�� But the brief resum e of the proof should at least

give you enough information to respond to questions like� 
Do you have any idea

how to prove resolution of singularities in characteristic zero�� Instead of saying�


Indeed� that
s a very good question� It is something I always wanted to know��

you may start to talk about intricate inductions which are built on each other

�actually� you may even mention that a proof as in �EH� requires fourteen such

inductions� and that at the moment this is the best one can hope for��

If you wish to clarify the many doubts and questions which may have occurred to

you while browsing this quick�info�section� just go on reading�

CHAPTER �� MAIN PROBLEMS

�� Choice of center of blowup

We now start our journey through the jungle of singularities� blowups and strict�

weak and total transforms of ideals� Our �rst steps will consist in trying to get

an overview on the possible paths which could lead us towards a solution of the

problem� The centers of blowup constitute our primary object of interest�

Given X� choose a closed embedding of X in a regular ambient scheme W with

de�ning ideal J of the structure sheaf OW � Resolving X is essentially equivalent

to resolving J �in a sense speci�ed later� roughly speaking it means to monomialize

J�� The problem is to choose the �rst center Z of blowup� This is a regular closed

subscheme of W yielding the blowup � � W � �W and the transforms of X and J

in W �� Call Y � � ����Z� the exceptional component in W ��

Here it has to be decided which kind of transforms of X and J will be considered�

Denote by J� � ����J� the total transform of J � and let Jst be the strict transform

as de�ned earlier� It is generated by the elements ����f��I�Y ���ordZf for f varying

in J � where I�Y �� denotes the ideal de�ning Y � in W � and ordZf is the maximal

power of the ideal I�Z� de�ning Z in W to which f belongs in the localization

OW�Z of OW along Z �without passing to the localization it would be the maximal

symbolic power of I�Z� containing f�� It can be shown that ordZf equals the

minimal value of the orders ordaf of f for a varying in Z�

We shall also consider the weak transform Jg � J� � I�Y ���ordZJ of J in W �� Here
ordZJ denotes the minimum of the orders ordZf over all f in J � The fact that

I�Y �� can be factored from J� to the power ordZJ � i�e�� the existence of a factoriza�

tion J� � Jg � I�Y ��ordZJ is proven by a computation in local coordinates �cf� the

appendix�� The weak transform Jg is an ideal contained in Jst whose associated

scheme Xg in W � may have some components in the exceptional divisor Y � �and
need not be reduced�� Algebraically� it is easier to work with weak than with strict

transforms �cf� example � in the section 
Examples��� For hypersurfaces� both

notions coincide� We shall always have to do with the weak transform of ideals� A

su�ciently explicit and powerful resolution process for weak transforms will allow

to deduce then the desired assertions about strict transforms �or you may either
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restrict to hypersurfaces� which su�ces to understand the main argument of the

proof��

Before getting stuck at the �rst steps through the jumble of the jungle� take care

to keep apart the three transforms of ideals under blowups � � W � �W �

J� � ����J� total transform of J �

Jst � �����f� � I�Y ���ordZf � f � J� strict transform of J �

Jg � J� � I�Y ���ordZJ weak transform of J �

Now� given X in W with ideal J � how shall we decide on the center Z� There is

no immediate candidate running around� As we wish to remove the singularities

from X� we could take in a �rst attempt the whole singular locus as center� This

works well for curves� because their singularities are isolated points� Once in a

while each of them has to be blown up �otherwise the singularity sitting there will

never disappear�� so we can take them all together as center� Resolution of curves

says that these blowups eventually yield a regular curve �but possibly still tangent

to some exceptional component�� and some further blowups �in the intersection

points of the regular curve with the exceptional divisor� allow to make this curve

transversal to the exceptional divisor�

For surfaces� the situation is more complicated� but the idea to take the singular

locus as center still works � provided some cautions are taken� The singular locus

of a surface consists of a �nite number of isolated points and irreducible curves�

which may even be singular�

These curves are not allowed as centers in a strong resolution if they are not

regular or if they intersect� But one could try to make them �rst regular by some

auxiliary blowups� separate them from each other by further blowups and then

take their union as center� Of course� the singular curves of the singular locus of

X can be resolved by point blowups� But is not clear that their transforms �ll up

again the whole singular locus of the transform X � of X� And indeed� the singular

locus of X � may have new components which lie outside the �strict� transform of

the singular locus of X� But� as Zariski observed �Za ��� these new components

do not bother too much since they are regular curves �a fact which fails in higher

dimensions� actually already for three�folds� cf� �Ha �� Ha ���� For surfaces it is

thus possible to transform the singular locus of X by preliminary blowups into a

union of isolated points and regular curves transversal to each other and to the

exceptional locus� Further blowups allow to separate these curves from each other�

Taking the resulting union is then a permitted choice of center� By choosing a

suitable resolution invariant �for example as in �Ha ��� it is shown that blowing up

X in this union improves the singularities of X� The invariant drops when passing

from X to X �� Now induction applies to show that a resolution of X is achieved

in �nitely many steps�

For three�folds and higher dimensional schemes� the preceding construction of an

admissible center falls short� mostly� because the passage to the singular locus does

not commute with blowup� The singular locus ofX � may have singular components

�inside the exceptional locus� which have nothing to do with the singular locus of
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X �Ha ��� Therefore it seems di�cult or even impossible to make the singular

locus regular by auxiliary blowups as we did in the case of surfaces�

After this deception� we shall retain from constructing the center Z directly� Up to

now� no ad hoc de�nition of Z which works in any dimension has been discovered�

Instead� we shall proceed in the opposite direction� We shall take any regular

subscheme of the singular locus of X as center� We blow it up and then observe

what e�ects on X will follow� Certain centers will have better consequences on X

and will be thus preferred� This in turn shall lead us to conditions on Z which

may help to determine a suitable class of admissible centers Z�

So assume that we have given a closed regular subscheme Z of W which we take

as the center of our �rst blowup � � W � � W � As we have no exceptional locus

yet� no transversality conditions will be imposed on Z� But we will assume that

Z sits inside the singular locus of X �since at regular points we won�t touch X��

For hypersurfaces� this is the locus of points where the ideal J has at least order

� in W � i�e�� of points a with maximal ideal ma in the local ring OW�a such that

the stalk of J at a is contained in the square of ma� For non�hypersurfaces� this

description of the singular locus only holds if the schemeX is minimally embedded�

Let J� and Jg denote the total and weak transform of J in W �� As we have seen

above� we may write J� � M � � Jg with M � � I�Y ��ordZJ � As Z is regular� also

Y � is regular� so that M � is a monomial factor of J� which should not cause any

trouble� The ideal Jg is more interesting and contains all the information on the

singularities of the scheme de�ned by J�� Clearly� at points a� outside Y �� its

stalks are isomorphic to the stalks of J at the projection point a � ��a�� �which

lies outside Z�� So nothing will have changed there� Let us hence look at points

a� in Y � above a in Z� There� two interesting things can be observed�

Observation �� If ordaJ � ordZJ � then orda�J
g 	 ordaJ � Thus the order of the

weak transform Jg does not increase if the order of J was constant along Z�

As the order of an ideal at a point is an upper semicontinuous function
 the order ordaJ

will be generically constant along Z � Only at points a of a closed subscheme of Z the

order of J may be larger than the generic order along Z �

Observation �� The locus of points a� in Y � with orda�J
g � ordaJ lies inside a

regular hypersurface of Y ��

We will discuss the second observation in the next section� As for the �rst we

shall ask that the center Z lies inside the locus of points where the order of J

is maximal� according to the philosophy that the worst points of X should be

attacked �rst� We thus de�ne top�J� � fa �W� ordaJ is maximal g� the top locus

of J in W � This is a closed subscheme of W � by the semicontinuity of the order�

but possibly singular� We agree to postulate�

Requirement� The center Z shall be contained in top�J��

This condition � which will be imposed in the sequel of the paper on all centers

which appear � still leaves a lot of freedom how to choose Z� As a general rule�

large centers tend to improve the singularities faster than small centers� This

would suggest to take for Z a regular closed subscheme of top�J� of maximal
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possible dimension� Such a center will not be unique� e�g�� if top�J� consists of two

transversal lines� and one of them has to be chosen as center� In this case it may

happen that the scheme X has a symmetry� obtained e�g� by interchanging two

variables� and yielding a permutation of the two lines �i�e�� the permutation group

S� acts on X�� You may not want to destroy this symmetry by an asymmetric

choice of the center� so none of the lines is a good candidate� Instead you may

prefer to take the only subscheme which is S��invariant� namely the intersection

point� which in turn may be a too small center� So there is some ambiguity how

to choose a regular subscheme of maximal dimension of top�J��

Also� Z has to be chosen globally� If top�J� is the node x��y��y� � � in the plane�

locally at the origin � one could choose one of its branches as center� Globally�

this branch will return to the origin yielding a normal crossings singularity in the

intersection point� Therefore the origin � is the only possible choice for Z here�

It is a good moment to prove now that the inclusion Z � top�J� indeed implies the

stated inequality orda�J
g 	 ordaJ � This is a local statement at a and a�
 which allows

to restrict to the local blowup � � �W �� a�� � �W�a� given by the inclusion of local

rings OW�a � OW ��a� � By the upper semicontinuity of the order of ideals
 it su�ces to

check the inequality at closed points� For simplicity
 we assume that the ground �eld is

algebraically closed�

We may then choose local coordinates x�� � � � � xn at a 
i�e�
 a regular system of param�

eters of OW�a� such that OW�a � OW ��a� is given by a monomial substitution of the

coordinates
 say xi � xi � xk for � 	 i 	 k � �
 and xi � xi for k 	 i 	 n
 where

k 	 n is so that x�� � � � � xk de�ne Z in W locally at a� Passing to the completions

'OW�a � 'OW ��a� does not alter the order of J � Expand elements f of OW�a as a power

series in x�� � � � � xk
 say f �
P

��Nn c�x
�� Then ordaf � minfj�j� c� �� �g� Set

o � ordaJ � minf�Jordaf �

By assumption
 Z � top�J�
 hence ordZf � o for all f � J � As I�Z� �

�x�� � � � � xk� we get
 setting j�jk � �� 
 � � � 
 �k
 that j�jk � o for all � with

c� �� �� The total transform f� has expansion f� �
P

c�x
�� with �� � Nn given

by ��i � �i for i �� k and ��k � �k
��
� � �
�k�� � j�jk� Factoring I�Y ��ordZJ

from J� yields f� � x�ok �
P

c�x
���oek where ek is the k�th standard basis vector

of Nn�

But o � minfj�j� c� �� �g � minfj�jk� c� �� �g
 hence for any � realizing this

minimum
 we will have j���oekj � j�j
��
 � � �
�k���o 	 j�j
 with equality if

and only if �� 
 � � �
�k�� � o
 say ak � �� This shows that orda��f
� � x�ok � 	 o


from which orda�J
g 	 o � ordaJ is immediate� The claim is proven�

What have we learned in this section will form our point of attack for proving

resolution� We therefore repeat� The inequality orda�J
g 	 ordaJ between the

orders of an ideal and its weak transform will hold for a� � Y � above a � Z for

any regular center Z � top�J�� independently of its dimension or location inside

top�J�� This suggests to consider the maximal value of ordaJ on X �or W � as

the invariant which should improve under blowup� And we have seen at least that

it cannot increase� However� at certain points a� it may remain constant� If this

happens� either the choice of our center was not a good one� or we need some extra

measure aside the maximal value of the order of J to show that the situation has
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also improved at these points� though in a less evident way� This leads us to take

a closer look at these points�

�� Equiconstant points

Given an ideal J in W � let � � W � � W be the blowup with center Z � top�J��

Let a be a point of Z� and set o � ordaJ � ordZJ � Points a� in the exceptional

locus Y � will be called equiconstant points if the order of the weak transform Jg

of J has remained constant at a��

orda�J
g � ordaJ �

Classically� these points were called very in�nitely near points� Let us �rst check

that such points actually may occur� In example �� they could be avoided by a

di�erent choice of the center� in example �� only one center is possible� and for

this center� an equiconstant point appears in the blowup�

Example �� Blowing up the origin of the Whitney umbrella X de�ned in A� by

x��y�z � � produces at the origin of the z�chart the same singularity x��y�z � ��

Indeed� J� is generated by x�z� � y�z� � z��x� � y�z� yielding weak transform

Jg generated by x� � y�z� �As we have a hypersurface� the strict and the weak

transform coincide�� Hence the origin of the z�chart is an equiconstant point� But

as the singularity of X � is exactly the same there� no other invariant aside the

order can have improved� Therefore the choice of our center was wrong� Taking

for Z the origin is a center which is too small� Observe that the top locus of X

is the z�axis� and could have equally been taken as center �this is the only other

option�� Doing so� the computation of Jg in the two charts shows that this larger

center does improve the singularities� Actually� the singularities of X are resolved

when blowing up the z�axis�

For the reader�s convenience
 we include the computation� As I�Z� � �x� y�
 we have

two charts to consider
 the x� and the y�chart� The total transform J� is generated there

by x� � x�y�z � x��� � y�z� and x�y� � y�z � y��x� � z� respectively� The

polynomials in parentheses de�ne the weak transform of J � They are both regular
 say

of order 	 � at any point of Y ��

This suggests again that the center should better be chosen large �and then� in

this example� no equiconstant point will appear�� In any case� we conclude that

we cannot choose for the center just any closed regular subscheme of top�J�� Some

�still unknown� precautions will have to be taken�

Let us now look at an example where also equiconstant points occur in the excep�

tional locus� but where only one choice of center is possible�

Example �� Consider x��y�z� � � in A�� It is checked that the top locus consists

of one point� the origin� and that J has order 
 there �for more information on

the order and how to compute top loci see the appendix�� We must therefore

choose Z � f�g as our center� The total transforms in the three charts are as

follows� x� � x�y�z� � x��� � xy�z�� in the x�chart� x�y� � y�z� � y��x� � yz��

in the y�chart� and symmetrically in the z�chart �using that J is invariant under

exchanging y and z�� The polynomials in parentheses de�ne the weak transform
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of J � In the x�chart� Jg has order � along the exceptional divisor x � � �i�e��

the scheme Xg does not intersect Y � there�� In the y�chart� the origin is the only

equiconstant point� and the singularity there is x��yz� � �� Analogous statement

in the z�chart� As the center was prescribed by top�J�� these two equiconstant

points cannot be avoided by choosing another center�

At the origins of the y� and z�chart� the order of Jg remains constant equal

to 
� However� there seems to be some �ner improvement at this point with

respect to the initial singularity x� � y�z� � �� The exponent of y in the second

monomial has dropped from � to �� But this decrease is coordinate dependent

and therefore not an intrinsic measure of improvement� We will investigate in the

section 
Independence� how to measure the improvement here in a coordinate free

and intrinsic way�

Example �� Consider x��y�z� � � in A�� The top locus consists of two transversal

lines� the y� and the z�axis� and J is S��invariant by interchanging y and z� The

symmetric choice of center would be the origin Z � f�g� because none of the

lines can have a preference� and we wish to choose Z as symmetrically as possible�

Blowing up � in A� yields total transforms x� � x�y�z� � x���� x�y�z�� regular

in the x�chart� and x�y� � y�z� � y��x� � y�z�� in the y�chart �again we may

omit the z�chart by symmetry�� In the y�chart we de�nitely have a problem� Our

choice of center was the only natural one� but the singularity has remained the

same� namely x� � y�z�� We will discuss at the end of the section 
Setups� how

to overcome this impasse�

Taking instead of x� � y�z� the polynomial x� � y�z� we get in the y�chart the weak

transform x� � y�z� and the singularity seems to have become worse�

The next natural question� based on the preceding observations� is to locate the

equiconstant points inside the exceptional divisor� and to describe criteria when

they appear� The proof of orda�J
g 	 ordaJ shows that the homogeneous part of

lowest degree of the elements of J plays a decisive role� The ideal generated by

these homogeneous polynomials is the tangent cone tc�J� of J at a� say tc�J� �

�
P

j�j�of fax
�� f � J� where of denotes the order of f at a� and x�� � � � � xn are

some local coordinates� Let x� be a monomial of degree o with non�zero coe�cient

f� in the expansion of f � J with ordaf � o � ordaJ � We saw above that if �k � �

then ��
 � � �
�k�� 
 o and hence orda�f
� 
 ordaf � setting f

� � f� �x�ok � Here� a�

is the origin of the xk�chart in W � induced by the choice of coordinates x�� � � � � xn
in W at a�

We can now specify observation � from the preceding section�

Observation �� If x�� � � � � xn are coordinates of W at a with I�Z� � �x�� � � � � xk�

and such that the coordinate xi appears in the tangent cone tc�J� of J � for some

i 	 k� then the equiconstant points a� above a lie in the hyperplane xi � � of W ��
More precisely� let V � W be the regular hypersurface xi � �� and let V � � W �

be its strict transform� Then all equiconstant points of J lie in V ��

We need here that the coordinates are chosen so that the number of coordinates appearing

in the tangent cone of J is minimal�
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Here� by slight abuse of notation� x�� � � � � xn denote also the induced coordinates of

W � at a� �see the appendix for more details on how to choose local coordinates for

blowups�� This notation is justi�ed by the fact that the local blowup �W �� a�� �
�W�a� has an expression in a�ne charts going from An to An� Said di�erently� the

observation can be expressed as follows� The equiconstant points are contained

in the strict transform V � of any local hypersurface V in W at a which contains

Z locally at a and whose equation appears as a variable in the tangent cone of J

when it is written in the minimal number of variables�

Let us compute such hypersurfaces V in some examples�

Example �� Let us start with a plane curve of equation xo 
 yq � � in A� with

q � o� The order at � is o� and the origin is the only point of this order� thus top�J�

is the origin� The blowup W � of W � A� is covered by two a�ne charts� the x�

chart and the y�chart with respective total transforms xo
xqyq � xo��
xq�oyq�
and xoyo 
 yq � yo�xo 
 yq�o�� The polynomials in parentheses are the weak

transforms� We are only interested in points a� � Y � �where Y � is isomorphic to

projective space P��� It is useful here to partition Y � into two sets� the entire x�

chart and the origin of the y�chart� In the �rst set� the order of Jg is everywhere

� as is checked by inspection� so we need not consider these points� We are left

with the origin of the y�chart with weak transform de�ned by xo
yq�o � �� Note

that the origin lies in the hypersurface x � � in the y�chart of W �� which agrees

with our second observation� since x appears in the tangent cone of J �which is

xo�� Whether the order has dropped or not depends on the value of q � o� If

q � �o� the order has remained constant� else it has decreased� For later reference

we note that the order of the restriction JjV comes into play� where V is the

hypersurface fx � �g� The strict transform V � of V contains the only possible

equiconstant point� Moreover� if the origin of the y�chart is an equiconstant point�

the improvement of Jg seems to be captured by JgjV � � �yq�o�� whose order

is strictly smaller than JjV � �yq�� Of course� these observations are coordinate

dependent and as such not very meaningful or intrinsic� But they already give a

feeling for the phenomena we are going to study later on�

Example �� We consider now a surface� e�g� xo 
 yrzs with r 
 s � o� Here� the

order o at � is the maximal value of the local orders at points of A�� The Whitney

umbrella from above is a special case� with o � r � � and s � �� Let us �rst

determine top�J�� Apparently� it depends on the values of o� r and s� If r� s 
 o it

is reduced the origin� If r 
 o 	 s it is the y�axis� and symmetrically for s 
 o 	 r�

If r� s � o then top�J� is the union of the y� and the z�axis� and three choices for

Z are possible� The origin or one of these axes �we do not study the interesting

question of normal crossings center here� see �Ha ����

In all cases� the tangent cone of J consists of the monomial xo� except if r
 s � o�

in which case it is xo 
 yrzs� The hypersurface V � fx � �g is always a good

candidate for �nding equiconstant points� because x appears in the tangent cone

�we could also take x
 a�y� z� with a any polynomial in y and z of order at least

��� From what we have seen earlier� we know that its strict transform V � in W �

contains all equiconstant points of Y � �outside Y �� all points will be equiconstant�

but have no relevant interest�� Let us assume that we have chosen Z � f�g the
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origin in A�� because r� s 
 o� As V � � Y � lies entirely in the complement of the

x�chart� we may omit the x�chart from our considerations and look only at the

y� and the z�chart� Up to interchanging y and z we may place ourselves in the

y�chart� where the total transform J� equals xoyo 
 yr�szs � yo�xo 
 yr�s�ozs��
The origin of this chart is an equiconstant point if and only if r 
 �s� o � o� say

r 
 �s � �o� As s 
 o� the y�exponent has decreased from r to r � �o � s�� If

s � �� we could have chosen a larger center� namely the y�axis �in which case we

would have to look at the z�chart� observing that there the z�exponent drops at

the equiconstant point��

The various computations in local coordinates ask for giving a more geometric

description of regular hypersurfaces of W � containing the set O� � Y � of equicon�
stant points a� of Jg� i�e�� points where o� � o� denoting by o� the order of Jg at

a� in W �� Recall that� by de�nition� equiconstant points lie inside the exceptional

locus Y �� so that there is a lot of �exibility of choosing regular hypersurfaces V �

of W � containing O�� In any case we may choose them transversal to Y �� This

does not imply yet that their image V in W under � is regular� But if V in W

is also a regular hypersurface� then V � appears as the strict transform of V � The

computation in the proof of o� 	 o has shown that such V exist in W � at least

locally at any point a � Z� They are characterized as follows� Choose local coor�

dinates x�� � � � � xn in W at a so that x�� � � � � xm appear in the tangent cone of J

and such that m 	 n is minimal with this property� Then any V de�ned by an

equation in which no xm��� � � � � xn appears in the linear term will do the job� If

some xm��� � � � � xn appears linearly� the strict transform V � of V may not catch

all equiconstant points� Of course� any higher order terms are permitted in the

expansion of the de�ning equation of V � because they do not alter the intersection

of V � with Y � in which we are interested�

This property can be expressed by saying that V has reasonably good contact with

the subscheme tc�X� of W de�ned by the tangent cone tc�J� of J � In particular�

any such regular V must be tangent to the coordinate plane x� � � � � � xm � ��

This condition can be made coordinate independent� Let U be �locally at a� or�

say� in the completion of the local ring� the regular subscheme of W of maximal

dimension contained in tc�X�� Then any regular V containing U will work�

Our attempts to nail down possible hypersurfaces V is not e�cient as long as

the approach remains computational and the improvement of the singularities

at equiconstant points is measured by ad�hoc and coordinate dependent objects�

Nevertheless we emphasize�

Conclusion� For any ideal J in W � not necessarily reduced� and any a � W there

exists locally at a a regular hypersurface V inW whose strict transform V � contains
all equiconstant points a� in W � above a� We call such hypersurfaces adjacent for

J �

At this point� an apparently unmotivated but natural question will reveal to be

highly instructive and signi�cant�

�If V is adjacent to J � is its strict transform V st again adjacent to Jg�
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This question is surprisingly subtle� and its investigation �which we will give in

the section 
Obstructions�� will split the world in a characteristic zero and charac�

teristic p hemisphere� A positive answer to it would allow to choose locally in W

regular hypersurfaces whose successive strict transforms contain� for any sequence

of blowups with regular centers inside the top loci of J and its weak transforms�

all equiconstant points above a� If such hypersurfaces exist � and we will show

that they do in characteristic zero� whereas need not exist in positive character�

istic � they would accompany the whole resolution process until eventually the

maximal value of the order of J in W drops� Such hypersurfaces will be said to

have permanent contact with J �

�� Improvement of singularities under blowup

This section contains the gist of Hironaka�s argument� so take your time� It is

inspired by Jung�s method of projecting surfaces to the plane� If you have under�

stood this section� you will be in good shape to be considered as (insider��

In the last section we have realized that at equiconstant points a� the ideal Jg need

not be obviously simpler than J at a� The order is the same� and exponents of

the Taylor expansions of elements of J may have decreased� increased or remained

constant� As a consequence� we suspect that the order is not su�ciently �ne to

detect an improvement� and we should look for other invariants� On the other

hand� the order is the �rst and simplest invariant associated to an ideal�

In order to confront this irritating quandary� let us return to the curve singularity

xo
yq � � in A� with q � o� If q � o and the characteristic is di�erent from o� the

order of Jg has decreased everywhere and there are no equiconstant points in Y ��
If q � o and the characteristic is equal to o� replacing x by x
y transforms xo
yo

into xo� which is a monomial and cannot be improved under blowup� So we may

assume that q � o� There then appears at most one equiconstant point� the origin

of the y�chart� and Jg is de�ned by xo 
 yq�o� If q � �o� this is an equiconstant

point� otherwise the order has dropped� So let us assume for the sequel that

q � �o� In the given coordinates� the improvement of the singularity at a� appears
in the change from yq to yq�o� This is a coordinate dependent description of

the improvement� But working with �xed local coordinates� although useful for

computations� is not appropriate if we wish to argue globally and with intrinsic

objects de�ned for singularities in any dimensions� Therefore we would like to give

the monomial yq in xo 
 yq a coordinate�free meaning� hopefully independent of

the dimension�

We proceed as follows� The line V � fx � �g will be adjacent to J at the origin

a � �� The �rst thing to think of is the restriction of xo
yq to the hypersurface V �

Accordingly� at a�� we would take the restriction of Jg to V � � V st� The resulting

polynomials depend on the choice of V � and there is no immediate candidate for

V which would made them intrinsic� Actually� this might be asking too much�

but at least the orders of the resulting polynomials should be intrinsic� In our

example� if o does not divide q or the characteristic is di�erent o� the orders q and

q � o of JjV and JgjV � are not intrinsic� Replacing V by 	V � fx
 y� � �g gives
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another adjacent hypersurface with orda�JjV � � �o �since we assumed q � �o� and

orda��J
gjV �� � o�

Among the many possible values of orda�JjV � for varying hypersurfaces V � only

two play a special role� The minimal and the maximal value� It is easy to see

that the minimal value is not a good choice� since it is always equal to o �though

the corresponding V need no longer be adjacent� as is seen in the example above�

where V � fx
 y � �g realizes the minimum but is not adjacent�� The maximal

value is more interesting� It is certainly intrinsic� and � as we will show later �

can be realized by an adjacent hypersurface �mainly this holds because changing

higher order terms in the equation of V preserves adjacency�� So let us look more

closely at this maximal order �see �Ab $� for a detailed discussion of it in the curve

case��

The maximal value of orda�JjV � provides an intrinsic measure of the complexity

of the singularity of curves� subordinate to the order itself� We denote it by

o� � maxV forda�JjV �g�
the maximum being taken over all regular local hypersurfaces V of W at a� and

call it the secondary order of J � The minus sign in the index refers to the decrease

in the embedding dimension� What we get is a local invariant of J at a�

Our above de�nition of o� has an immediate and unpleasant defect which will

force us to modify the de�nition a little bit� In many cases� the restriction JjV of

J to V will be the zero ideal and then carries no information at all� The simplest

example is xo
 xyq� Of course� the de�ning equation of V could be factored from

the polynomial� but this is not of big use� because the factor will again depend

on the choice of V � In this situation it helps to look at a slightly more general

example�

Example �� Let J be generated by f � xo 

P

i�o fi�y�x
i with polynomials fi�y�

in one variable y of order � o � i at �� By this assumption on the fi� the order

of J at � is o� For simplicity� let us assume that fi�y� � ciy
	o�i
d for some d � N

and constants ci� The preceding example xo 
 yq � � had fi � � for i � � and

f� � yq� Let us observe how the coe�cients of f transform at an equiconstant

point� The coordinates are choosen so that the only equiconstant point can appear

at the origin of the y�chart� The corresponding substitution of the variables for

the blowup is x � xy and y � y� It gives the total and weak transform �in

parenthesis� of f as

f� � xoyo 

P

i�o ciy
	o�i
dxiyi

� yo�xo 

P

i�o ciy
	o�i
d�	o�i
xi�

� yo�xo 

P

i�o ciy
	o�i
	d��
xi��

We see that the change of the exponents of y inside the parenthesis is given by

replacing the factor d by d � �� This is nicely illustrated by the change of the

Newton polygon� which� by de�nition� is the convex hull in R� of the exponents of

the monomials appearing in a polynomial�
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Transformation of Newton polygon under blowup� In the picture� the x�axis

is drawn vertically�

x p

y qyq-p

xiy jxiy j+i-p

x

y

It is now clear which number will re�ect the improvement in this case� It is

precisely the slope d of the segment between the points �o� �� and ��� od� of the

Newton polygon� Instead� we may as well take the projection of the Newton

polygon from the point �o� �� to the y�axis given for �i� j� � N� with j 
 o by

�i� j�� ��� oj
o�j �� This projection of integral points of N� can also be re�ected by

associating to f the ideal generated by all equilibrated powers of its coe�cients

fi�y�� de�ned by

coe�x�f� � �fi�y�
o

o�i ��

There appears the inconvenience of having rational exponents� so we should better

take

coe�x�f� � �fi�y�
o�
o�i ��

But we prefer to stick to the geometric picture of the projection in N� and keep the

�rst de�nition� We call this �ideal� the coe�cient ideal of f with respect to V � To

avoid confusion with rational exponents of ideals we can de�ne orda�fi�y�
o

o�i � �
o

o�i �ordafi to make things well de�ned� This order may still depend on the choice

of coordinates x and y� but the maximal value over all choices of coordinates is

per de�nition intrinsic� It is thus a good measure of complexity subordinate to

the order of f �

The passage to the coe�cient ideal explains
 why many articles on resolution of singu�

larities start with singularities of type f � xo 
 g�y� without any monomials of form

xi with i � �� As for the coe�cient ideal
 such polynomials yield the same amount of

di�culty as arbitrary ones� So their study is representative for the general situation�

Conclusion� We have associated to f and given coordinates x� y an ideal coe�x�f�

in V � fx � �g whose order measures the improvement at equiconstant points

of f in W �� This order is independent of any choices if V is chosen so that

orda�coe�x�f�� is maximal�

We shall say that such a hypersurface V has weak maximal contact with f � Ob�

viously� coe�x�f� makes sense also when y is a vector of coordinates� though it is


�



not clear �and actually not true� that its order drops at equiconstant points if y

has more than one component�

This approach to �nding �ner complexity invariants looks too simple to be of any

value� and indeed it is� as we can already see in the case of surfaces�

Example �� Consider f � xo 
 yrzs with r� s � o� and blow up the origin of

A�� The secondary order of f at the origin is ord�y
rzs � r 
 s� We look at the

origin a� of the y�chart� The weak transform equals fg � xo 
 yr�s�ozs� hence
a� is an equiconstant point and the secondary order has increased from r 
 s to

r 
 s
 �s� o�� So the singularity has got worse�

This is bad news� But it is easy for the attentive reader to protest� since the

assumption r� s � o implies that the top locus top�f� consists of the y� and z�axis�

which could also have been taken as center �except� possibly� if r � s� in which

case we wish to preserve the symmetry of the singularity�� So you could claim

that we have taken the wrong center� The protest is immediately rejected by the

following� a little bit more complicated singularity�

Example �� Consider f � xo
 yrzs
 y�	r�s
 
 z�	r�s
 with r� s � o� Here the top

locus is reduced to the origin� which has to be chosen as our center of blowup� At

the origin of A�� the secondary order of f is again r 
 s� We look at the origin

a� of the y�chart� The weak transform equals fg � xo 
 yr�s�ozs 
 y�	r�s
�o 

y�	r�s
�oz�	r�s
� hence a� is an equiconstant point� The secondary order of f has

again increased from r 
 s to r 
 s
 �s� o��

That�s really embarassing� The argument which worked so nicely for plane curves

breaks completely down for surfaces� The secondary order may increase at equicon�

stant points� So instead of an improvement the singularities seem to get worse�

As mentioned in the introduction� we will proceed in this article by entering with�

out fear into dead end streets� convinced that we will be able to struggle our way

out by investigating carefully the congestion�

In this spirit� let us see more closely what is the transformation law the coe�cient

ideal undergoes at an equiconstant point� and why its order may increase� For

simplicity we assume that J is generated by a polynomial f � xo 
 g�y� with

y � �y�� � � � � ym� and ordag � o� We may assume that the center is the origin

a � �� and that a� is the origin of the y��chart� The coe�cient ideal of f in

V � fx � �g is generated by g�y�� We get total transform f� � xoyo� 
 g��y��
where g� denotes the total transform of g � OV�a under the induced blowup

V � � V of center Z � fag� say g��y� � g�y�� y�y�� � � � � ymy��� Let q be the order

of g at �� q � o� We now compute the weak transform fg of f in W � and get

fg � y�o� f� � xo 
 y�o� g��y�

� xo 
 y�o� yq�g
g�y�

� xo 
 yq�o� gg�y�

with gg the weak transform of g under V � � V � But the coe�cient ideal of fg in

V � is y�o� g��y� � yq�o� gg�y�� which is di�erent from gg�y� whenever q � o� Hence

�g� � coe�V �f� has a law of transformation di	erent from that of f � because
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its transform equals the weak transform multiplied by a power of the exceptional

monomial y�� This is a transform �g�
 � �coe�V �f��

 in between the weak and

the total transform which depends on o� it is de�ned by �g�
 � y�o� �g�� �hence

depends on the order o of f at a�� and is called the controlled transform of �g�

with respect to the control o �the number o does not appear in the notation �g�
�

but whenever you see a � in the exponent you should be reminded to watch out

for the respective control��

As in general the order of the weak transform of an ideal may remain constant�

the order of the coe�cient ideal of fg may really increase� as we have seen in

example $ above� In contrast� the order of the weak transform of the coe�cient

ideal coe�V f of f won�t increase at a�� because the center was included in its top

locus� Put together� the problem is that the coe�cient ideal of the weak transform

fg of f need not coincide with the weak transform of the coe�cient ideal of f �

This is a failure of commutativity between our two basic operations� The passage

to the coe�cient ideal and the passage to the weak transform�

We get at equiconstant points the following commutative diagrams of local blowups

�W �� a�� � �V �� a��


 

�W�a� � �V� a�

and ideals

J � � Jg � C � � C 



 

J � C

where a� � W � is an equiconstant point of J �i�e�� orda��J
g� � ordaJ� under the

blowup W � �W with center Z � V � the hypersurface V is adjacent to J �i�e�� its

strict transform V � � V st contains all equiconstant a� above a�� where C and C �

denote the coe�cient ideals of J and J � with respect to V and V � and C 
 is the

controlled transform of C with respect to o � ordaJ �

This illustrates quite explicitly that the transformation laws for J and its coe�cient

ideal are di�erent when passing to an equiconstant point of J � So there is no hope

to have the order of C decrease �or at least not increase��

The decrease in the curve case was just a lucky circumstance which is not rep�

resentative for the more general situation of arbitrary dimension� The natural

conclusion is that our choice of the coe�cient ideal of an ideal as a secondary

measure of the complexity of a singularity �after the order of the ideal� is not

appropriate� We have to look for a better candidate� That�s a good point to get

stuck and to give up trying to prove resolution of singularities �or reading this

paper��

Before doing so we should at least look back and see what we have done so far�

So let us contemplate again the di�erence between example � and $� In the latter�

f equals xo 
 yrzs 
 y�	r�s
 
 z�	r�s
 and the monomials y�	r�s
 and z�	r�s








appearing in the expansion of f prohibited to choose as center a coordinate axis�

In contrast� in example �� we could choose a line as center� We had f � xo
 yrzs

there so that its coe�cient ideal in V � fx � �g is a monomial� namely yrzs� No

matter how large its exponents r and s are� blowing up one of the coordinate axes

will make them decrease �putting aside the symmetry problem for the moment��

It is reasonable to expect that this works also in more variables � and it does� For

any f � xo 
 yr�� � � � yrmm there exists a choice of a coordinate plane inside top�f�

so that blowing it up makes some exponent ri decrease at a chosen equiconstant

point of f � It su�ces to take a minimal subset i�� � � � � ik of f�� � � � �mg so that

ri� 
 � � � 
 rik � o and to set Z � fx � yi� � � � � yik � �g� It is clear that

Z � top�f�� We leave it as an exercise to show that some ri drops under blowup

�this is an obligatory homework��

What have we learnt from this� If the coe�cient ideal is a principal monomial

ideal� we will have no �say� almost no� problems to choose a suitable center and

to measure the improvement of f � On the other hand� if it is not a monomial� it

seems impossible to lower the order of the coe�cient ideal by blowup�

This suggests to change our strategy drastically�

Instead of trying to lower the order of the coe�cient ideal of f � intend to transform

the coe�cient ideal into a principal monomial ideal�

We have already seen that the coe�cient ideal of the weak transform fg of f

factors into an exceptional monomial part and a remaining ideal� which is the

weak transform of the coe�cient ideal of f � A simple observation� which will

allow us to overcome the recent depression and to attack the problem of resolution

with new impetus�

This change of strategy perfectly �ts into the classical idea of principalization of

ideals� To transform ab initio the ideal J into a principal monomial ideal� taking

after each blowup the total transform �or� if you prefer� the controlled transform�

but not the weak or strict transform�� Let us formulate our new objective�

Monomialization of ideals� Given an ideal J in a regular ambient scheme W �

construct a sequence of blowups W � � � � � � W in regular centers transversal to

the exceptional loci so that the pullback of J in W � �i�e�� the total transform� is a

principal monomial ideal� In addition� we may require that the normal crossings

divisor de�ned by the pullback of J is supported by the exceptional locus� i�e��

consists of exceptional component raised to a certain power�

This clari�cation and precision of what we are aiming at will be of crucial impor�

tance� It will allow a quite systematic approach to the before mentioned descent

in dimension via coe�cient ideals�

As a �rst consequence of our new orientation� we will have to adapt the notation�

We shall write the ideal J as a product J � M �I whereM is a principal monomial

ideal supported by exceptional components and where I is the ideal whose order

we wish to drop successively until J � M � �� At the beginning� M will be � and

J � I� After each blowup� we will collect in M as much of the new exceptional
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component as possible� Hence� denoting by J �� M � and I � the corresponding

objects after blowup� we will have�

J � � M � � I � with

J � � J� or J � � J 
J� � I�Y ���c the total or controlled transform of J �

I � � Ig � I� � I�Y ���ordZI the weak transform of I�

M � � M� � I�Y ��ordZI for J � � J� the total transform�

M � � M� � I�Y ��ordZI�c for J � � J 
 the controlled transform�

Here� M � is de�ned precisely so that J � admits again a product decomposition

J � � M � � I � analogous to J � M � I�
The next considerations can be seen� in one version or other� as the core of most

proofs on resolution of singularities in characteristic zero�

Let V � W be a local hypersurface at a which is adjacent for I� Hence V � � W �

will contain all points a� where orda�I � � ordaI� Observe that we will now assume

that Z � top�I� instead of Z � top�J� so that ordaI � ordZI for all a � Z�

To observe the improvement of I at equiconstant points we shall consider the

coe�cient ideal coe�V �I� of I in V �and not that of J�� As it will play in V the

same role as J in W we shall call it J� �the minus sign referring to the decreasing

dimension of V � W� compared with W �� Assume that J� � M� � I� is a

factorization with M� a principal monomial ideal in V �again� before any blowup�

M� will be � and J� � I��� Let us now look at our commutative diagrams from

above� The upper right hand corner admits two candidates as ideals to appear

there� The coe�cient ideal �J ��� of I � in V � and the transform �J��� of J�� It is

not clear in general which transform of J� has to be taken� and if it is possible to

choose it so that the equality �J ��� � �J��� holds in V � �the controlled ideal will

be a good candidate�

�W �� a�� � �V �� a��


 

�W�a� � �V� a�

As for the ideals we get

J � � M � � I � � �J ���� �J���


 

J � M � I � J�

To establish the commutativity of the diagram with ideals� we shall choose� guided

by the curve case� for the transform �J��� of J� the controlled transform �J��


of J� with respect to o � ordaI� say �J��� � �J��
 � �J��� � I�Y ���o� With this

choice� the equality �J ��� � �J��� holds � and the proof goes as for curves�

We choose local coordinates x� y�� � � � � yn in W at a so that V � fx � �g� the ideal
I�Z� of Z is given as �x� y�� � � � � yk� and a� is the origin of the y��chart �such a

choice exists� cf� appendix C�� Expand f � I into f �
P

i�o af�i�y�x
i modulo xo
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locally at a with coe�cients af�i � OV�a� For arbitrary ideals �i�e�� not necessarily

principal� the coe�cient ideal J� of I in V is de�ned as

J� � coe�V I �
P

i�o�af�i�y�� f � J�
o

o�i �

Observe here that the ideals generated by the i�th coe�cients are raised to a

certain power� and not the coe�cients themselves� This has technical reasons we

are not going to explain any further� Using that afg�i � �af�i�
� � I�Y ��V ��i�o and

o� � orda�I
� � ordaI � o we compute as follows

coe�V ��I �� � coe�V ��Ig� �

� coe�V ��
P

i�o� afg�i � xi� fg � Ig� �

� coe�V ��
P

i�o� aI	Y ��V �
�o�f��i � xi� fg � Ig� �

� coe�V ��
P

i�o�af�i � xi�� � I�Y � � V ���o� f � I� �

�
P

i�o�a
�
f�i� f � I�o�	o�i
 � I�Y � � V ���o �

� �
P

i�o�af�i� f � I�o�	o�i
�� � I�Y � � V ���o �

� I�Y � � V ���o � �coe�V I�
� � �coe�V I�


�

This proves the desired equality�

Let us write down explicitly the main ingredient of the local descent in dimension�

Commutativity for coe�cient ideals� Given an ideal J � M � I in W � we may

associate to the local blowup �W �� a�� � �W�a� of W in Z � top�I� an adjacent

hypersurface V � W� of W at a and an ideal J� � M� � I� in V � the coe�cient

ideal of I in V � so that if a� is an equiconstant point for I and hence a� � V ��
the total transform J � � M � � I � admits a coe�cient ideal �J ��� � �M ��� � �I ���
in V � � �W ��� � �W��� at a� which is the controlled transform �J��� of J� with

respect to the control ordaI�

As the descent in dimension commutes with the local blowup at equiconstant

points we may write

�J ��� � �J��� � J �� � M �
� � I ���

This is a signi�cative advance in reaching our objective� The statement of commu�

tativity implies that the monomialization problem for J � M �I can be transferred

to lower dimension and expressed there by the analogous problem for J� � M��I��
In particular� both the search for a suitable center of blowup Z in W and the mea�

sure of improvement of the singularities inW � at a� can be expressed as problems in

lower dimension� In V we may apply induction on the local embedding dimension

to solve both problems�

For the center Z inW we can choose the center Z� in V associated to J� � M��I��
yielding a commutative diagram of local blowups

Y �
� � �V �� a�� � �W �� a�� 
 Y �


 
 
 

Z� � �V� a� � �W�a� 
 Z
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For the resolution invariant ia�J� of J we can take the vector

ia�J� � �orda�I�� ia�J����

where ia�J�� is the invariant associated to J� in V � W� � it exists by induction

on the dimension� This vector is considered with respect to the lexicographic

ordering� If its �rst component orda�I� drops under blowup� we have ia��J
�� 


ia�J� and we are done� If it remains constant� we look at the remaining components

of ia�J�� As we are in this case at an equiconstant point a� of I� commutativity

holds� say �J ��� � �J���� Hence

ia��J
�� � �orda��I

��� ia���J ����� � �orda�I�� ia���J������

By induction on the dimension we know that ia���J���� 
 ia�J�� holds lexico�

graphically� Hence ia��J
�� 
 ia�J�� In both cases� the resolution invariant has

dropped�

Unfortunately� this elegant reasoning does not go through as smoothly as we might

have dared to hope� Before seeing this� the reader may wish to recapitulate the

many informations packed in the last section�

	� Obstructions

The preceding constructions and the ensuing descent in dimension produce a natu�

ral and e�cient setting for proving resolution of singularities� There are� however�

several obstructions which prevent us from applying the method directly without

further modi�cations�

��� It has to be veri�ed that the induction basis where W has dimension � is valid�

��� The controlled transform �J��
 of J� in W � at a� is de�ned with respect to the

order of J at the image a of a� in W � It hence depends on the stratum of ord J in

which a lies� In this way� �J��
 is only coherent in W � along the inverse image of

each stratum where ord J is constant� but not on whole W ��

�
� The coe�cient ideal depends on the choice of the local hypersurface V � and

di�erent choices of V may yield di�erent invariants and a center which is only

locally de�ned� We have to specify a class of hypersurfaces V so that the invariant

and the center do not depend on the special choice of V within this class and so

that the local de�nitions coincide on overlaps of charts�

��� The center Z� associated to J� � M� � I� will be contained in top�I�� but

maybe not in top�I�� As we plan to set Z � Z�� the inclusion of Z� in top�I� will

become mandatory in order to know that the order of the weak transform I � � Ig

of I does not increase� Therefore we have to adjust the construction of J� so that

Z� � top�I�� Actually� we could also choose Z di�erently from Z�� but this would
yield new complications�

��� The center Z� may not be transversal to already existing exceptional compo�

nents in W � This would destroy the monomiality of the exceptional factors M and

M� of J and J� and produce an exceptional locus which is not a normal crossings

divisor�
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��� In some cases� namely when I � �xo�� the coe�cient ideal of I is zero and the

descent in dimension breaks down� Some substitute for coe�cient ideals has to be

found in this case�

��� When J� is already resolved and thus a principal monomial ideal� viz J� �

M� ��� the inequality ia���J���� 
 ia�J�� used above will no longer hold� since the

invariant of a resolved ideal should be the minimal possible value which cannot

drop again� Some other argument has to be found to show that ia�J� drops� In

particular� a suitable center for J has to be de�ned directly�

�$� It has to be shown that the invariant is upper semicontinuous and that its top

locus is regular�

�#� The hypersurface V of W is chosen adjacent to I at a� Its transform V � in W �

need no longer be adjacent to I � at a�� Thus commutativity as stated in the last

section may fail for the next blowup if V � is not replaced by a hypersurface which

is adjacent for I ��

In the next sections we shall show how to overcome all these di�culties� Only the

last problem �#� will require to assume that the characteristic of the ground �eld

is zero� The other problems are solved without reference to the ground �eld�

Let us �rst comment on the above list� Problems ��� and ��� are easy� In dimension

�� the ideal J is locally at a just the power of a coordinate �xo� supported on the

point� Blowing it up yields J � � �xo� � � with M � � �xo� and I � � �� so that J �

is resolved� As I was not � �else� already J would have been resolved�� its order

ordaI drops from o � � to ��

Problem ��� is handled with by allowing strati�ed ideals� Equipping W with a

suitable strati�cation �given by the constancy of the order of the relevant ideals�

we only require that the stalks of our ideals are the stalks of a coherent ideal along

the respective strata�

The other di�culties are much more serious� �
� is overcome by allowing only

hypersurfaces V which have weak maximal contact with I� i�e�� which maximize

the order of coe�V �I�� Then the order of coe�V �I� is by de�nition independent

of the choice of V � It has to be shown that when a varies� this order de�nes an

upper semicontinuous function along top�I�� This is done by showing that locally

along top�I�� the same V can be chosen for all stalks of I�

As for ���� note that when passing to the coe�cient ideal of I at a� we have the

local inclusion top�coe�V �I�� o� � top�I� where o � ordaI and top�coe�V �I�� o�

denotes the locus of points in V where J� � coe�V �I� has order � o� This is

immediately veri�ed from the de�nition of coe�cient ideals and left as exercise� If

J� factorizes into J� � M� � I�� then top�I�� need not be contained in top�J�� o�
if the order of I� is small �in particular� this happens if I� � ��� But the inclusion

top�I�� � top�J�� o� is the only way to get the inclusion top�I�� � top�I�� which

in turn is necessary to know that the center Z� associated to J� � M� �I� satis�es

aside of Z� � top�I�� also Z� � top�I�� Recall that these inclusions are used

when showing that the order of the weak transforms of I and I� do not increase�
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This trouble is overcome by replacing I by a modi�ed ideal P before passing to

the coe�cient ideal J�� This companion ideal P of I equals I if the order of I

is su�ciently large� and is the sum of I with a convenient power of M if this

order is small �the analogous construction will be applied for I�� see 
Setups� and

the appendix�� The companion ideal is modelled so that top�P�� � top�J�� o�
if J� � M� � I�� Moreover� the commutativity relation shall be preserved� At

equiconstant points of I the weak transform of P equals the companion ideal of

the weak transform Ig of I� The passage to the companion ideal before taking

the coe�cient ideal is a technical complication which has no deeper reason other

than guaranteeing the inclusion top�I�� � top�I� without loosing commutativity�

Let us now discuss problem ���� the transversality of Z with the exceptional locus�

This is a delicate point which has caused many troubles in the past� The idea

how to attack it nowadays appears for the �rst time in �Vi ��� Let F denote the

exceptional locus at the current stage of the resolution process� Let Z be the sub�

scheme Z� of W associated to J� neglecting in its construction the transversality

problem� If Z � Z� is not transversal to F � we could formulate a new resolution

problem by considering the ideal IV �Z� � F � de�ning the intersection of Z� with

F in V � Resolving it would yield a total transform which is a principal monomial

ideal �supported by the new exceptional components which arise during its reso�

lution process�� hence the weak transform would be equal to �� This signi�es that

the corresponding blowups separate Z� from F � i�e�� achieve Z� � F � ��
We see here that the separation of schemes can be easier formulated as a resolution

problem �the order of the ideal de�ning the intersection should become �� than

the transversality of schemes �there is no intrinsic invariant known which is able

to measure in a reasonable way the distance of a scheme from being a normal

crossings scheme�� Therefore we prefer to separate Z� from F in order to solve

the transversality problem�

There is one notational inconvenience with this� While separating Z� from F �

new exceptional components will appear� and these should not be separated from

Z�� since separating them will create new components meeting Z�� and so on�

Therefore it is necessary to put the new exceptional exponents in a bag and to

distinguish them from the old ones� which constitute F � The new components

will a priori be transversal to Z� and its transforms� since the centers chosen to

separate Z� from F lie inside Z��

Again we encounter a technical complication� We must record the exceptional

components which may fail to be transversal to the foreseen center� Moreover� we

should solve permanently the transversality problem for these dangerous compo�

nents� Once separation is established� the anticipated virtual center can really be

chosen as actual center� and blowing it up should improve the original singularities�

Instead of treating the resolution of J and the separation of the virtual center from

the exceptional locus alternately� both problems are taken care of simultaneously�

The trick is to multiply the companion ideal P of I by a suitable transversality

ideal Q before passing to the coe�cient ideal J�� So we set K � P � Q where

Q � IW �E� is the ideal de�ning the dangerous exceptional components of F in
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W � This ideal K is called the 
composition ideal�� In this way� the virtual center

will automatically be contained in top�K� � top�P � � top�Q�� hence in top�Q�

�here� the equality top�K� � top�P � � top�Q� is understood for the local top loci

at points a of W �� It thus lies by construction inside all dangerous exceptional

components of F �which will then no longer be dangerous��

We thus get the following sequence of ideals�

J � J � M � I � P � K � P �Q�
� J� � coe�V �K�� J� � M� � I� � P� � K� � P� �Q� � � � �

We have to ensure here for all ideals the correct commutativity relations with re�

spect to blowup� the appropriate inclusions of the various top loci and the transver�

sality of the resulting center with the exceptional locus� The burdening of the no�

tation caused by the introduction of the ideals P � Q and K is considerable� There

is no apparent way to avoid these� In addition� we have to know in each dimension

the multiplicities �� exponents� of the monomial factors M � M�� � � � and the col�

lection of dangerous exceptional components E� E�� � � � of F � A crucial point is to

distinguish carefully between objects which are globally de�ned and intrinsic� i�e��

do not depend on the choice of the local hypersurfaces� and those which depend

on these choices� are only de�ned locally and just play an auxiliary role�

The global and intrinsic objects are collected in the resolution datum� which will

be called 
singular mobile�� A mobile consists of the ideal J � a number c� the

control� which prescribes the law of transformation for J � and two sets D and

E of exceptional components� Both are strings �Dn� � � � � D�� and �En� � � � � E�� of

normal crossings divisors supported by the exceptional locus� where the index i

refers to the embedding dimension where the divisor will be used� The �rst divisors

Di de�ne in each dimension i the monomial factor Mi of the ideal Ji �here� Jn � J

and Jn�� � J��� We have to know this factor in order to be able to split from Ji
the singular factor Ii we are interested in� Only a posteriori Ii will appear as the

weak transform of some ideal from the previous stage of the resolution process�

The second divisors Ei collect precisely the dangerous exceptional components

with regard to the virtual center� Again� these appear in each dimension�

The local and non�intrinsic objects associated to a singular mobile are collected in

its 
punctual setup�� A setup is given by the choice of local �ags Wn 
 Wn�� 

� � � 
 W� of regular i�dimensional subschemes Wi of W at a given point a �here�

Wn � W andWn�� � W� � V �� These local hypersurfacesWi�� ofWi are chosen

adjacent to the respective ideals Ii �more precisely� to their companion ideals Pi��

They allow to de�ne and construct all the ideals mentioned above� These depend

on the choice of the �ag� but their orders� which will constitute the components

of our local resolution invariant� will be shown to be independent of this choice�

In this way the invariant is again intrinsic and an honest measure of the singular

complexity of the mobile�

Let us return to our list of obstructions� The next one is number ���� and relates

to the problem that the coe�cient ideal of an ideal of form K � �xo� is zero� This

problem is easily settled� If K � �xo�� then its support is regular and de�ned by
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fx � �g� It may therefore be taken as center �provided it is transversal to the

exceptional locus� as we shall assume in this discussion temporarily�� Blowing it

up transforms K into � �since the composition ideal K passes as I under blowup

to its weak transform�� Thus the ideal can easily be resolved� For notational

reasons it is however convenient to pursue the descent in dimension also in this

case� so as to have always the same length of the setup and the invariant� As

the zero ideal would produce in�nite orders and unpleasant terminology� we prefer

to de�ne J� in this case as the ideal �� with trivial factorization J� � M� � I��
In particular� also the companion ideal P� will be �� As for the transversality

ideal Q�� it can be shown that once K equals �xo� the transversality problem has

already disappeared in the respective dimension� so that also Q� can be taken

equal to � �say E� � ��� Hence K� � �� Now the descent to the next smaller

dimension continues in precisely the same way�

A similar reasoning applies to problem ���� which concerns the case where J � M ��
is already resolved� All subsequent ideals in lower dimension will be set equal to ��

However� one has to show that a center can be chosen which decreases the order of

the controlled transform of J �in order to lower eventually the order of the ideals

in one dimension higher�� The choice of the center in this case �again a priori

transversal to the exceptional locus� is of combinatorial nature and was sketched

in the hypersurface case xo 
 yr�� � � � yrkk above� The procedure works in general�

However� the improvement is captured through the transformation ofM instead of

I� and requires to insert a combinatorial component in between the components of

the resolution invariant in order to re�ect the improvement of an already resolved

ideal Ji � Mi � � in some dimension i 
 dimW �

We come to problem �$�� the upper semicontinuity of the invariant and the reg�

ularity of the center� The �rst had been already discussed above� and relies on

the fact that the constructions of punctual setups can be done locally in an entire

neighborhood of a point� Here it is important to know that the construction of

the various ideals commutes with specialization at points� For this� the notion of


tundeness� is useful� Stalks of ideals associated to other stalks of ideals are tuned

if both admit coherent representatives such that the correspondence is valid for

the stalks of these representatives at all points of suitably small neighborhoods� A

minor technical complication due to the consideration of strati�ed ideals consists

in de�ning tunedness with respect to the strata of an underlying strati�cation of

the ambient scheme� We refer to �EH� for more details�

The last problem �#� is the persistency of adjacent hypersurfaces under blowup�

Historically� this was the main obstacle to overcome� in the �fties� when Hironaka

and Abhyankar studied resolution of singularities under the guidance of Zariski�

Nowadays its solution is known by the name of hypersurfaces of maximal contact

�in the terminology of Hironaka� or of Tschirnhaus coordinate transformation �in

the terminology of Abhyankar�� Both only work in characteristic zero �or a char�

acteristic prime to the order of the ideal considered�� In positive characteristic�

the failure of maximal contact could not yet be replaced by some other concept�

Recall that we call a local regular hypersurface V in W at a adjacent to an ideal I

if under blowing up a regular center Z inside V � the locus of equiconstant points
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a� in W � above a is contained in the weak transform V � of V � This notion refers

to one blowup� In order to make the induction on the local embedding dimension

work along several blowups� we have to ensure that a hypersurface V can be chosen

in W at a whose successive transforms contain all equiconstant points above a for

any sequence of blowups ofW in regular centers contained in V and its transforms�

This property of V will be called permanent maximal contact with I at a� In the

literature� such hypersurfaces are simply called hypersurfaces of maximal contact�

As we will have to treat several concepts of contact simultaneously� it is better to

emphasize in the naming the key property �in this case permanence�� Permanent

maximal contact guarantees that after each blowup� if the order of the ideal has

remained constant� the transforms of the same hypersurface ofW can be chosen to

perform the descent in dimension� As a consequence� commutativity holds along

the whole sequence of local blowups until the order of I eventually drops �and not

just for one blowup��

This is an crucial and delicate point in the whole story
 so the reader may want to

contemplate this last paragraph�

Two things have to be distinguished here� The existence of hypersurfaces of per�

manent contact is a property of the series of equiconstant points under a sequence

of blowups� It may hold or fail� depending on how the world decided to be� Once

the abstract existence is con�rmed it remains to realize such hypersurfaces through

a special choice or construction� This is human labour� In characteristic zero� a

miraculously simple trick produces an explicit selection of hypersurfaces of perma�

nent maximal contact �not for all of them�� This construction cannot be carried

out in positive characteristic� and one may ask for alternative constructions�

But� h elas� there are none� It can be shown by examples that in positive charac�

teristic the series of equiconstant points above a given point a may leave at some

instant the transforms of any regular �or even singular� hypersurface through a�

The characteristic p world decided not to admit hypersurfaces of permanent con�

tact� In fact� the departure of equiconstant points from accompanying hypersur�

faces happens only after several blowups �see the section 
Problems in positive

characteristic��� So characteristic p is not harder because our techniques are not

appropriate or too limited� it is per se more di�cult�

Let us now explain how one can �nd hypersurfaces of permanent maximal contact

in characteristic zero� Suppose given an ideal I inW at a� and assume for simplicity

that I is principal� I � �f� for some polynomial f � Choose local coordinates

x� y�� � � � � yn so that V � fx � �g is adjacent to f � Let o � ordaf � As x appears in

the tangent cone of f by adjacency� a generic linear coordinate change �or simply

replacing yi by yi 
 cix with generic constants ci� will allow to assume that xo

appears in the expansion of f with non�zero coe�cient� say equal to �� We may

write f � xo 

P

i�o fi�y�x
i modulo xo�� with coe�cients fi � OV�a�

As seen earlier� the coordinates may in addition be chosen so that Z � fx � y� �

� � � � yk � �g and that the equiconstant point a� is the origin of the y��chart�

Thus the substitution of variables for the blowup is given by x � xy�� y� � y�
and yi � yiy� for � 	 i 	 k� respectively yi � yiy� for k 
 i� It yields at a� the
weak transform
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f � � xo 
 y�o�

P
i�o fi�y�� y�y�� � � � � yky�� yk��� � � � � yn�y

i
�x

i

modulo xo��� We wish to �nd criteria on V � fx � �g so that its transform

V � � fx � �g at a� is again adjacent to f �� This signi�es that that we have to

ensure that x appears in the tangent cone of f � provided that the order of f � has
remained constant at a� �i�e�� equal to the order o of f at a�� Now the key idea

� and this is not jumping to the eyes �but has been explained many times in the

literature� � is to look at the coe�cient fo���y� of the monomial xo�� of f � If it

is identically zero� also the coe�cient f �o���y� of the monomial xo�� of f � will be
identically zero� by the special choice of our coordinates and the induced coordinate

substitution� This is immediate� So this property� though coordinate dependent�

is persistent under blowup at equiconstant points� In addition� fo���y� � � implies

that V � fx � �g is adjacent to f in W at a� Accordingly� also V � � fx � �g is

adjacent to f � inW � at a�� We have found a stronger condition which automatically

persists under blowup�

It remains to show that the coordinates x� y�� � � � � yn can always be chosen so

that fo���y� is identically zero� Here� characteristic zero appears on the scene�

and the proof is then very short� Assume that fo���y� is non�zero� Replace

x by x � �
ofo���y� in f �this is not possible in characteristic p dividing o�� It

is immediately checked that� in the new coordinates� the coe�cient of xo�� has

become zero� This change of coordiantes may a priori alter the generators of I�Z��

But as f has order o along Z� the polynomial fo���y� belongs to I�Z�� so that

replacing x by x� fo���y� stabilizes I�Z��

We say that the hypersurface V � fx � �g is osculating for I � �f� at a if the

coe�cient of xo�� in the expansion of f is identically zero� For ideals I which

are not principal� it is required that there is at least one element f in I of order

o � ordaI with this property�

We have seen before that osculating to I implies adjacent to I� As we have just

shown that osculating persists at equiconstant points under blowup� we conclude

that osculating also implies permanent maximal contact� and that�s what we were

looking for�

This is one of the rare instances in mathematical research where reality produces a

truly favorable coincidence� The existence of hypersurfaces of permanent maximal

contact in characteristic zero is a coup de chance� which� presumably� has no deeper

reason than a simple computation on Taylor expansions and blowups� Once you

have made the right guess by looking at the xo���coe�cient� the proofs are really

an exercise� as we saw above� All this breaks down in positive characteristic� and

no substitute for permanent maximal contact has been found up to now�

This concludes our discussion of the various obstructions which have to be han�

dled before setting up the strategy for the proof of resolution of singularities in

characteristic zero� In the next sections� we shall describe the respective solutions

to the problems in more technical detail� After this we will compute a few explicit

examples from scratch�

The busy or moderately interested reader is advised to conclude here the lecture

of the article�
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CHAPTER �� CONSTRUCTIONS AND PROOFS


� Mobiles

With this section we start to formalize the ideas and concepts described heuristi�

cally up to now� This will require to read the next paragraphs more carefully and

to carry out occasionally private computations� At �rst sight� the concept and use

of mobiles is not easy to grasp� A concrete example running with the de�nitions

shall help to capture their �avour� Nevertheless� mobiles can only be understood

together with their setups which will be explained in the section thereafter� The

reader is advised to go through this and the next section concurrently with the

section 
Examples��

The resolution of singular schemes and the monomialization of ideals will be de�

duced from the resolution of a more complicated object called singular mobile�

A mobile consists of data which allow to describe at each stage of the resolution

process the portion of a given ideal and of its successive coe�cient ideals which has

already been monomialized� and which keeps track of the dangerous exceptional

components which may fail to be transversal to the local �ags� Such kind of objects

appear in various disguises in the literature� e�g� by the name of resolution datum

or idealistic exponent �Hironaka�� trio� quartet and quintet �Abhyankar�� basic

object �Encinas�Villamayor� and in�nitesimal presentation �Bierstone�Milman��

They are all di�erently de�ned� sometimes local sometimes global� intrinsic or not

intrinsic� and do not necessarily gather the key information� so they have either to

be completed by additional information �viz the knowledge of the prior sequence

of blowups� or to be considered modulo equivalence relations�

The advantage of mobiles in comparison to these other resolution objects is that

they collect precisely the intrinsic global information which we wish to know at each

stage of the resolution process� and that they allow a local surgery �through the

construction of setups� which produces the local resolution invariant de�ning the

center and yielding the required induction� As such� we can de�ne the transform

of a mobile under blowup without needing any additional ingredient� which in turn

allows to speak of the resolution of a mobile� So let us de�ne them�

A singular mobile in a regular ambient scheme W is a quadrupleM � �J � c�D�E�

where J is a coherent ideal sheaf in a regular locally closed subscheme V of W � c

is a positive number� the control� and D � �Dn� � � � � D�� and E � �En� � � � � E�� are

strings of �strati�ed� normal crossings divisors Di and Ei in W �here� the index n

denotes the dimension of V ��

In most cases� J is the ideal we wish to resolve or to monomialize� and is an

ideal of W � so that V � W in this case� Ideals living in locally closed regular

subschemes of W appear during the descent in dimension� thus in the de�nition�

the ambient scheme of the ideal J is V instead of W � The control c prescribes the

transformation rule for J � Under blowup� J will pass to the controlled transform

J 
 � J� � I�Y ���c of J with respect to c� For J itself one could take c � �

so that J passes to the total transform� but when descending in dimension the

coe�cient ideals will have to pass under blowup � as we have seen earlier � to the
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controlled transform in order to ensure commutativity� Therefore it is convenient

to consider from the beginning controlled transforms� In addition� the control �xes

the objective of the resolution process� When the order of J drops below c� we

declare our goal to be achieved�

The control c should actually carry an index 

 say c � c�
 to indicate that it comes

from a dimension one higher than the dimension of V � When constructing the setups of

a mobile
 the ideals Ji will have controls ci�� given as the orders of the ideals Ki���

As a general policy
 we will try to treat each dimension in precisely the same fashion� This

makes things more systematic
 and helps to produce automatized proofs� In particular


the restriction of a mobile to some regular smaller dimensional subscheme should again

be a mobile�

The divisors Di and Ei of a mobile will be supported by the exceptional compo�

nents produced so far by the resolution process� So� for instance� at the beginning

of the resolution process� all Di and Ei are empty� Under blowup they obey a

precise law of transformation� prescribed by the resolution invariant� The divisors

Di will carry multiplicities� their restriction to the member Wi of the local �ag of

a setup indicates the monomial factor Mi which will be taken o� from the ideal

Ji of a punctual setup of the mobile� say Ji � Mi � Ii with Mi � IWi
�Di �Wi� a

principal monomial ideal �see the next section for the precise de�nition of a punc�

tual setup of a mobile and of local �ags� here and in the sequel� IV �X� denotes

the ideal de�ning a subscheme X of V �� The string D � �Dn� � � � � D�� is called

the combinatorial handicap of M�

Observe that the Di are divisors in W � wheras the monomials Mi live in Wi �as

said earlier� the index i of Di refers to the dimension where Di will operate�� The

reason is that� as such� the Di can be de�ned intrinsically� i�e�� independently

of the chosen �ag� whereas the monomials Mi will depend on Wi� In order to

know that Mi is really a principal monomial ideal it has to be shown that Wi

meets Di transversally� This is one of the transversality assertions which has to

be established in the course of the proof�

In practice
 the Di carry a small additional combinatorial information
 their label 
cf�

�EH� for the precise de�nition�� The label of Di is a pair of natural numbers� It serves

only in case the ideal Ji � Mi � Ii is resolved
 say Ji � Mi and Ii � �
 in which

case the various components of Di have to be ordered in some way to be able to choose

systematically one of their intersections as center� The label induces such an ordering�

The divisors E � �En� � � � � E�� are reduced and will be called the transversal

handicap of the mobile� Once a local �ag Wn 
 � � � 
 W� is chosen �there are

certain rules for doing this�� the divisor Ei collects those exceptional components

which may fail to be transversal to Wi���

The shift by � in the indices is due to the fact that the transversality ideal Qi �

IWi
�Ei �Wi� associated to Ei lives in dimension i but operates in dimension i � ��

As Wi will be transversal to Ei
 Qi is a principal monomial ideal in Wi� By the choice

of Ei
 its top locus top�Qi� lies inside the components of the exceptional locus F to

which the next hypersurface Wi�� may not be transversal� This is a clever device to

achieve the transversality of the center Z 
which will lie inside top�Qi�� with F without

introducing a singular ideal of possibly large order 
as IWi��
�Ei �Wi��� would be��
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A thorough investigation of the transversality problem shows that it is more practicable

to treat in each dimension the transversality problem of Wi with the exceptional locus

rather than to formulate only one transversality problem for the center Z at the end of

the descent in dimension� Thus transversality ideals appear in each dimension�

To summarize� the ingredients of a mobile M � �J � c�D�E� prescribe for the

ideal J a transformation law under blowup� given by the control c� a factorization

law for the successive coe�cient ideals Ji of a setup of M with monomial factor

Mi� given by the combinatorial handicaps Di� and a partition of the exceptional

components of F for transversality records� given by the transversal handicaps Ei�

Let us look at a concrete example� Consider the ideal J generated by the polynomial

f � x� 
 y� 
 zd with d � �� The ambient scheme is V � W � A�� Assume we

wish to resolve the scheme X de�ned by J in W � It has only one singularity
 at the

origin � of A�
 and there the order of J is �� By induction
 it is certainly su�cient to

make the order of f drop below �� So we will set the control c of our mobile equal to ��

In W there are no exceptional components yet
 hence the combinatorial and transversal

handicaps are trivial
 D� � D� � D� � � and E� � E� � E� � �� The mobileM
we associate to J is

M � �J� �� ��� �� ��� ��� �� ����
The next steps will be to de�ne the transform of a mobile under blowup� and

to formulate what we mean by a resolution of a mobile� The transform of M is

only de�ned for a speci�c blowup of the ambient scheme W � the one given by

the center Z constructed from the mobile as the top locus of the local invariant

associated to it� To prove that mobiles admit a resolution we will have to show

that the transform M� of the mobile M under the blowup of W with this center

has improved� which will be re�ected by the decrease of the local invariant when

passing from M to M��

Everything relies on constructing an appropriate local upper semicontinuous in�

variant of mobiles which strati�es W and measures the local complexity of M� It

should not depend on any choices but just on the mobile� This invariant has to

satisfy two conditions� The locus of points where it attains its maximal value on

W � its top locus� shall de�ne a permitted center Z of blowup� And when blowing

up this center� the invariant of the transformed mobile shall decrease at all points

of the new exceptional component Y ��

This conceptually simple program requires to develop an adequate de�nition of

the local invariant � which is a truly subtle task� It is much harder to �nd a

suitable invariant than to prove afterwards that it actually works� It�s just as with

di�erential equations� Once you guess a solution correctly� it is almost trivial to

verify that it is indeed a solution� For the invariant the veri�cation is not as easy�

but rather because of the technical complexity than for other reasons� Most proofs

are straightforward� However� it will be instrumental to set up all objects and the

relations between them very systematically �although this may create some objects

which only play the role of a stowaway�� Otherwise the proofer would be quickly

lost in the thicket�

The resolution invariant we shall associate to a mobile is a local numerical object

for each point a of W � It should live in a well ordered set so as to allow induction�
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In our case it will be a vector of non�negative numbers in N�n �equipped with

the lexicographic ordering�� each component being the order of an ideal �with the

exception of the components mi which are pairs of numbers� always equal to ��� ���

except once� when oi is for the �rst time zero� in which case mi is a label��

ia�M� � �on� kn�mn� on��� kn���mn��� � � � � o�� k��m���

The de�nition of ia�M� requires the concept of a punctual setup of a mobile at a

point �described in the next section�� For the moment it su�ces to know that each

mobile we shall meet admits punctual setups� and that a setup at a is given by a

�ag Wn 
 � � � 
W� of locally closed regular i�dimensional subschemes Wi of W at

a� To such a �ag we shall associate strings of ideals �Jn� � � � � J��� �In� � � � � I�� and

�Kn� � � � �K��� the indices referring to the scheme Wi where the respective ideals

live� They are related to each other as follows� Jn is the stalk of J at a� Each

Ji factors into Ji � Mi � Ii with Mi � IWi
�Di �Wi� the exceptional monomial

prescribed by the combinatorial handicap Di� The ideals Ki are products Pi �Qi

where Pi is the companion ideal of Ji �if you have forgotten the de�nition� you may

as well think of Pi as being Ii�� and where Qi � IWi
�Ei �Wi� is the transversality

ideal prescribed by the transversal handicap Ei� Finally� Ji�� is the coe�cient

ideal of Ki in Wi���

We accept and perfectly understand that the reader may consider this bulk of

ideals hopelessly confusing� To comfort him� let us see to what they boil down at

the beginning of the resolution process where all Di and Ei are empty� Then the

ideals Ji � Ii � Ki are equal for each i and Ji�� � coe�Wi��
�Ji� since Pi � Ii

and Qi � �� So there is just one string of ideals �Jn� � � � � J�� appearing in the

�ag Wn 
 � � � 
 W� at a� and Ji�� is the coe�cient ideal of Ji in Wi��� In the

general case� we shall denote a setup also by �Jn� � � � � J��� though the �ag and the

other ideals are part of the structure� It can be checked that the �ag determines

all the remaining ingredients of a setup� Not all mobiles admit punctual setups

�because the factorization Ji � Mi � Ii need not hold if Di is not appropriate��

but those arising under blowup as the transforms of a mobile with initially empty

combinatorial handicap will do� These are the only ones we shall consider�

We illustrate these objects in our current example� At a � �
 the punctual setup and

the local �ag W� 
 W� 
 W� for M will be de�ned as follows 
see the next section

for the justi�cation�� We set W� � W � A� and J� � J � �x� 
 y� 
 zd�� There

are no factorizations yet
 hence J� � I� � M� � I� with M� � IW�
�D�� � �� For

the same reason
 all companion ideals Pi equal Ii
 and
 since Ei � �
 the transversality

ideals are trivial Qi � �
 so that Ki � Ii� The �rst descent in dimension goes via

the coe�cient ideal J� of K� � I� in W� � fx � �g
 say J� � �y� 
 zd�� Again


J� � I� � M� � I� with M� � IW�
�D�� � �� The second descent is similar


W� � fx � y � �g and J� � �zd� � I� � M� � I� with M� � IW�
�D�� � ��

The components oi and ki of the invariant are de�ned as the orders oi � ordaIi
and ki � ordaKi of the ideals Ii and Ki� At the beginning of the resolution process

we have oi � ki � ordaJi since Ji � Ii � Ki� The combinatorial components mi

will be explained later� All of the mi except one play no role at all� We just

write them in order to keep the components of the invariant systematic in each

dimension� The only relevant mi occurs for the maximal index i so that oi � ��

��



This signi�es that Ii � � locally at a� hence Ji � Mi is already monomialized �say

resolved�� As we have seen in the last section� it is necessary in this case to choose

the center combinatorially and to build up a separate induction� The nontrivial

component mi is precisely the combinatorial resolution invariant which takes care

of a monomial principal ideal Ji supported by exceptional components�

In the example
 we have o� � k� � �
 o� � k� � �
 o� � k� � d and all

mi � ��� ���

The critical point in the de�nition of the invariant is to specify a class of local �ags

Wn 
 � � � 
 W� so that the resulting invariant does not depend on the choice of

the �ag within this class� This will be achieved by requiring that the hypersurface

Wi�� of Wi is osculating for the companion ideal Pi of Ji� Then all components of

the invariant become automatically intrinsic� and one can show that ia�M� de�nes

an upper semicontinuous function on W �

Once we dispose of the local invariant� we set

Z � fa �W� ia�M� is maximal lexicographicallyg � top�ia�M���

This is a closed subscheme of W � By induction on the dimension it is shown that

it is regular and transversal to the current exceptional locus� Let W � �W denote

the induced blowup with new exceptional component Y �� We are going to de�ne

the transform M� of the mobile M � �J � c�D�E� in W �� After this is done it has

to be shown that M� admits again punctual setups at each point� So its invariant

ia��M�� is well de�ned and can be compared with ia�M�� Using the various

commutativity relations �they carry on the ideals of the setups� see the section


Commutativity�� it is then strikingly simple to show that ia��M�� 	 ia�M� holds

with respect to the lexicographic order� Indeed� the components of the invariant

are orders of ideals which pass under blowup by 
Commutativity� to their weak

transform �so their order does not increase� since the center lies in their top locus��

provided that the earlier components of the invariant have remained constant� This

yields ia��M�� 	 ia�M��

In order to show that the invariant actually drops� say

ia��M�� 
 ia�M��

we are confronted with two scenarios� Assume that ia��M�� � ia�M� has remained

constant� If all components oi of ia�M� are positive� we get a contradiction because

the weak transform of I� will be � �this always happens for ideals in one dimensional

ambient spaces�� so o�� � � 
 o�� Otherwise� let d be the maximal index so that

od � �� Hence Id � � and Jd � Md is a monomial� A computational argument

shows that the combinatorial component md of ia�M� drops� m�
d 
 md� see the

section 
Shortcuts� for details� We conclude that for any point a� above a � Z the

invariant drops� ia��M�� 
 ia�M�� This establishes the required induction step

for the resolution of mobiles�

So let us indicate brie�y how the transformM� is de�ned� The rules are prescribed
by the desired transformation laws for the respective ideals of a punctual setup

of M� The ideals Ii � which yield the components oi of the invariant � shall

pass to their weak transforms at a� as long as the higher indexed components of

�$



the invariant have remained constant at a� �otherwise oi � ordaIi and the lower

indexed components are irrelevant� by de�nition of the lexicographic order�� As

Ji � Mi � Ii� this gives the transformation formula for the transversal handicap

Di� depending on the value of the truncated invariant �on� � � � � oi��� ki���mi��� at

a�� Namely� if �o�n� � � � � o
�
i��� k

�
i���m

�
i��� � �on� � � � � oi��� ki���mi���� we shall set

D�
i � D�

i
�oi�ci����Y � where ci�� is the control de�ning J
�
i � J 


i � J�i �I�Y ���ci�� �
As Ji is the coe�cient ideal of Ki�� at a� ci�� will equal ordaKi�� in order to

have J �i the coe�cient ideal of K �
i�� � Kg

i�� in W �
i � If �o

�
n� � � � � o

�
i��� k

�
i���m

�
i��� 


�on� � � � � oi��� ki���mi��� at a�� then D�
i is set equal to � �because otherwise the

factorization J �i � M �
i � I �i may fail� and since the components of the invariant in

dimension i are irrelevant in this case��

This is a bit technical� The computation of transforms of mobiles will be extensively

practiced in the example section� In the example from above the transform M� of M
is de�ned as follows�

The center of the blowup is the origin Z � f�g of W � A�� As we chose the control

c � � � ordaJ 
 we have as controlled transform J � � J� � I�Y ���� of J the weak

transform J � � Jg of J � The transversal and the combinatorial handicaps are strati�ed

divisors
 so their de�nition depends on the points ofW � we are looking at� We shall only

pick one point a�
 the origin of the z�chart
 which is the most interesting point�

In the induced coordinates in the z�chart
 the exceptional component Y � is de�ned by

fz � �g
 and the total transform J� of J equals J� � �x�z� 
 y�z� 
 zd� 
replace

x and y by xz and yz�� Therefore
 J � � J� � z�� � �x� 
 y�z� 
 zd���
 which we

may write as the �rst ideal J �� � J � of our punctual setup of M�� As this ideal equals

the weak transform of I� � J�
 we have the factorization J �� � I �� � M �
� � I �� with

I �� � �x� 
 y�z� 
 zd��� and M �
� � �� It follows that the �rst component D�

� of the

combinatorial handicap D� of M� equals ��
If d 
 �� the order of I �� has dropped at a� from � to d��� In this case
 our objective to

lower the order of J is already achieved� If d � ��
 the order has remained constant and

we have to look at further components of the setup and the invariant� As the order of I ��
has remained constant at a�
 we may take for the local hypersurface W �

� the transform

Wg

� ofW� � fx � �g 
see again the next section for justi�cation�� In the z�chart
W �
�

is given as fx � �g� As Z is transversal to W� 
because it is contained in it�
 Y � and
W �

� will be transversal� This means that Y � will pose no transversality problems with

respect to W �
�
 hence we set the transversal handicap E�

� equal to E�
� � � 
recall that

the transversal handicap Ei�� takes care of the memberWi of the �ag in one dimension

less which may cause transversality problems��

As D�
� � E�

� � �
 the companion ideal P �
� equals I �� and the transversality ideal Q�

�

equals �
 so that K �
� � I �� � �x�
 y�z�
 zd���� Its coe�cient ideal in W �

� � fx �

�g is J �� � �y�z� 
 zd���� It factorizes into J �� � �z�� � �y� 
 zd��� � M �
� � I ��

with M �
� � �z�� and I �� � Ig� � �y�
 zd��� the weak transform of I� � �y�
 zd��

Therefore the second component D�
� of the combinatorial handicap D� ofM� equals at

a� the divisor D�
� � � � Y ��

At this stage
 we have to distinguish two cases� If d 
 ��
 the order of I �� has dropped

at a� from � to d � �
 and a new hypersurface W �
� has to be chosen to complete the

construction of the setup 
which
 in any case
 is irrelevant
 since we know already that

the invariant ia��M�� has dropped lexicographically at a���

�#



We shall concentrate on the more delicate situation where d � ��
 so that orda�I
�
� �

ordaI� � �� As before
 we may conclude that E�
� � �
 so that Q�

� � � and K �
� �

P �
� � I ��� Accordingly
 we choose for the next memberW �

� of the local �ag the transform

W �
� � Wg

� of W� � fx � y � �g
 which
 in the z�chart we are considering
 has the

same equation W �
� � fx � y � �g� The resulting coe�cient ideal of K �

� � I �� equals

J �� � �zd� � �zd� � � with M �
� � �zd� and I �� � Ig� � �� We see that the order o��

of I �� has dropped at a� from o� � d to o�� � �
 and that D�
� � d � Y ��

The transformed mobile M� will be
 on the stratum of the local invariant through a�

and in case d � ��
 of form

M� � �J �� �� ��� � � Y �� d � Y ��� ��� �� Y ����

Recall that the various divisors of the handicaps are strati�ed
 so that they may look

di�erently at other points of W �� The components of the invariant of M� at a� are

o�� � k�� � �


o�� � k�� � �


o�� � k�� � �


m�
� � m�

� � ��� ��


m�
� � �d� ���

The combinatorial invariant m�
� in dimension � has �rst component the order of M �

�


the second � is part of the label of M �
� which we need not specify here� You may believe

that the next center Z � of blowup is the origin a� of the chosen z�chart in W �� We leave

it as a lengthy but worthwhile exercise to compute the next transformM�� of the mobile

and its punctual setups at all points of W ���

We return to the general framework of mobiles and setups� Similarly as the ideals

Ii� the ideals Ki � which yield the components ki of the invariant � shall pass

under blowup to their weak transforms at a� as long as the earlier components

�on� � � � � oi��� ki���mi��� oi� of the invariant have remained constant at a�� by the

same reasoning as before� As Ki � Pi � Qi and P �
i � Pgi at a�� we conclude that

Q�
i � IW �

i
�E�

i � W �
i � should be the weak transform of Qi� This is �ne� because

it turns out that we can choose for W �
i the weak transform Wg

i of Wi at a��
Setting E�

i � Egi is the correct choice for the transversal handicap� because the

new exceptional component Y � will a priori be transversal to W �
i�� � Wg

i���

A detailed explanation may be helpful here to make things more explicit� The hyper�

surface Wi�� of Wi is chosen osculating for Pi
 and P �
i will equal Pgi at points a�

where the truncated invariant �o�n� � � � � o
�
i��� k

�
i���m

�
i��� o

�
i� of M� equals the trun�

cation �on� � � � � oi��� ki���mi��� oi� of the invariant of M�� By the persistence of

osculating hypersurfaces at equiconstant points
W �
i�� � Wg

i�� will again be osculating

for P �
i 
since o�i � orda�P

g

i � ordaPi � oi at a
���

As the center Z was contained locally in Wi��
 the new exceptional component Y �

is automatically transversal to Wg

i��� Hence it need not be added to the transversal

handicap E�
i� Only if a new osculating hypersurface W �

i�� has to be chosen 
because

the order of P �
i � Pgi has dropped or because P �

i �� Pgi �
 E�
i must contain in addition

to the transform of Ei also the component Y ��

��



At points a� where �on� � � � � oi��� ki���mi��� oi� has dropped we set E�
i equal to the

whole exceptional locus minus the components belonging to E�
n� � � � � E

�
i�� which

have already been taken care of by the transversal handicaps in higher dimensions�

We see here clearly why both D�
i and E

�
i will be strati�ed normal crossings divisors

in W ��

We are left to de�ne the control c� of M�� It is simply c except if the maximal

order of J � on W � has dropped below c� in which case this maximum is chosen�

This gives a rough idea how a mobile transforms under blowup� The important

thing is that M� does not depend on any choices �i�e�� not on the �ags chosen

for M�� because the components of the invariant are independent� In conclusion�

mobiles are a somewhat heavy and slowly moving vehicle� but they run and run

and run � � � � until they are resolved�

�� Setups

To motivate the de�nition of setups of mobiles� let us assume that we have already

blown up several times and have thus arrived at an ideal J in W � It will be the

controlled transform of the ideal we started with � with respect to a given control

c �you may just as well think of J as being the total transform�� The exceptional

components in W produced by the prior blowups will be denoted by F � The ideal

J factorizes into J � M � I where I denotes the weak transform of the ideal we

started with� and where M is a locally principal monomial ideal supported by F �

The mobile M for which we wish to construct a punctual setup will be of form

M � �J� c�� D�E� where we assume for simplicity that J is an ideal in W �and

not in a regular subscheme�� The control c� carries now an index 
� This is

for notational reasons� because the ideals Ji will be governed by controls ci��

associated to ideals Ki�� in one dimension higher� So c� shall suggest cn�� with

n � dim W � We shall assume that the handicaps D and E have been constructed

as certain transforms of the handicaps of the initial mobile�

Recall that we wish to transform the entire ideal J into a principal monomial ideal� We

measure the distance of J from being a principal monomial ideal by factorizing J into

J � M � I and by considering the order o of I � The smaller o is the closer we are to the

�nal goal� Observe here that this kind of measurement is relatively dull� For instance
 if

J is from the beginning a principal monomial ideal
 our invariant is not able to capture

this� Instead it is necessary to blow up several times until all factors of J appear as

exceptional components 
with multiplicities�
 i�e�
 J � M � �� It�s only then that the

invariant will tell us that the ideal is resolved�

There have been several attempts to measure directly the distance of an ideal from being

a principal monomial ideal
 or
 said geometrically
 of a scheme from being a normal

crossings divisor� None of them succeeded to build up a general induction argument for

resolution� The problem is that the natural invariants one could think of are related to

the Newton polyhedron of the ideal and are therefore very much coordinate dependent�

This would not matter too much if the coordinate choices were compatible with the

coordinate substitutions occuring in blowups� There are of two types�

��



The monomial substitutions of the coordinates do not pose problems
 but the translations

which are necessary in the exceptional divisor to compute Taylor expansions
 do� These

translations can also be applied before blowing up and then correspond to Borel linear

coordinate changes
 i�e�
 changes given in suitable coordinates by upper or lower triangular

matrices� Such changes a�ect considerably the shape of the Newton polyhedron�

However
 some characteristics of the Newton polyhedron remain unchanged
 e�g� its


integral� distance from the origin 
which is just the order of the ideal at the origin� or

certain projections of the Newton polyhedron to coordinate planes 
which correspond to

passing to the coe�cient ideal of the ideal�� It is certainly worth to search for further

measures of monomiality�

The ideal I is the part of J we are mainly interested in� and whose order shall

decrease� Our center Z for the next blowup will be chosen in its top locus top�I��

As we already explained �and this is particularly relevant in the next smaller

dimensions�� the center should also be contained in top�J� c�� of points where j

has order at least c��

Namely
 if J is is the coe�cient ideal of some idealK� of order c� at a
 as will occur in

lower dimensions
 we have top�J� c�� � top�K�� and wish to ensure that the center

lies inside top�K��� The simplest way to achieve this is to require that the center lies

in top�J� c���

As top�I� may fall outside top�J� c��� we replace I by an ideal which is su�ciently

close to it and which ensures the inclusion of top loci� This substitute for I is the

companion ideal P of J � M � I and the control c�� It shall satisfy top�P � �
top�I� � top�J� c��� have the same order as I and behave under blowup similarly

as I� A suitable de�nition of P is as follows

P � I 
M
o

c��o if � 
 o � ordaI 
 c��

P � I otherwise�

The rational exponent could be avoided by placing P � Ic��o
Mo if � 
 o 
 c��

But then I and P would have di�erent orders thus burdening the notation and

complicating the transformation laws� We leave it to the reader to de�ne ideals

with rational exponents as equivalence classes of pairs consisting of an ideal and

a number� The companion ideal satis�es top�P � � top�I� � top�J� c�� as desired�

Moreover� it behaves well with respect to taking weak transforms� Indeed� if

c�� � c� and J � � J 
 � M � � I � with I � � Ig� and if o� � o holds for the orders of

I and I �� then the companion ideal P � of J � with respect to J � � M � � I � and c��
equals the weak transform Pg of P �

We give the proof of this commutativity relation� If o� � c�� the assertion is clear

since P � I and P � � I � in this case� So assume that o� 
 c��� From M � �

M� � I�Y ��o�c� we get P � � I � 
 �M ��
o�

c�
�
�o�

� Ig 
 �M��
o

c��o � I�Y ���o �

�I� 
 �M��
o

c��o � � I�Y ���o � Pg�

We now choose� locally at a� a regular hypersurface V � W� in W which is

osculating for P � Such hypersurfaces exist locally in characteristic zero� though

need not patch globally� We shall use V to de�ne the coe�cient ideal which

performs the descent in dimension� Before doing so� notice that V need not be

��



transversal to the exceptional locus F � As the center will be locally included in

V � it may neither be transversal� However� if we knew that it is contained in the

intersection of V with F � transversality would be guaranteed� This inclusion can

be achieved by multiplying P with the ideal Q de�ning F in W � The composition

ideal K � P �Q will then satisfy top�K� � top�P � � top�Q� which in turn lies in

all components of F it meets�

Other choices ofK are possible
 for instance the equilibrated sum of powers of P and Q


cf� �EV ��� The exponents have to be chosen so that top�K� � top�P �� top�Q� and

that the de�nition is compatible with passage to weak transforms under blowup� The

de�nition K � P �Q used here and in �EH� is simpler than in �EV ��
 but less e�cient

for implementations of the algorithm�

The center of blowup will lie inside top�K� and hence in all components of F it

meets� Therefore it would be appropriate to set Q � I�F �� It turns out that

with this choice of Q the corresponding centers would be too small� and actually a

resolution would be never achieved �essentially� because V can never be separated

by blowups from the whole exceptional locus F � since the new components which

appear during the separation process will meet again V �� So we take for Q instead

of I�F � the ideal I�E� where E collects only the �dangerous� components of F

with respect to V � i�e�� those which may fail to be transversal to V � These can be

determined easily and have been described in 
Mobiles�� The ideal Q is called the

transversality ideal of J � M � I� It depends on J because E depends on J �

Let us pause to summarize what we are up to� First we decompose J into J � M �I
and agree to take o � ordaI as the �rst component of the resolution invariant

ia�M�� As the center will be de�ned as top�ia�M�� it will lie in top�o� � top�I��

Next we associate to I the companion ideal P and an osculating hypersurface

V for P � We specify a �reduced� divisor E of exceptional components and set

Q � I�E� and K � P � Q� We do this for two reasons� First to force the center

inside all components of F it intersects �with the drawback of getting possibly a

relatively small center�� secondly� because resolving K instead of I will separate F

from V � and then the center will and can be chosen su�ciently large� To include

the resolution �� monomialization� of K to our program� we de�ne the second

component of the invariant ia�M� as the order k of K at a�

ia�M� � �o� k� � � �� � �ordaI� ordaK� � � ���

In this way� the center Z � top�ia�M�� will lie inside top�I� and top�K�� the latter

being included in top�P � and top�Q�� hence in the intersection of the components

of E� As ordaK � ordaP 
 ordaQ � ordaI 
 ordaQ� the second component k

measures the order of Q� i�e�� how far Q is from being resolved� Under blowup� all

four ideals I� P � Q and K will pass at equiconstant points �here equiconstant is

meant with respect to the prior components of the invariant� to their respective

weak transforms�

It could be suspected that it is easier to postpone the transversality problem until the

moment a virtual center C is found via I 
 P and their successive coe�cient ideals� If C

is already transversal to the entire exceptional locus F 
 it is taken as the actual center

Z 
 if not
 the ideal I�C � F � is added to the resolution problem�

�




This quite natural approach leads to an unpleasant situation which is due to the com�

binatorial invariant associated to a resolved ideal Ji � Mi � � in a certain dimension

i� It appears as a component mi in the resolution invariant
 and is the only component

which may increase when the center is too small� As resolving the ideal I�C � F � by

auxiliary blowups requires small centers
 the component mi will indeed increase and the

induction breaks down� The invariant mi and the combinatorial resolution problem will

be described later on�

Let us continue our way through the setup of a mobile� The next step is the

descent in dimension� Let J� be the coe�cient ideal of K in V at a �recall that V

is a local hypersurface of W at a which is osculating for P �� If K is bold regular�

i�e�� generated by a power of a coordinate� K � P � Q � �x�k� and consequently

V � fx � �g� then the coe�cient ideal of K in V would be zero� so we set instead

J� � � in this case� Otherwise we may really take for J� the coe�cient ideal of

K as de�ned earlier� since it will be non�zero�

When passing to the coe�cient ideal a certain coherence property is required� The

local hypersurface V ofW is chosen for each a �W � and di�erent amay yield quite

di�erent hypersurfaces and coe�cient ideals� This in turn may destroy the upper

semicontinuity of the order of the coe�cient ideal �which will form a component

of the resolution invariant�� and also the �local� coherence of the setup in lower

dimensions�

To confront this problem� the easiest and most e�cient solution is to choose the

same hypersurface V for all points a of the top locus top�P � of P � at least locally

along top�P �� This is possible in characteristic zero� since the construction of V

via derivatives extends along top�P � to a neighborhood of the given point a �in

positive characteristic� some detour has to be taken by stratifying top�P � further�

but the construction still works�� It is checked that V contains top�P � locally at a�

and that V is osculating for P at all points of top�P � su�ciently close to a� Thus

we could really work in the open subschemes of a su�ciently �ne open covering of

W instead of working in local rings� As all constructions extend to neighborhoods

we whall stick for simplicity to the punctual setting via local rings� That�s why

setups are called punctual� It is shown that punctual setups can be de�ned as the

specializations of setups at points in entire neigborhoods� and are therefore in a

suitable sense �coherent� �with respect to the underlying strati�cation��

In positive characteristic
 the top locus of P has to be strati�ed by its local embedding

dimension to �nd hypersurfaces which work for whole neighborhoods of points on a

stratum� Osculation with P cannot be realized and has to be replaced by weak maximal

contact
 with the drawback that this property is not persistent under blowup�

We shall not discuss the aspects of coherence any further� and content ourselves to

state that all constructions involved in a punctual setup of a mobile �factorizations�

companion� transversality and composition ideals as well as coe�cient ideals� are

su�ciently coherent� The coherence always refers to the strata of the strati�cation

given by the earlier components of the invariant� and is encapsulated in �EH� by

the concept of tunedness�

So let J� be the coe�cient ideal of K in V at a� locally along top�K�� This

is by de�nition the local top locus of K� i�e�� the top locus of K restricted to a
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su�ciently small neighborhood of a in W � Thus along top�K� the order of K is

constant and equal to ordaK� We denote by c this value and associate it to J�
as its control on V � W�� This signi�es that under blowup� J� will pass to the

controlled transform J �� � J 

� � J� � I�Y ���c with respect to c� This ensures that

the coe�cient ideal of K � � Kg in V � � V g equals J �� at points a� where the

order of K has remained constant �K�equiconstant points��

We should brie�y indicate the di�erence between the order k � ordaK of K at a point

a of W and the control c of J� in V � The �rst will vary along W and form the second

component of the invariant ia�M�� The second is given for each a in W as the value

of k along the local stratum top�K� and will be considered as a constant associated to

the local hypersurface V of W at a� As the same V can be chosen locally for all points

a of top�K� and as k is constant along top�K�
 this choice for the control c of J� is

justi�ed�

The de�nition of c and the construction of J� conclude the descent in dimension�

which started with J � It is carried out locally along the stratum of the �rst two

components o and k of the invariant� The local hypersurface V � W� will contain

an open set of this stratum and there all stalks of J pass to the respective stalks

of J� at points of W��

It remains to indicate how J� factorizes� This is prescribed by the second compo�

nent D� � Dn�� of the transversal handicap D of the mobile� Before any blowup�

D� � � and J� � I�� After a sequence of blowups� D� will be the normal cross�

ings divisor which yields J� � M� �I� withM� � IW��D��W�� and I� the weak

transform of the ideal preceding it before the last blowup� This description of D�
only holds if the �rst two components �o� k� of the invariant have remained con�

stant during this blowup� If they have dropped lexicographically� we set D� � �
and J� � I�� This is justi�ed by the fact that it does not matter lexicographically

that the component o� � ordaI� of the invariant may have increased� if one of

the earlier components has dropped� Recall here that commutativity for I� is

only needed at equiconstant points� say� if �o� k� has remained constant� and that

otherwise I� need not be the weak transform of its predecessor�

Once we know that J� factorizes �and this will be proven in more detail in 
Com�

mutativity��� we can start over again� associating to J� the ideals P�� Q� and K��
a local hypersurface �W��� in W� � V with control c� and the coe�cient ideal

�J��� of K� in �W���� We can continue like this down to ambient dimension

equal to �� getting a local �ag W � Wn 
 W� � Wn�� 
 � � � 
 W� and a string

of ideals �J � Jn� J� � Jn��� � � � � J��� It may happen that from some index d on�

all Ji are equal to � �this occurs if Kd�� is bold regular or ��� If d denotes the

maximal index with Id � �� then oi � � for i 	 d and also ki � � �since it turns

out that Ed � � and therefore Qd � Kd � � in this case�� The remaining mem�

bers Wd��� � � � �W� of the �ag are irrelevant� The top locus of �on� kn� � � � � o�� k��

equals the support Wd of Kd��� which would then be the center � leaving aside

the combinatorial components mi of the resolution invariant which may reduce

further the center� Let us investigate this combinatorial situation more closely�
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�� Shortcuts

What happens under blowup if Id � � for some d � � �if Ii �� � for all i we set

d � ��� What should be the correct choice of center�

We then have Jd � Md a principal monomial ideal� and the component od �

� of the invariant cannot improve further� But it may happen that the vector

�on� kn� � � � � � od��� kd��� remains constant at some point a� of Y �� and then no

improvement will be observed� At this stage the size of the center comes into play�

Up to now it only mattered that the center be included in the various top loci�

independently how large it was chosen� In all cases the orders oi and ki did not

increase� and by induction� at least one of them would decrease if all oi � �� If

Jd � Md in Wd� the companion ideal Pd of Id is � and its top locus equals the

whole ambient scheme Wd� Choosing as center Wd will not be permitted� since it

is not contained in top�Jd� cd���� and hence not in top�Kd���� except if Kd�� was

bold regular of support Wd and Jd � ��

Let us look at the example � of the section 
Improvement of singularities� and

its generalization� It was given by xp 
 yr�� � � � yrdd in Wd�� � Ad�� at a � ��

Here the polynomial generates Kd��� Wd is given by x � � and Jd � �yr�� � � � yrdd �

consists of exceptional components� Assume that Jd � Md and Id � �� We have

seen that any center Z � fx � yi� � � � � yim � �g with indices i�� � � � � im ranging

in a minimal subset of f�� � � � � dg so that ri� 
 � � � 
 rim � p will make the order

r� 
 � � �
 rm of Md � �yr�� � � � yrdd � drop when passing to the controlled transform

with respect to cd�� � ordaKd���

This example is representative for our problem and anticipates what has to be

done� The center Z should be an intersection of some components of Md along

which Md has order � ordaKd�� and should have maximal possible dimension�

Then the order of the controlled transform of Jd � Md with respect to cd�� will

drop� At a�� either the earlier components of the invariant have dropped� If they

have remained constant� the ideal M �
d of the setup of J � will precisely be the

controlled transform of Md with respect to the control cd�� �since Jd � Md and

J �d � M �
d�� This suggests to add the order of Md as the last nontrivial component

of our invariant �this will be the �rst component of the combinatorial invariant

md�� A computation shows that it only drops when the center is really maximal

with the above property� smaller centers will make the order increase�

There is another problem with the choice of the center� There can appear sev�

eral maximal candidates among the respective intersections of components of Md�

We cannot just choose one of them ad hoc� since our construction is local and

the choice of the center at some other point may not be compatible and would

hence prohibit to get a globally de�ned center� Therefore we have to choose the

center everywhere subject to the same rule� In example 
 we have seen that we

might run into symmetry problems� because several candidates are permuted by

a symmetry of Kd��� There is a nice escape button in our case� using that Md

consists of exceptional components� These components have appeared in the pre�

ceding resolution process one after the other� so they are naturally ordered� for

instance by the moment of their respective appearance� The rule to select a center
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among the possible candidate could then be to take the intersection of components

whose total age �� sum of individual ages of the components� is the largest �or

the smallest��

The precise choice of the center is a little bit involved� Let us call shortcut of a

divisor F any divisor obtained from F by deleting some of its components� As

just explained� the center will be the intersection of the components of a certain

shortcut of Md� This intersection is the top locus of the shortcut� We will put

di�erent labels on all shortcuts of the combinatorial handicaps Di in order to

distinguish them and to make the choice of the center systematic� Labels are

simply positive integers� and weak transforms of shortcuts will get the same label

as their preimage� The center is then chosen as the top locus of a shortcut Nd of

Md whose order is � ordaKd�� and which has no proper shortcuts 	Nd of order

� ordaKd�� �this guarantees that the center is maximal�� If there are several such

shortcuts available� take the one with maximal order� There may still be several

of them� In this case take the one with maximal label� This one is then unique�

since no two shortcuts will have the same label� Even though de�ned locally� the

local pieces of the center will patch on overlaps �since de�ned through the order

of the shortcuts of Md and the labels of the shortcuts of the global divisors Dd

inducing labels on the shortcuts of Md� and give a globally de�ned subscheme of

W �

All this is incorporated in the combinatorial component md of the invariant� see

�EH� for more details� It is a pair whose �rst number is the order of the unique

shortcut Nd speci�ed before and whose second number is the label of Nd� Thus

md � �ordaNd� labaNd��

The combinatorial component md is only needed in dimension d� To smoothen

the invariant we set mi � ��� �� for i �� d �i�e�� if Ii �� � or i 
 d� and set

ia�M� � �on� kn�mn� � � � � o�� k��m�� � N�n�

This is the �nal de�nition of the invariant through a punctual setup of the mobile

M at a� In each dimension it consists of a quadruple �oi� ki�mi� associated to

the ideals Ii� Ki and Mi of a setup of M at a� Once we know that the invariant

does not depend on the choice of the local hypersurfaces Wi and that the required

commutativity and transversality relations hold� the preceding discussion applies

and shows that ia�M� decreases lexicographically under blowup of M in Z �

top�ia�M���

There is a small delicacy in the decrease of md at points where the earlier components

of the invariant have remained constant� By de�nition
 m�
d equals �orda�N

�
d� laba�N

�
d�

where N �
d is the shortcut of M �

d � M 

d de�ned analogously to Nd for Md� If N

�
d is the

weak transform of Nd
 its order will have decreased
 so that m�
d 
 md�

If not
N �
d will be a newly chosen shortcut ofM �

d
 hence the weak transform of a shortcut

	Nd of Md� As ordaNd was maximal among all considered shortcuts of Md
 we get

orda�N
�
d 	 orda 	Nd 	 ordaN � Thus the �rst component of md does not increase� If

it remains constant
 which can only occur if N �
d is a newly chosen shortcut of M �

d
 the

label of N �
d � 	Ngd will be the label of 	Nd and hence strictly smaller than the label of

Nd� This shows that m
�
d 
 md holds lexicographically in all cases�
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� Commutativity

The idea of commutativity has appeared several times up to now� and often with

di�erent meanings� We shall now give a precise description of what is meant by

commutativity in each context�

Let M � �J � c�D�E� be a mobile in W � and let M� be the transform of M under

the blowup W � �W with center Z � top�ia�M��� Let �Jn� � � � � J�� be a punctual

setup of M at a� and let a� be a point above a� Roughly speaking� commutativity

shall express the property that the ideals of the setup of M have transforms in

W � �weak or controlled transform� according to the ideal� which de�ne the ideals

of a truncated setup �J �n� � � � � J
�
j� of M� at a� down to the index j until which the

truncated invariant has remained constant at a�

This is used in two ways� First� to show that M� admits again punctual setups at

all points a� of W � �the remaining components J �j��� � � � � J
�
� are easily determined

since all M �
j��� � � � �M

�
� and Q�

j��� � � � � Q
�
� will be trivial equal to �� so that J �i �

I �i � P �
i � K �

i for i 
 j� hence J �i�� � coe�W �
i��

J �i�� Secondly� to be able to

compare the invariant ia��M�� of M� with ia�M�� The components of ia��M��
will be the orders of the weak transforms of the ideals de�ning the components of

ia�M� as long as the earlier components have remained constant�

More explicitly
 commutativity means that
 for each n � j � �
 we have W �
i � Wg

i

for n � i � j if �on� � � � � oj��� has remained constant at a�� J �i � J 

i and I �i � Igi

for n � i � j if �on� � � � �mj��� has remained constant at a�� P �
i � Pgi 
 Q�

i � Qgi
and K �

i � Kg

i for n � i � j if �on� � � � � oj� has remained constant at a�� Observe

the inductive nature of these conditions
 with j decreasing from n to ��

Quite generally� we can introduce the following concept of commutativity� Let

� � R� R� be a map sending ideals R inW at a to ideals R� at a in a regular locally

closed subscheme V of W � Let Z be a regular closed subscheme W contained

locally at a in V � Denote by W � � W and V � � V the induced blowups with

center Z �observe that the blowup V � of V in Z equals the weak � strict transform

of V under the blowup W � � W �� Assume given prescribed transformation rules

R � R� and S � S�� for ideals R of W and ideals S of V with respect to the

blowups of W and V with center Z� We say that � � R � R� commutes with

blowup if for any choice of Z the following diagram commutes �exceptionally we

write here the arrow of blowups in the opposite direction� which� in any case� is a

matter of taste�

R� � �R���� �R����

� �
R � R�

This is equivalent to saying that

�R��� � �R�����

Obviously we may require this commutativity relation to hold only at speci�c

points a� above a� usually those where the prior components of the invariant have

remained constant �where the adjective �prior� has to be interpreted correctly��
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Let us list what kind of maps � � R � R� we have met in the de�nition and

construction of setups� Associating to J the factors M and I of J in the product

J � M � I� the companion ideal P of I associated to J � M � I and the control c��

the transversality ideal Q given by an exceptional divisor E associated to P � the

composition ideal K � P � Q� and the coe�cient ideal J� of K� Analogously to

ideals� we may also say that the passage to the osculating hypersurface V � W�
for P commutes with blowup� i�e�� �W ��� � �W��g if P � � Pg and the order of

P has remained constant�

Almost all commutativity relations for these ideals have already been established�

The factorization J � � M � � I � for J � � J 
 the controlled transform with respect

to c� with I � � Ig and M � � M� � I�Y ��o�c� for o � ordZI holds because the

passage to the total transform is multiplicative� Commutativity of the companion

ideal P is due to the special choice of the exponents in P �and requires J � � J 


and that the control c� and the order of I have remained constant at a��� and
that of Q holds by de�nition of E and E�� Commutativity for K � P �Q is then

trivial� and that of coe�cient ideals has been proven by an explicit calculation on

the Taylor expansions� provided that �W ��� � �W��g� All these local ideals are

actually determined by the choice of the local �ags in W and W ��

As for W�� the situation is more delicate� because various W� and �W ��� could

be chosen� So the commutativity assertion says in this case that if orda�P
� �

ordaP � then the weak transform of an osculating hypersurface W� for P is again

osculating for P � � Pg �which was also expressed as the persistence of osculating

hypersurfaces under blowup�� We have proven this by a computation in local

coordinates� Note that commutativity need not hold for the weaker condition

that W� has weak maximal contact with P �see the section 
Problems in positive

characteristic� below��

We conclude that commutativity relations are almost automatic to verify� provided

all ideals are correctly de�ned �which is not obvious to do when constructing them��

�� Independence

We shall describe now why the invariant ia�M� of a mobile M does not depend

on the choice of the local �ags� This is needed in three regards� First� it implies

that our local de�nition of the center will yield a globally de�ned center� Secondly�

the transform of a mobile under a blowup W � � W � being de�ned through the

truncated invariants in W and W �� will not depend on the local �ags� And �nally�

if the invariant would depend on some choices its decrease under blowup may not

be signi�cant for the actual resolution of the mobile� because another choice may

produce an increase�

Recall that given a mobileM in W � its invariant ia�M� at a �W was de�ned and

constructed through the choice of a local �ag Wn 
 � � � 
 W� and the resulting

punctual setup �Jn� � � � � J�� of M at a� Here� the hypersurfaces Wi�� of Wi were

subject to be osculating for the companion ideals Pi of Ji � Mi � Ii� We have seen

earlier that if V is osculating for P then it has weak maximal contact with P � i�e��
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maximizes the order of coe�V �P �� Therefore this order does not depend on the

choice of V �

In a punctual setup� we take the coe�cient ideal not of P but of the product

K � P �Q with Q the transversality ideal� So we need an extra argument to show

that the order of coe�V �K� is independent of V � One possible way to see this

is to observe that if V has weak maximal contact with P then it has also weak

maximal contact with any product P �Q �provided P �� �� ��� We will sketch the

proof of this for principal ideals� for the general case and more details we refer to

the paper �EH��

So let P and Q be generated by f � xp 

P

i�p fix
i and g � xq 


P
i�q gix

i

modulo xp�� respectively xq��� with coe�cients fi and gi in the local ring of the

hypersurface V � fx � �g� Assume that V has weak maximal contact with P � i�e��

maximizes mini�ordaf
p�	p�i

i �� Let N�f� and N�g� denote the Newton polyhedra

of f and g in Nn with respect to local coordinates x� y�� � � � � yn��� The order of the

coe�cient ideals of f and g in V is given by the projections � � �i� ��� p
p�i �� and


 � �i� ��� q
q�i � � from Nn to Qn�� as min��suppf��j�j� and min��suppg
�j�j��

Now let h � f �g � xp�q

P

i�p�q hix
i and consider the corresponding projection

� � �i� �� � p�q
p�q�i � �� Denote by ef � eg and eh the respective orders of the

coe�cient ideals of f � g and h in V � Using the three projections and the expression

of the coe�cients hi of h through fi and gi it follows from a computation that
eh
p�q � minf efp � egq g�
Assume now that V maximizes ef � If ef�p 	 eg�q then eh

p�q � ef�p is already

maximal� Otherwise� assume that eh
p�q � eg�q is not maximal� Then a coordinate

change �x� y� � ��x� y� � �x 
 b�y�� y� with ord b � eg�q would allow to increase
eh
p�q � From ef�p � eg�q follows that the order of the coe�cient ideal of f with

respect to ��V � would be eg�q� hence
eh
p�q � eg�q would remain constant� i�e�� was

already maximal�

This gives an idea why the order of the coe�cient ideal Ji�� of Ki � Pi � Qi

does not depend on the choice of Wi��� On the other hand� the handicaps Di��

and Ei�� do not depend on any choices �when constructing the transform of a

mobile� they were de�ned by the values of the earlier components of the invariant�

which� by decreasing induction on the dimension� can already be assumed to be

independent of any choices�� It will be shown in 
Transversality� that Wi�� is

transversal to Di�� and Ei��� Hence the orders of Mi�� � IWi��
�Di�� �Wi���

and Qi�� � IWi��
�Ei�� �Wi��� equal the orders of Di�� and Ei��� This in turn

shows that the orders of Ii��� Pi��� Qi�� and Ki�� do not depend on the choice

of the local �ag� Actually� Wi�� maximizes all these orders�

The di�erence ki � oi � ordaQi could be taken in the invariant instead of the compo�

nent ki
 since it carries the same amount of information
 and since it is preceded by oi
in the invariant�

We have seen that given Ki � Pi � Qi and an osculating Wi�� for Pi induces

intrinsic values of oi�� � ordaIi�� and ki�� � ordaKi��� This is not su�cient

yet� since the next components of the invariants oi��� � � � and ki��� � � � could in

principle depend on the choice of Wi���
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In order to show that they do not depend� there are three options� Either to show

as above via Newton polyhedra and iterated projections to lower dimensions that

the respective orders are indeed maximal� Or to allow only �ags Wn 
 � � � 
 W�

which maximize the whole vector �on� kn�mn� � � � � o�� k��m�� lexicographically �not

just component by component�� with the drawback of having to show that the

weak transform of such a �ag maximizes the vector �o�n� k
�
n�m

�
n� � � � � o

�
�� k

�
��m

�
��

of the transformed mobile M�� Finally� one can also use a trick of Hironaka

which shows that the truncated invariant only depends on the top loci and their

behaviour under certain auxiliary blowups� cf� �EH�� All three possibilities are

mostly computational � and we do not intend to explain these details here�

��� Transversality

There are several transversality conditions we have met up to now� The handicaps

D and E of a mobile shall be normal crossings divisors� The hypersurfacesWi shall

be transversal to Di and Ei �meaning� that the unions Wi �Di and Wi � Ei are

normal crossings schemes�� The center Z shall be transversal to the exceptional

locus F �

The clue to establish all these conditions is the easy fact that when blowing up

a regular center Z in W � any normal crossings divisor to which Z is transversal

will remain a normal crossings divisor in W � and will be transversal to the new

exceptional component Y �� This is best proven in local coordinates for which the

blowup is given by a monomial substitution of the coordinates�

Let us brie�y indicate how this applies in our situation� Assume that Wi is

transversal to Di and Ei� We shall use that the center Z is locally contained

in Wi �for i � d� where d is maximal with od � �� and transversal to the ex�

ceptional locus F � As Di and Ei are supported by exceptional components� Z is

also transversal to them� This implies that Wg

i is transversal to Dgi and Egi and

to Y �� By de�nition of D�
i and E�

i and the choice of W �
i as in 
Commutativity��

either W �
i is a newly chosen hypersurfaces � in which case D�

i and E�
i are chosen

to be empty ) or W �
i � Wg

i � in which case D�
i and E�

i are composed by Dgi and

Y �� respectively Egi and Y �� In all cases� the same transversality property holds

again in W �� The argument uses part of 
Commutativity�� which in turn uses the

transversality conditions in W � cf� the next section 
Cartesian induction� for the

respective implications between the various arguments�

There is one more property needed in the proofs here� namely that the support of

En � � � � � E� �lls up the the whole exceptional locus F � This again follows from

the transformation rule for the transversal handicap� The rule is de�ned through

the loci where the truncated invariants remain constant� It uses that the entire

invariant always drops� so the locus where all truncated invariants remain constant

is empty�

It should be emphasized that Wi�� need not be transversal to Ei� Indeed� by

multiplying the ideal Qi of Ei to Pi when de�ning the composition ideal Ki we

ensure that the center is contained in all components of F which could possibly

be non�transversal to Wi��� These are just the components of Ei� This is a subtle
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point of the construction of setups� which� in particular� allows to interpret the

center as the top locus of the invariant� Otherwise we would have to intersect this

top locus with the intersection of the dangerous components of F �getting possibly

a singular intersection�� making the setting much less systematic�

��� Cartesian induction

We come to the end of our search for a proof of resolution of singularities� It is

a good moment to resume the overall outset and to pin down the internal logical

structure of the argument� Its basis is a cartesian induction� The horizontal

induction on the local embedding dimension is amalgamated with the vertical

induction on the resolution invariant� The interested reader may compare this

with Hironaka�s original induction argument �Hi �� chap� I��� p� ����� where four

�relatively complicated� inductive statements are interweaved�

We start from a mobile M� associate to it local setups �Jn� � � � � J�� which in turn

de�ne the local invariant ia�M�� Its top locus Z de�nes the �rst center and the

blowup W � �W � Looking at the truncated setup and the truncated invariant we

de�ne the transform of the mobile M� in W � by descending induction on the di�

mension �i�e�� D�
i and E

�
i are de�ned for descending index i�� For this construction�

we need the transversality properties of D� E and Z in W and the commutativity

relations for all diagrams appearing for the ideals of the truncated setups with

respect to the blowup W � � W � Again� these diagrams are run through by de�

scending dimension�

Once we have de�ned the transform of the mobile� we have simultaneously shown

that it admits punctual setups� hence an invariant� The commutativity relations

show that the invariant does not increase under the blowup� By induction on the

dimension and!or by the combinatorial component of the invariant and the blowup

of the top locus of shortcuts it is shown that the invariant actually decreases�

This in turn is used together with the commutativity relations to establish the

transversality properties for D�� E� and Z � in W ��

We see here that the implications spiral up along the resolution process� This can

be schematized as follows�


 commutativity� �� � � �

�
W � transversality�

�

 commutativity �� decrease of invariant

�
W transversality

�

 � � �
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From this it is clear why this type of reasoning is a cartesian induction� The prop�

erties commutativity and decrease are proven by descending horizontal induction

on the embedding dimension and refer to the vertical map given by the blowup� the

property transversality is proven by vertical induction on the sequence of blowups

and refers to the horizontal structure in W �

��� Examples

To see whether we have really understood the preceding constructions let us carry

them out in concrete examples� You are invited to sharpen your pencil� More

examples can be found in �EV �� BM 
� BM �� BS �� BS 
�� As the number of

charts increases quickly after each blowup� we shall restrict sometimes to the most

interesting points of the exceptional divisor and compute thus only local resolutions

�more precisely� the local data of the resolution along a certain valuation�� The

�rst two examples are rather trivial� but a good testing ground to become familiar

with the whole story of mobiles and their setups�

Example �� Plane curve� Let us return to example � from the beginning and see to

what the invariant comes up� The mobile consists of the ideal J � �xp 
 yq� with

p 	 q� control c� � � and empty handicaps D and E� The setup at a � � is given

by the �ag W� � W � A� and W� � fx � �g with ideals J� � I� � P� � K� � J

and J� � I� � P� � K� � �yq� �since it was assumed that q � p�� The invariant

ia�M� � �o�� k��m�� o�� k��m�� at the origin is

ia�M� � �p� p� ��� ��� q� q� ��� ���

with ��� �� the two trivial combinatorial invariants� Its top locus is the origin�

so that Z will be set equal to f�g yielding the point blowup W � � W of the

plane� At the origin of the x�chart the order of I� drops to � and the ideal J �

is monomialized there� The complement of the origin of the x�chart lies entirely

in the y�chart� to which we may therefore restrict� There� the total transform

is given by xpyp 
 yq � yp�xp 
 yq�p� with M �
� � �yp� and I �� � �xp 
 yq�p��

The equiconstant points for I� lie in fx � �g� Hence the origin a� of the y�chart
is the only possible candidate for an equiconstant point� If q 
 �p the order of

I �� will have dropped at a�� and we put� similarly to points outside the origin�

D�
� � �� E�

� � Y � and E�
� � �� The hypersurface W �

� at a� has be chosen newly

�and will be fy � �g�� If q � �p� the origin is an equiconstant point for I� and

we can take W �
� � Wg

� � We get D�
� � fyq�p � �g and E�

� � E�
� � �� Therefore

J �� � M �
� � � � �yq�p� is resolved� and the invariant will be

ia�M� � �p� p� ��� ��� �� �� �q � p� ���
with �q � p� �� the combinatorial invariant of M �

� � �yq�p� �we do not specify the

label here�� The next center is the origin a� of the y�chart� and this continues in

the same fashion until the order of I� at the origin of the respective y�charts has

dropped below p�

Example �� Cylinder over plane curve in A�� As a variant of the preceding example�

consider the surface in W � A� de�ned by xp 
 yq� The same considerations as

before apply� except that the invariant has four more zero components and that

�




the center is always the z�axis� The resolution is the cartesian product of the

resolution of example � with the z�axis�

Example �� Plane curve embedded in A�� The mobile consists of J � �xp
 yq� z��

c� � � and D and E empty� The invariant ia�M� at the origin is

ia�M� � ��� �� ��� ��� p� p� ��� ��� q� q� ��� ���

with ��� �� the two trivial combinatorial invariants� Its restriction to fz � �g
equals the invariant of the mobile of example �� The resolution is induced by the

resolution of example �� taking the same centers� but embedded in three�space�

Example �� Whitney umbrella� Let us now consider the surface x� 
 yz� in

W � A� �for notational reasons� we have replaced here y�z by yz��� It is imme�

diately checked that blowing up its singular locus� which is the y�axis� removes

all singularities and yields a regular scheme� This is� however� not the way our

invariant will proceed� because it is con�ned to a completely systematic treatment

of the singularities and cannot recognize advantageous ad hoc centers�

The mobile is de�ned similarly as before� with J � �x�
 yz��� control c� � � and

empty handicaps D and E� At the origin a � � ofW the hypersurfacesW� � fx �

�g of W� � W and W� � fy � �g of W� will de�ne osculating hypersurfaces for

P� � I� � J� � K� � J � �x� 
 yz�� and P� � I� � J� � K� � �yz��� We have

J� � I� � P� � K� � �z��� The invariant ia�M� � �o�� k��m�� � � � � o�� k��m��

equals at a � � the vector

ia�M� � ��� �� ��� ��� 
� 
� ��� ��� 
� 
� ��� ���

with trivial combinatorial components ��� ��� For a �� � but inside the y�axis

�which is the top locus of J� � I��� we have

ia�M� � ��� �� ��� ��� �� �� ��� ��� �� �� ��� ����

The top locus of the invariant and hence the �rst center of blowup is the origin

of A�� Let W � � W be the corresponding blowup with exceptional component

Y � isomorphic to P�� The scheme W � is covered by three a�ne charts� The

equiconstant points of I� lie in the weak transform Wg

� of W��

In points where the order of I� has decreased we set E�
� � Y � because we will have

to choose there a new osculating hypersurface W �
� for P �

� � I ��� and it may fail to

be transversal to Y � �thus� Y � is a (dangerous� component�� Then E�
� � E�

� � �
since no further transversality problem occurs� The combinatorial handicaps D�

i

de�ning M �
i are given by the transformation rules for Ji and Ii�

So let us determine the equiconstant points for I�� If there are some� the top

locus of M� will be contained in the locus of equiconstant points for I�� So it is

reasonable to look for these �rst� As any equiconstant point must lie in Wg

� and

since W� � fx � �g there are no equiconstant points in the x�chart� At the origin

of the z�chart we have weak transform I �� � Ig� � �x� 
 yz�� This is hence an

equiconstant point� and W �
� � Wg

� � fx � �g is osculating for P �
� � I ��� As E

�
� � �

at points which are equiconstant for I�� we have Q�
� � � and K �

� � P �
� � I ���

The coe�cient ideal J �� of K �
� in W �

� is �yz� � �z� � �y� with factors M �
� � �z�

��



and I �� � Ig� � �y�� Hence the order of I �� has dropped at this point� The �rst

components of the invariant will be

ia��M�� � ��� �� ��� ��� �� � � ��

which implies � as we will see in a moment � that the origin of the z�chart does

not lie in the top locus of M�� As we are only interested in �nding this top locus

in order to know the next center� we need not compute the further components of

the invariant at this point� The points outside the origin of the z�chart lie all in

the y�chart� so we may restrict from now on to this chart�

In the y�chart� the weak transform of I� equals I �� � Ig� � P �
� � �x� 
 yz��� The

origin is the only point of Y � in this chart where the order of I� has remained

constant �the other points lie on the line fx � z � �g and are thus outside Y ���
Let us therefore compute the invariant at the origin a� of this chart� We have

W �
� � Wg

� � fx � �g osculating for P �
� � I �� and as E�

� � � and Q�
� � � we get

K �
� � P �

� � �x�
yz��� The coe�cient ideal J �� of K
�
� inW

�
� equals �yz

�� � �y���z��
with factors M �

� � �y� and I �� � Ig� � P �
� � �z��� As the order of I� has decreased

at a�� we will have E�
� � Y � � fy � �g� so that Q�

� � �y� and K �
� � �yz��� A

new osculating hypersurface W �
� of W �

� has to be chosen for P �
� �and therefore E�

�

had to be chosen equal to Y ��� We will take of course W �
� � fz � �g �which is

only by chance transversal to Y ��� The coe�cient ideal J �� of K �
� in W �

� equals

�y�� � �y�� � � with factors M �
� � �y�� and I �� � �� The invariant of M� at the

origin a� of the y�chart thus equals

ia�M� � ��� �� ��� ��� �� 
� ��� ��� �� �� �
� ���
where �
� �� denotes the combinatorial invariant of M �

�� Outside the exceptional

component the invariant of M� equals along the line fx � z � �g the value of the

invariant of M at points in the y�axis of W outside the origin� say

ia�M� � ��� �� ��� ��� �� �� ��� ��� �� �� ��� ����

This shows that the top locus of M� consists of one point� the origin a� of the
y�chart� It will be the next center Z ��

Here
 the center is so small because � as Q�
� � �y� appears as a factor inK �

� � we will

have to separate Y � and W �
� �rst
 according to our strategy how to treat transversality

problems� Once this is done
 a larger center will be chosen�

Let W �� � W � be the induced blowup� For simplicity� we shall only compute the

value of the invariant of M�� at the origin a�� of the y�chart� It will turn out to

be locally at a�� a line� the y�axis fx � z � �g� hence it will globally be a regular

curve�

At the origin of the y�chart we will have I ��� � P ��
� � �x� 
 yz�� with osculating

hypersurface W ��
� � �W �

��
g � fx � �g� As E��

� � � we get K ��
� � P ��

� with

coe�cient ideal J ��� � �yz�� � �y��z�� in W ��
� � The factors are M ��

� � �y� and

I ��� � �I ���
g � �z��� As the order of I �� has remained constant� we will have

E��
� � �E�

��
g � �Y ��g� As Y � was given at Z � � fa�g by y � � this divisor does

not pass through a��� Hence Q��
� � � at a�� �in contrast to what has happened

in W and W ��� which implies that K ��
� � P ��

� � �z�� is bold regular� The order

��



of K �
� �and hence the complexity of the transversality problem� has improved�

Actually� Y � and W �
� have been separated by the last blowup W �� � W �� Taking

W ��
� � fz � �g we get that J ��� � � �by de�nition of the descent in dimension and

since the coe�cient ideal of K ��
� would be zero�� This gives for the invariant

ia���M��� � ��� �� ��� ��� �� �� ��� ��� �� �� ��� ����

Now the invariant is constant along the line fx � z � �g� which will therefore

form our next center Z �� �which coincides with the top locus of I ��� �� So it took

us two auxiliary blowups to arrive at a situation where the invariant chooses the

desired line as center� In the next blowup� the order of I ���� will be at most one

at all points� so there will be no more equiconstant points for I ��� � The underlying

scheme will be regular� We leave it to the reader to compute the whole invariant

at the points of W ��� and to complete the monomialization of I��

Example �� More general surface singularity� Let J be the ideal in W � A�

generated by the polynomial f � x� � 
x�y 
 �y� 
 z���� This is already quite

complicated� The mobile M we associate to J will consist of the ideal J � the

control c� � � and empty handicaps D and E� The factorization J � M � I � � � I
of J is trivial with I � J � In order to determine the �rst center of blowup we

have to compute a punctual setup forM� As before� we add indices to distinguish

ideals in various dimensions� Thus J� � I� � J � I� M� � � and W � W�� We

place ourself at the origin of A�� The �rst thing to do is choosing an osculating

hypersurface for f � The order of f at � is 
� and its tangent cone equals x�
�x�y in

the given coordinates� The minimal number of variables appearing in the tangent

cone is �� because terms involving y cannot be eliminated� Both x � � and y � �

are adjacent hypersurfaces� but fx � �g is not osculating�

Expanding f with respect to x we wish to eliminate the coe�cient of x��� � x�

by a coordinate change �recall here the de�nition of osculating hypersurfaces��

Clearly the change x � x 
 y will do the job� In the new coordinates we have

f � x� 
 
xy� 
 y� 
 �y� 
 z��� and V � W� � fx � �g is osculating� The

companion ideal P� of I� equals I�� and the transversality ideal Q� is trivial equal

to �� so that K� � P� � Q� � I�� We now have to take the coe�cient ideal J� of

K� in W�� It is generated by y��� and y�
�y�
 z���� hence by y� and �y�z�
 z��

Thus J� � �y�� �y�z� 
 z�� � I� � P� � K�� The tangent cone of P� is generated

by y�� and W� � fy � �g is osculating for P�� The next coe�cient ideal J� of P�
is generated by z�� The invariant at a � � will be

ia�M� � �
� 
� ��� ��� 
� 
� ��� ��� �� �� ��� ����

because all combinatorial components will be ��� ��� It is checked that the top

locus of ia�M� will be the origin� which is hence our �rst center� Let W � � W

be the corresponding blowup� The exceptional component Y � is isomorphic to

projective space P�� Among the many points to consider in Y � we pick up the

most interesting ones� namely the equiconstant points with respect to I�� These

lie in the weak transform V � � W �
� of our hypersurface V � W�� hence we may

restrict to the y� and z�chart�

��



Outside W �
�
 the order o� has dropped� There D�

� and D�
� will be set empty
 and D�

�

will be chosen equal to Y � so that J �� � J�� � I�Y ���� factors into J �� � M �
� � I �� with

I � � Ig� andM � � IW �D�
��� The transversal handicap E

� is given by E�
� � Y � 
since

a new W �
� has to be chosen and it may not be transversal to W �

�� and E
�
� � E�

� � ��
In the y�chart we get total transform f� � x�y�

xy�
y�
�y�
y�z��� � y��x�



x
�
y��
yz����� The order of the weak transform fg � �x�

x
�
y��
yz����

at the origin of this chart has dropped from 
 to �� hence it is not an equiconstant

point �though it lies in W �
� � fx � �g�� The handicaps are therefore de�ned

analogously as before�

The complement of the origin of the y�chart in W �
��Y � lies entirely in the z�chart�

and we may restrict w�l�o�g� to points of this charts� The total transform of f

equals there f� � x�z� 
 
xy�z� 
 y�z� 
 �y�z� 
 z��� � z��x� 
 
xy� 
 y� 


z�y� 
 z���� The weak transform f � � x� 
 
xy� 
 y� 
 z�y� 
 z�� has order 
 at

the origin of this chart� and only there� This is the only equiconstant point for J��

Outside we set D�
� � fz� � �g� E�

� � Y � and the remaining handicaps equal to ��
At the origin of the z�chart the hypersurface W �

� � fx � �g is osculating for

I �� � P �
�� We set D�

� � fz� � �g and E�
� � �� because W �

� is the weak transform of

W� and hence automatically transversal to Y � �note here that this coincides with

the de�nition E�
� � Eg� of E�

� at equiconstant points�� For the remaining handicaps

we have to compute the coe�cient ideal J �� of K �
� in W �

�� We have J �� � I�y��� � I ��
and as o�� � 
 and the controls are �� the companion ideal P �

� equals Pg� � I ��
�cf� 
Commutativity��� From Q�

� � � we get K �
� � P �

� � I �� � �x� 
 
xy� 
 y� 


z�y� 
 z��� of order k�� � k� � 
� The control for J �� is therefore 
� The coe�cient

ideal of K �
� in W �

� is J �� � J 

� � J�� � IW �

�
�Y � �W �

��
�� � �y�� �y�z� 
 z��� � z�� �

�y�z�� �y�z� 
 z�� � z�� � �y�� �y�z 
 z��� We see that J �� � I �� � Ig� with M �
� � �

according to the de�nition D�
� � D�

� � IW �
�
�Y � � W �

��
o��c� � � at points where

k�� � k�� The order o�� of I �� has remained constant equal to 
� and P �
� � K �

� � I ���
The control for J �� is 
� and W �

� � Wg

� yields coe�cient ideal J �� � z� � � with

I �� � Ig� � �� Thus the invariant has dropped to

ia��M�� � �
� 
� ��� ��� 
� 
� ��� ��� �� �� �
� ����
Here the components �
� �� indicate the combinatorial invariant in dimension ��

given by the order of M �
� � �z�� and its label �which we do not specify�� The

remaining handicaps are D�
� � fz� � �g and E�

� � E�
� � �� The center will be the

origin of the z�chart�

The reader will realize that even though systematic� the computation of the in�

variant becomes rather involved � We leave it as an exercise �tedious� as we admit�

but instructive� to complete the resolution for this mobile on a blank sheet� Some

reader will complain that the author was too lazy to type the details� at any rate�

it is better to do the computation on his own�

Example �� �Centers outside strict transform� While resolving mobiles� the cen�

ters are always chosen inside the support of the ideal J and its weak transforms�

However� they need not lie inside the support of the strict transforms of the ideal�

and the intersection may even be singular� as shows the following example of S�

��



Encinas� Nevertheless� the centers always map to the singular locus of the original

ideal�

Take the ideal J � J� � I� � �x�
y�� z��w�� in W � A� and the control c� � ��

The �rst center will be the origin� Let W � � W be the induced blowup� and let

us look at the origin of the y�chart� The weak transform of I� equals I �� � Ig� �

�x�
y� y�z��w���� whereas the strict transform would be Ist� � �x�
y� z��w���

We have P� � J�� As the order of I� has dropped� we have E�
� � Y � and Q�

� � �y��

so that K �
� � I �� � Q�

� � �x�y�� The next center will be the plane fx � y � �g in

W �� It does not lie in the support of the strict transform Ist� � and the intersection

is even singular� de�ned in fx � y � �g by z� � w� � ��

��� Resolution of schemes

Now that we have discussed in detail the construction of mobiles and their setups

we shall return to our original object of interest� singularities of schemes� The

resolution of mobiles can be used in various ways to construct a strong resolution

of reduced singular subschemes X of W � One possibility goes as follows �for a

somewhat di�erent reasoning� see �EV 
���

We may assume that X is di�erent fromW � and thatW is equidimensional� Let J
be the ideal of X in W � Associate to it the mobile M � �J � c�D�E� with control

c � � and empty handicaps D and E �we omit here the index 
 in c�� We shall

look closely at the various stages of the resolution process for M� Its �nal goal

will be to monomialize the total transform of J � At any stage W � of the resolution
of M the controlled transform J � of J de�nes a subscheme of W � formed by the

strict transform X � of X and some components inside the exceptional locus�

As the �nal controlled transform of J equals � �since we will decrease the order of

the controlled transforms of J below c � ��� there corresponds to each component

of X a �uniquely determined� stage where the strict transform of this component

has become regular and has been taken locally as the center of the next blowup�

Let X� denote the union of those components of X which reach this stage �rst�

The corresponding strict transform X �
� of X� at the indicated stage is regular and

transversal to the exceptional locus�

Write X � � X �
� �X �

� with X �
� the strict transform of the remaining components of

X� We stop here the resolution process of the mobile �J � c�D�E� and de�ne a new

mobile whose resolution will be given by a sequence of blowups which separates

X �
� from X �

�� Omitting primes� let K be the ideal of X� in W � Let J be the

coe�cient ideal of K in X� with control c set equal to the maximum on X� of the

order of K in W � Set all handicaps Di and Ei empty with the exception of the

�rst member En of E �n is the dimension of X�� for which we take the exceptional

locus produced so far�

Resolve the mobile �J � c�D�E�� The controlled transforms of J are the coe�cient

ideals of the weak transforms of K as long as the maximum of the order of K in

W along X� remains constant� Therefore the resolution of �J � c�D�E� will make

this maximum drop� Hence also the maximum of the order of the strict transform

�$



of K in W along X� drops� Iterating this process the �nal strict transform X �
� of

X� will be separated from the weak transform X �
� of X�� Now induction on the

number of components applies to construct a sequence of blowups which makes

X �
� regular and transversal to the exceptional locus� Thus X has become a regular

scheme�

The properties embeddedness and equivariance of a strong resolution of schemes

follow from the speci�c resolution of mobiles we have constructed� The reader is

invited to prove this with all details� The restriction to X of the resolution W � �
W of X does not depend on the embedding of X in W since� under embeddings

of W into some W�� the restriction of i�M�� to W equals i�M� �cf� this with

example 
 from above�� This proves excision�

The sequence of blowups W � �W we have constructed for the singular scheme X

via well chosen mobiles thus satis�es all properties of a strong resolution of X� The

proof of the Hironaka Theorem on Resolution of Singularities is now completed�

This concludes the main body of the paper� Readers who have got until here may

judge whether at least two of the three objectives mentioned in the introduction

were met� Easy reading and good understanding� If so� the reader should be now

in perfect shape to answer a�rmatively his neighbour�s question�

�Do you know how to prove resolution of singularities in characteristic zero�

�	� Problems in positive characteristic

To emphasize the limitations of the induction argument used to establish resolu�

tion in characteristic zero� we now adress the di�culties in positive characteristic

which prevent to extend the above proof to this case� We will describe two exam�

ples� The �rst exhibits a sequence of equiconstant points which leaves any regular

hypersurface accompanying the resolution process� This shows that hypersurfaces

of permanent contact need not exist in positive characteristic� and that the ac�

companying hypersurfaces have to be changed from time to time�

The second example illustrates what can happen if one has to replace the accom�

panying hypersurface at a certain stage so as to contain after the next blowup the

subsequent equiconstant points� or so that weak maximal contact is ensured� As

a matter of fact� the invariant we have constructed may increase when choosing

instead of osculating hypersurfaces �which may not exist but would persist under

blowup� hypersurfaces of weak maximal contact �which always exist but need not

persist under blowup and therefore have to be changed in the course of the reso�

lution�� This increase destroys the vertical induction on the resolution invariant�

It is not a counterexample to the existence of resolution of singularities in positive

characteristic� it only shows that the proof of characteristic � does not go through

without applying substantial modi�cations�

Example �� �Narasimhan �Na �� Na �� Mu�� In positive characteristic� the top

locus of an ideal may not be contained locally in a regular hypersurface� Take

K of characteristic � and f � x� 
 yz� 
 zw� 
 y�w of order � at �� Check

that top�f� � V �f� z�
 y�w� yz�
w�� zw�
 y�� and that the parametrized curve

�#



�t��� t�� t��� t��� in A� has image equal to top�f�� From this follows that there

cannot exist locally at � a regular hypersurface V of A� which contains top�f��

Take now a regular hypersurface V passing through a � �� We claim that for any

sequence of point blowups whose �rst center is the origin� the sequence of equicon�

stant points above a will leave eventually the strict transforms of V � Indeed� as

the point blowups keep top�f� unchanged outside �� the order of the transforms

of f will remain constant equal to � at points above points of top�f� outside ��

The strict transform of the locus top�f� will therefore consist of points of order �

for f � by the upper semicontinuity of the order� In particular� the points above �

which lie in these strict transforms will all be equiconstant points above ��

Failure of permanent contact� Any regular hypersurface V may lose equicon�

stant points such as b��� A new hypersurface U �� has to be chosen� Its image

in W may be singular�

Y Y' Y''

U U' U''

V V' V''

�

�

a a'

b''
�

�

�

�

a''�

But by a sequence of point blowups� the curve top�f� will always be separated

from the hypersurface V and its strict transforms �since it is not contained in V ��

Combining both observations we conclude that the equiconstant points above �

will eventually leave the strict transforms of V �

We complement the discussion of positive characteristic by the example of an

ideal and a sequence of blowups in centers contained in its top locus such that the

characteristic zero invariant associated to mobiles increases�

Moh was the �rst to give an example where the maximum of the order of the �rst

coe�cient ideal with respect to local hypersurfaces increases at an equiconstant

point of the original ideal �Mo �� ex� 
��� Ha �� ex� ���� For a comprehensive

description how to construct such examples in positive characteristic see �Ha ���

Example �� �Hauser� �Ha ��� Consider a sequence of three local blowups W � �
W � �W � �W at points ai in W i with W � W � a regular scheme of dimension

three� All blowups are point blowups� and will be considered locally at speci�ed

points� For given local coordinates x� y� z in W at a � �� the �rst map W � �W is

the blowup of W with center the origin� considered at the origin a� of the y�chart�

The second W � � W � is the blowup of W � with center a�� considered at the

origin a� of the z�chart� Hence� a� and a� will be the origins of the respective

charts� and a� lies in the intersection of the two exceptional components in W �

having occurred so far�

��



The third blowupW � �W � is no longer monomial� and involves also a translation�

Its center is the origin a� of the z�chart of W �� but the blowup is considered in

the z�chart of W � at the point a� with coordinates ��� �� ��� Said di�erently� this

blowup is the composition of the monomial point blowup at the origin of the z�chart

followed by the translation y � y 
 �� Hence a� belongs to the new exceptional

component Y � in W �� but lies outside the strict transforms of the two exceptional

components through a��

Exceptional components� The picture shows the con�guration of the excep�

tional components inside the hypersurface V � fx � �g � W through the

sequence of blowups� For the notions of oasis� antilope and kangaroo point�

see �Ha ���

�

old
old

old

new

new new

kangaroo

oasis

a a a
a 0 1 2 3

antilope

We choose now a speci�c principal ideal J in W at � and look at its various

transforms together with the respective coe�cient ideals� Take for J the ideal

in W generated by the polynomial f � f� � x� 
 y� 
 yz� and let V be the

hypersurface of W de�ned by x � �� The resulting sequence of strict transforms

f i of f and V i of V is

f� � x� 
 � � �y� 
 yz��� V � � x � ��

f� � x� 
 y� � �y� 
 z��� V � � x � ��

f� � x� 
 y�z� � �y� 
 z��� V � � x � ��

f� � x� 
 z��y 
 ��� � ��y 
 ��� 
 �� �

� x� 
 z� � ��y� 
 ���y 
 ��y��� V � � x � ��

Here� the monomial factors in front of the parentheses denote exceptional com�

ponents of the restriction of f i to V i �more precisely� of the coe�cient ideal of

f i in V i�� The order of f i at ai has remained constant equal to � for all i� The

hypersurface V � fx � �g has weak maximal contact with f at �� and the same

holds for its strict transforms V � and V ��

But the hypersurface V � has no longer weak maximal contact with f�� The coe��

cient ideal of f� in V � equals z� � ��y�
���y
��y�� � z� � �y�
y�
y�
y��� After

deleting the exceptional factor z�� its order at a� � � is �� In characteristic �� this

is not the maximal possible value� Indeed� the hypersurface U� � fx 
 yz� � �g
in W � yields coe�cient ideal z� � �y� 
 y� 
 y��� which� after deletion of z�� has

order 
 at ��

��



Exceptional components� The picture shows the con�guration of exceptional

components at a� and the position of the new hypersurface U��

V

�

a

3

3

3

U

�

Y

3

x

z

old old

We compute the �rst two components �on� on��� � �o� o�� of our invariant �we

neglect here the transversality problem and the other components ki and mi of

the invariant� along the sequence of local blowups� Let oi be the order of f i at

ai� and let oi� denote the maximal value of the order of the coe�cient ideal of f i

in a regular hypersurface through ai� diminuished by the exceptional multiplicity�

Then

�o�� o��� � ��� ���

�o�� o��� � ��� ���

�o�� o��� � ��� ���

�o�� o��� � ��� 
��

Hence the invariant has increased in the last blowup� Moreover� the hypersurface

V � of weak maximal contact with f� at a� preserved weak maximal contact only

until a�� In W �� its transform V � had no longer weak maximal contact� and

therefore V � had to be replaced by a new hypersurface U� to ensure weak maximal

contact with f��

Let us look whether U� stems from a regular hypersurface U� in W � Blowing it

down to W � and W � yields U� � fx
yz�
z� � �g and U� � fx
yz�
z� � �g�
This last has singular image U� � fxy� 
 y�z� 
 z� � �g in W � Therefore U� is

not the strict transform of a regular hypersurface in W �

But possibly we can modify U� slightly to a hypersurface 	U� which still has weak

maximal contact with f� and which does stem from a regular hypersurface 	U� in

W � It is easy to see that the linear term of the equation of 	U� must be x �up to a

constant factor�� So let us write g� � x

P

gjky
jzk for the equation of 	U� in W �

We get

g� � x

P

gjky
jzk�

g� � x

P

gjky
j�k��zk�

g� � x

P

gjky
j�k��zj��k���

g� � x

P

gjk�y 
 ��j�k��z�j��k���

��



This yields a monomial yz� �which is the monomial of f� which has to be elimi�

nated by the local isomorphism mapping V � onto 	U� in order to increase the order

of the coe�cient ideal� in its expansion if and only if� for some j� k� the sum j
 k

is even �recall that we are in characteristic �� and �j 
 
k � �� From the last

equality follows k � � and j � �� for which j 
 k is odd� Hence no regular 	U�

exists in W whose transform 	U� in W � has weak maximal contact with f� at a��

On �rst view� the example above looks quite arti�cial� having no internal structure

or general pattern� But there is some �rule� behind� The �rst two monomial

blowups in opposite charts are needed to produce two exceptional components

and a point a� in their intersection� The third and last blowup is characterized by

the �disappearance of the two exceptional components� when passing from a� to

a�� It is here that the key phenomenon occurs� namely the increase of the order

of the coe�cient ideal y�z� � �y� 
 z�� of f� in V � �after having factored from it

the exceptional monomial y�z���

It seems that this type of construction is necessary to produce an example for the

failure of the persistence of weak maximal contact in positive characteristic� It

turns out that the above construction produces counterexamples with increasing

invariant if and only if the exponents and the coe�cients of f are chosen in a very

speci�c manner� The necessary conditions are as follows�

� The residues modulo p of the exceptional multiplicities� i�e�� of the exponents of

the monomial factors in front of the parentheses of f� must satisfy a prescribed

arithmetic inequality �for surfaces� both must be positive and their sum must

not exceed p��

� The order of the coe�cient ideal of f� in V � must be a multiple of the charac�

teristic�

� The coe�cients of the weighted tangent cone of f� must satisfy precise li�

near relations� They are uniquely determined up to coordinate changes and

explicitly related to the position of the point a� on the exceptional divisor�

The given example is the simplest one with these properties� For higher order

examples� the coe�cients of the weighted tangent cone of f are also unique up to

coordinate changes� The actual values of the coe�cients of the de�ning equations

of the singularity seem to play a decisive role in positive characteristic� All this

and more is explained in the forthcoming paper �Ha ���

APPENDIX

Appendix A� Order of ideals

In the �ve sections of the appendix we collect some basic facts from commutative

algebra and the theory of blowups which are constantly used in the article� In

addition� all concepts of this paper will be properly de�ned and the notations will

be listed for quick reference� For further reading we refer to �Hi ��� �ZS�� �EV ���

�BM ���

�




Let I be a coherent ideal sheaf on a regular ambient scheme W of �nite type over

a �eld K� For a � W a closed point let Ia denote the stalk of I at a� and ma

the maximal ideal of a in the stalk of the structure sheaf OW�a of W � Let Z be

a closed subscheme of W with de�ning ideal I�Z�� The order of I along Z is the

maximal power of I�Z� containing I in the localization OW�Z �

ordZ � max fk� I � I�Z�k in OW�Zg�
The order of I at a coincides with the maximal power of ma containing the stalk

Ia� The zero ideal has in�nite order� We have

ordZ � mina�Z ordaI

where it su�ces to take the minimum over the closed points a of Z� Denote by

ord I � W � N � f�g� a � ordaI the order function on W � It satis�es various

functorial properties�

It is invariant with respect to �eld extensions� passage to the completion and local

isomorphisms� more generally� with respect to smooth morphisms W� � W � It

does not increase under localization� This has been proven by Zariski�Nagata using

resolution of curves �Hi �� Thm� �� p� ��$�� It does not increase under blowup

when passing from I to the weak transform Ig� provided the order of I is constant

along the center �Hi �� Lemma $� p� ����� It is upper semicontinuous � so that the

locus of points top�I� c� � fa � W� ordaI � cg is closed in W for any constant

c � N� This can be seen as follows�

By the transitivity of the Zariski�topology under �eld extensions� we may assume

that K is algebraically closed� Let x�� � � � � xn be a regular system of parameters

of OW�a� By Cohen�s structure theorem� the completion 'OW�a is isomorphic to the

formal power series ring K��x���

We assume for simplicity that W � An and place ourselves at the origin of An� If

I is a principal ideal generated by some f with expansion f�x� �
P

��Nn c�x
� in

'OW�a� the expansion at a is given by f�x� �
P

��Nn d��a��x�a�� where f�x
a� �
P

d��a�x
�� Then ordaf � c if and only if all d��a� with j�j 
 c are zero� By

binomial expansion of f�x
 a�� the d� are polynomials in a whose coe�cients are

Z�linear combinations of the c��s� This shows that the locus of points a where

ordaf � c is closed in An� For arbitrary ideals I� the locus of order � c is the

intersection of the corresponding loci of a generator system of I� The assertion

follows� You may also consult �BM �� p� �

�� �EV �� p� ��$� and �EV ���

As all our schemes will be assumed to be noetherian� the order of I takes only

�nitely many values on W �

If X is a subscheme of W of ideal I� we call ordaX � ordaI the order of X at a�

It clearly depends on the embedding of X in W � To see this� just embed X into

another ambient scheme W� via an inclusion W � W�� and the new order of X

at a will be � if dim W� � dim W �

Exercise �� Show that ordaI coincides for algebraically closed �elds with the

minimum of the orders of the Taylor expansion of elements of I at a� Use this to

prove that the ideal I of K��x�� generated by an ideal I of K�x� has the same order

��



at � as I� Moreover� the order of an ideal does not depend on the choice of a�ne

or formal coordinates�

Exercise �� Show that for Z � An a closed and reduced subscheme� the order of

I along Z is the minimum of the orders of I at points a of Z�

Appendix B� Computation of top loci

The upper semicontinuity of the order of an ideal implies that any closed subscheme

X of W admits a �nite strati�cation given by the order of its de�ning ideal� More

precisely� there exist �nitely many locally closed subschemes Xi of X which form

a partition of X and such that the order of the de�ning ideal I of X in W equals i

at each point of Xi� The stratum Xo with o the maximal value of the order of X

on W is closed� and will be called the top locus of X �or of I� in W � The closure

Xi of Xi decomposes into Xi � Xi �Xi�� � � � � �Xo � top�X� i��

Exercise �� Let f�x� y� z� � x� 
 ykzm� Determine according to the values of k

and m the locus of points a � A� where f has order � � respectively equal to 
�

Exercise �� Let X be the union of the four coordinate hyperplanes in A�� De�

termine the strata of constant order of X� Do the same for Y de�ned in A� by

xkylzmwn with k� l�m� n � N�
Exercise �� Let K be algebraically closed� Show that the support of a �not

necessarily reduced� hypersurface X � V �f� equals top�f� if and only if f � xk is

locally at each point a of X a �positive� power of a coordinate x� Moreover� the

number k is locally constant along X�

If the order of f � K�x� at a is o� the local top locus topa�f� is the zero�set of all

derivatives of f up to order o� � �including the ��th derivative��

Example �� Let f � x�p 
 y�p � �x� 
 y��p be given in characteristic p � 
� Then

f has order �p at � and top�f� � V ���x f� j�j 	 �p� �� � V �f� is the cusp�

Example �� Let f � � de�ne a hypersurface X in An� If K has characteristic zero�

top�X� � top�f� is contained locally at each point in a regular hypersurface H of

An� To see this� let o be the order of f at a � �� Then the Taylor expansion of

f at � has order o� hence there is a higher order derivative ��x with j�j � o such

that ��x f��� �� �� Let � � Nn be obtained from � by decreasing one positive entry

by �� Then ��x has order o� � and ��xf has order � at �� Thus ��xf is regular at �

and its zero�set contains top��f��

Exercise �� Let f�x� y� �
P

i ai�y�x
i be the Taylor expansion of f at � with

respect to one coordinate� say x � x�� of a regular system of parameters �x� y� �

�x�� x�� � � � � xn� of OW�a� where the coe�cients ai�y� live in OV�a with V � fx � �g�
Let o be the order of f at �� and assume that the characteristic is zero� Then

top��f� is the locus of points in fx � �g where the coe�cients ai�y� have order

� o� i for all i�

��



Appendix C� Local coordinates for blowups

LetW be a regular scheme of dimension n� and let Z be a closed regular subscheme

of dimension d �both schemes will be assumed for simplicity to be equidimensional��

Let � � W � �W be the induced blowup with center Z and exceptional component

Y �� and let �W �� a�� � �W�a� denote the corresponding local blowup for any pair

of points a � Z and a� � Y � above a� We shall assume that the ground �eld is

algebraically closed� As the resolution invariant associated to a mobile is upper

semicontinuous� we may and will restrict to closed points a and a�� Let V be a

local regular hypersurface of W at a containing Z locally�

Any choice of local coordinates in W at a induces local coordinates in W � at a�

and n � d a�ne charts for W �� We order the coordinates by decreasing indices

and thus write xn� � � � � x��

Assume given an ideal K in W at a� with coe�cient ideal J � coe�VK in V � with

given factorization J � M � I� where M de�nes a normal crossings divisor in V

at a� Let c � ordaK and c� � orda�K
� with K � � Kg the weak transform of K

in W �� Assume that V has weak maximal contact with K �i�e�� maximizes the

order of J�� and that Z is transversal to the divisor D of V de�ned by M � For

many proofs on the transfom of ideals under blowups it is useful to work in local

coordinates for which the blowup has particularly simple form� This is ensured by

the following assertions�

There exist local coordinates x � �xn� � � � � x�� of W at a� i�e�� a regular system of

parameters of OW�a� such that

��� a � ��� � � � � �� with respect to x in W at a�

��� V is de�ned in W by xn � ��

�
� Z is de�ned in W by xn � � � � � xd�� � ��

��� M is de�ned in V by x
qn��

n�� � � � xq�� for some q � Nn���

��� The weak transform V � of V is given in the coordinates in W � by xn � ��

��� The points a� of W � where the order of the weak transform Kg of K has

remained constant� c� � c� are contained in V ��

��� a� lies in the xn���chart of W
� with components ��� �� a�n��� � � � � a

�
j��� �� � � � � ��

with respect to the induced coordinates x in W � at a�� where j � d is the number

of components of D whose transforms pass through a��

�$� The blowup �W �� a�� � �W�a� is the composition of the linear map 	t � x �
�x 
 txn��� in W at a where t � ��� �� tn��� � � � � tj��� �� � � � � �� has components

ti � a�i and the monomial blowup � of W in Z considered in the xn���chart which

maps �xn� � � � � x�� to �xn� xn��� xn��xn��� � � � � xd��xn��� xd� � � � � x��� Thus ti �� �

for n� � � i � j 
� and ti � � for j � i � � and i � n� �� The map 	t preserves

Z and V and the factorization J � M � I� but destroys the monomiality of M as

in ��� with respect to the given coordinates�

�#� If condition ��� is not required� the coordinates can be chosen so that a� is the
origin of the xn���chart and that �W �� a��� �W�a� is the monomial blowup given

by �xn� � � � � x�� mapping to �xn� xn��� xn��xn��� � � � � xd��xn��� xd� � � � � x���

��



The assertions can be proven as follows� It is clear that �xn� � � � � x�� can be chosen

satisfying ��� to �
�� and ��� follows immediately from the fact that D and Z are

transversal� As for ���� we know by �
�� that the exceptional component Y � is
covered by the charts corresponding to xn� � � � � xd��� As c

� � c and xn is supposed

to appear in the tangent cone of K we conclude that a� cannot lie in the xn�chart�

Hence a� lies in the other charts and satis�es there a�n � �� A permutation of

ym� � � � � yd�� allows to assume that a� lies in the xn���chart� This permutation does

not alter ��� and �
�� As Y � is given in the xn���chart by xn�� � � and as a� � Y �

we get a�m � �� From ad � � � � � a� � � follows that a�d � � � � � a�� � �� After a

permutation of xn��� � � � � xd�� we may assume that a�i �� � for n � � � i � j 
 �

and a�i � � for j � i � � and i � n� � with n� �� j � � the number of non�zero

components of a�� This establishes ����

Properties �$�� �#� and ��� are immediate� As for ���� let f be an element of K

of order c at a which lies in the weighted tangent cone of K� As V � fxn � �g
maximizes the order of the coe�cient ideal of K in V � xn appears as a variable

in the homogeneous tangent cone of f � Computing K � in the a�ne coordinates of

the various charts shows that its order drops at all points of the xn�chart� Hence

the points of W � with c� � c are contained in the hypersurface xn � �� This proves

the claimed assertions�

Appendix D� Resum�e of de�nitions

We �x a regular ambient scheme W and a regular locally closed n�dimensional

subscheme V ofW � A divisor inW is an e�ective Weil divisor� A closed subscheme

D of W has normal crossings if it can be de�ned locally by a monomial ideal� The

subscheme V meets D transversally if the product of the de�ning ideals of V and

D de�nes a normal crossings scheme�

A local �ag in V at a is a decreasing sequence Wn 
 � � � 
 W� of closed i�

dimensional regular subschemes Wi of a neighborhood U of a in V � An ideal K in

V is bold regular if it is a power of a regular principal ideal in V � A strati�ed ideal

in V is a collection of coherent ideal sheaves each of them de�ned on a stratum

of a strati�cation of V by locally closed subschemes� A strati�ed divisor is de�ned

by a strati�ed principal ideal�

A map Qb � �Qb�
� associating to stalks of ideals Qb in an open subscheme U of

W stalks of ideals �Qb�
� in V is tuned along the stratum S of a strati�cation of V

through a point b of V if Qb and �Qb�
� admit locally at any point b of V coherent

representatives Qb on U and �Qb�� on V so that the stalks ��Qb�a�
� and ��Qb���a

at a coincide along S� This is abridged by saying that the ideals �Qb�
� are tuned

along S�

A shortcut of a �strati�ed� normal crossings divisorM inW is a divisor N obtained

fromM by deleting on each stratum of the underlying strati�cation strat�M� ofM

some components of M � The divisor M is labelled if each shortcut N comes with a

di�erent non�negative integer labN � its label� The empty shortcut has label �� A

shortcut N of a normal crossings divisor M is tight at a of order � c if it has order

� c at a and if any proper shortcut of N has order 
 c at a� It is maximal tight

��



at a if M is labelled and if �ordaN� labN� is lexicographically maximal among the

tight shortcuts of M of order � c at a�

A handicap on W is a sequence D � �Dn� � � � � D�� of strati�ed normal crossings

divisors Di of W � The truncation of D at index i is iD � �Dn� � � � � Di��

A singular mobile in W is a quadruple M � �J � c�D�E� with J a coherent

nowhere zero ideal sheaf on V � c a non�negative constant associated to V and

D and E handicaps in W with D labelled and E reduced� The number c is the

control of J � and D and E form the combinatorial and transversal handicap ofM�

The truncation iM at index i of M is �J � c� iD� iE��

A strong resolution of a mobile M � �J � c�D�E� in W with J a nowhere zero

ideal in V is a sequence of blowups of W in regular closed centers Z such that

the ideal J � of the �nal transform M� � �J �� c�� D�� E�� of M has order 
 c�

We require that the centers are transversal to the exceptional loci� and that the

resolution is equivariant�

The top locus of an upper semicontinuous function t on V is the reduced closed

subscheme top�t� of points of V where t attains its maximum� The order at a

of an ideal J of V is the largest power o � ordaJ of the maximal ideal of OV�a

containing the stalk of J at a� We set top�J� � top�ord J� and denote by top�J� c�

the locus of points in V where the order of J is at least c� For closed subschemes of

V � the analogous loci are associated to the de�ning ideals� When working locally

at a point a� top�t� also denotes the local top locus of t in a neighborhood of a�

Let W � � W be the blowup of W with center Z inside V and exceptional com�

ponent Y �� The total and weak transform of an ideal J of V are the inverse image

J� of J under the induced blowup V � � V and the ideal Jg � J� � I�Y � � V ���o

with o � ordZJ � The controlled transform of J with respect to c 	 o is the ideal

J 
 � J� � I�Y � � V ���c in V �� The strict transform of a closed subscheme X of V

in V � is the closure Xst of the pullback of X n Z in V �� It is de�ned by the ideal

Jst in V � generated by all f� � I�Y � � V ���ordZf with f in the ideal J of X in V �

The companion ideal P of a product J � M � I of ideals in V at a with respect to

a control c 	 ordaJ on V is the ideal P in V at a given by

P � I 
M
o

c�o if � 
 o � ordaI 
 c�

P � I otherwise�

The transversality ideal Q in V of a normal crossings divisor E of W is the ideal

Q � IV �E � V �

de�ning E � V in V � The composition ideal K in V of a product J � M � I of

ideals in V with respect to a control c and a normal crossings divisor E in W is

K � P �Q if I �� ��

K � � if I � ��

with P the companion ideal of J and c� and Q the transversality ideal of E in V �

�$



The tag of an ideal J in V at a with control c and normal crossings divisors D and

E in W such that J � M � I for M � IV �D � V � with D labelled and transversal

to V is the vector

ta�J� � �o� k�m� � N��

equipped with the lexicographic order� Here� o � ordaI and k � ordaK with

K � P � Q the composition ideal of �J� c� E�D�� We set m � ��� �� if o � �� and

m � �ordaN� labN� otherwise with N the maximal tight shortcut of M at a of

order � c�

The coe�cient ideal of an ideal K of W at a with respect to V is de�ned as

follows� Let x� y and y be regular systems of parameters of OW�a and OV�a so that

x � � de�nes V in W � For f in K denote by af�� the elements of OV�a so that

f �
P

� af�� � x� holds after passage to the completion� Then set

coe�VK �
P

j�j�c�af��� f � K�
c

c�j�j �

The junior ideal J in V of an ideal K of W at a is the coe�cient ideal coe�VK

of K in V if K is not bold regular or �� and is set equal to � otherwise�

A point a� of the blowup W � of W with center Z is an equiconstant point for an

ideal I in W at a if a� maps to a and if the order of the weak transform Ig of I

at a� equals the order of I at a�

The subscheme V of W is adjacent to I at a if its strict transform V st in W �

contains all equiconstant points a� of I above a� It has permanent contact with I

at a if the successive strict transforms of V under any sequence of blowups with

centers inside the top loci of I and of its weak transforms contain all successive

equiconstant points of I above a� We say that V has weak maximal contact with

I at a if V maximizes the order of the coe�cient ideal coe�V I of I in V at a�

It is osculating for I if there is an f � I with ordaf � ordaI and ordacoe�V f �

ordacoe�V I such that af�� � � for all � with j�j � ordaI � ��

Let M � �J � c�D�E� be a singular mobile in W with J a coherent ideal in a

locally closed regular n�dimensional subscheme V � Write Jn for the stalk of J at

a point a of V � A punctual setup of M at a is a sequence �Jn� � � � � J�� of stalks of

ideals Ji in a local �ag �Wn� � � � �W�� of V at a satisfying for all i 	 n

) Ji � Mi � Ii with Mi � IWi
�Di �Wi� and Ii an ideal in Wi at a�

) Mi de�nes a normal crossings divisor in Wi at a�

) Wi�� has weak maximal contact at a with the composition ideal Ki in Wi of

�Ji� ci��� Di� Ei�� Here� ci�� is the control of Ji on Wi� It is given for i 
 n as the

order of Ki�� in Wi�� at a� and cn�� � c�

) Ji�� is the junior ideal of Ki in Wi���

The invariant ia�M� of a mobile M � �J � c�D�E� in W admitting locally on V

setups �Jn� � � � � J�� is the vector

ia�M� � �tn� � � � � t�� � N�n

with ti � �oi� ki�mi� the tag of �Ji� ci��� Di� Ei� at a�
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Appendix E� Table of notations

Script capitals M� J denote strati�ed global objects or sheaves� roman capitals

J � I� M � P � Q� K stalks of ideals or su�ciently small representatives of them�

Subscripts refer to the embedding dimension or� for handicaps� to the relevant

dimension� left superscripts to truncations� Primes denote objects after blowup

playing the same role as their predecessors below� Minus sign subscripts denote

objects in one dimension less playing the same role as their cousins without sub�

script�

M � �J � c�D�E� singular mobile in regular ambient scheme W

J coherent ideal sheaf in n�dimensional regular subscheme V of W

c positive integer constant� the control

D � �Dn� � � � � D�� combinatorial handicap with Di normal crossings divisor in W

E � �En� � � � � E�� transversal handicap with Ei normal crossings divisor in W

�Jn� � � � � J�� punctual setup of M at a with Ji coherent ideal in Wi at a
iM � �J � c� iD� iE� truncated mobile with iD � �Dn� � � � � Di��

iE � �En� � � � � Ei�

�Jn� � � � � Ji� truncated punctual setup of iM at a

J � Jn stalk of J at a

Ji � Mi � Ii factorization of Ji with Mi � IWi
�Di �Wi�

Ii factor of Ji which passes under blowup to weak transform

J�� M�� I� ideals in one lower dimension playing the same role as J � M � and I

Wn� � � � �W� local �ag of i�dimensional regular subschemes Wi of W at a

Wi osculating hypersurface for Pi�� in Wi��

ci�� control for Ji in Wi at a� equal the order of Ki�� in Wi�� at a

Pi � Ii 
M
ci���	ci���oi

i � resp� Pi � Ii companion ideal of Ji � Mi � Ii

Qi � IWi
�Ei �Wi� transversality ideal of Ei in Wi

Ki � Pi �Qi composition ideal of Ji � Mi � Ii� ci�� and Ei

Ji�� � coe�Wi��
�Ki� coe�cient ideal of Ki in Wi��

Ni maximal tight shortcut of Mi of order � ci��

top�Ii� top locus of Ii of points where Ii has maximal order in Wi

top�Ji� ci��� locus of Ji of points where Ji has order � ci�� in Wi

oi order of Ii at a in Wi

ki order of Ki at a in Wi

mi � �ordaNi� labNi� combinatorial tag of Mi

ti � �oi� ki�mi� tag of Ji � Mi � Ii� ci��� Ei at a

ia�M� � �tn� � � � � t�� local invariant of mobile M at a

Z center of blowup in W

W � blowup of W in Z

Y � new exceptional component in W �

V g� Jg weak transform of V � resp� J in W �

V st� Jst strict transform of V � resp� J in W �

J� total transform �� pullback� of J in W �

J 
 controlled transform of J in W � w�r�t� a control c

$�



W �
i weak transform of Wi at equiconstant points of P

�
i��

W �
i newly chosen osculating hypersurface for P �

i�� outside equiconstant points

J�i total transform of Ji under blowup of Wi in Z

J 

i � J�i � I�Y ���ci�� controlled transform of Ji w�r�t� ci��

Igi � I�i � I�Y ���ordZIi weak transform of Ii under blowup of Wi in Z

D�
i� E

�
i transforms of Di and Ei

M �
i � IW �

i
�D�

i �W �
i � exceptional monomial factor of J �i

M� � �J �� c�� D�� E�� transform of M under blowup
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